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ABSTRACT

With increasing penetration of intermittent power generation sources like wind and solar farms, overload
risks in power grids due to imbalances in supply and demand of energy has become a serious concern. We
model the flow of electricity through a power grid as a functional transformation of a multidimensional
Ornstein-Uhlenbeck process of renewable energy injection. Previously, a rare event simulation technique
called splitting, based on large deviations results has been proposed as the risk assessment method. This
method requires solving a nonlinear optimization problem for every time step in every generated sample
path, so significant computational challenges remain in scaling to realistic networks. We propose a new
algorithmic approach to implement the large deviations splitting method that derives and exploits fundamental
properties of the rate functions in order to significantly speed up the pathwise optimizations. Experimental
results show a significant reduction in effort compared to a conventional numerical approach.

1 INTRODUCTION

Power transmission grids have to handle increasing uncertainty as the proportion of renewables in the
generation portfolio rises. Given dispatch levels for all scheduled generators, a deterministic mean forecast
for all renewable generation, and the predicted mean demand information, the traditional deterministic
power flow (PF) tool (Wood and Wollenberg 1996) solves the AC power flow equations to determine the
voltage magnitudes at buses and the flows of power through the branches in the grid. Slack buses are used
to hedge against any residual mismatch between the total load and generation. The aim of PF prediction
is to check for congestion, which is defined as the event when the voltage at a bus or power flow through
a transmission line exceeds specified capacity limits. This stability analysis provides system operators
with an early-warning on emerging congestion conditions and possible voltage/thermal violations. Current
practice deems it sufficient to run this step into the near future of 1-5 minutes. However, the substantial
volatility of renewable generation and hence variability in its prediction requires a stochastic prediction to
foresee potential congestion in the grid, as the share of renewables in the total generation portfolio rises.
Renewable generation volatility affects both the available generation via large-scale renewable farms and
the prediction of net load due to the increasingly wide-spread use of small behind-the-meter renewable
generation in homes and local neighborhoods.

The literature on impact of renewables uncertainty has mostly concentrated on the day-ahead market
(unit-commitment) and the economic dispatch or optimal power flow decision problems (Summers,
Warrington, Morari, and Lygeros 2015), while we seek methods to predict the probability of congestion
events on the transmission grid due to load and/or renewables uncertainty after the unit commitment and
dispatch schedules are (mostly) fixed. A Monte Carlo simulation method for linearized power flow equations
is developed in Leite da Silva and Arienti (1990) and Wadman, Bloemhof, Crommelin, and Frank (2012).
Fast Fourier transform used in a convolution technique is introduced in Allan, Leite da Silva, and Burchett
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(1981) for linearized power flow models, the most common form of which assume a direct-current (DC)
circuit model (see Section 2). Approximate point estimate methods with some assumptions on the random
variables is presented in Su (2005). The authors of Zhang and Lee (2004) analytically calculate probabilistic
distribution functions for power flows from theories of cumulants and Gram-Charlier expansion for linear
DC power flow equations. The paper Esmaili, Amjady, and Shayanfar (2010) describes a single-period AC
power flow congestion prediction scheme using a straightforward Monte Carlo sampling scheme.

These above-mentioned methods either model only a single period, or linearize the power flow equations
or both. The state-of-the-art short-term demand and renewables forecasting tools (Alzate and Sinn 2013)
can provide a distributional description of the possible outcomes into a longer horizon of the next 6-24
hours. In Wadman, Crommelin, and Zwart (2016), a multiperiod model is described for a linearized power
flow model in order to predict the probability of congestion over a single critical line in the power grid.
Power grids are well-designed and typically run well within their operational bounds. So, congestions
are low-probability but extremely costly occurrences. To efficiently estimate these probabilities under a
probabilistic renewable generation model, Wadman, Crommelin, and Zwart (2016) employ a variant of rare
event Monte Carlo simulation called a splitting method (Section 3) to sample more often from multiperiod
sample paths that lead to congestion events. This method is particularly suited to the multiperiod PF
formulation because the path-dependent evolution of the multiperiod system is a challenge to most efficient
sampling schemes, but is a natural fit to the method of splitting.

Crucial to an efficient implementation of splitting is the choice of a parameter called the importance
function. Wadman, Crommelin, and Zwart (2016) show that the splitting method can be asymptotically
efficient (in a certain precise sense) in estimating the small probability if the importance function is defined
in terms of a large deviations based rate function derived for the congestion event (see Section 3). Computing
this optimal rate function can be computationally challenging: as seen in Section 3, the optimal rate function
is sample path dependent, and estimating it requires solving a state-dependent one-dimensional nonlinear
optimization problem at every period of generating a single sample path in order to determine the most likely
time of failure into the future up to the horizon given the current state of the grid. In Wadman, Crommelin,
and Zwart (2016), these individual optimization problems are solved by enumerating the objective function
over the decision space, which limits the efficacy of the method in handling large power grids.

We propose a novel algorithmic approach to accelerate the solving of these path-dependent optimization
problems. This is achieved by analyzing the gradient of the objective function, which can be written in
a certain form (see Section 4) that suggests a natural bisecting algorithm to pare down the feasible set
iteratively to quickly hone in on the region where the optimal solution may lie. The resulting algorithm,
called the Tree-based Bisection Algorithm (TBA) is described in Section 5. Extensive numerical experiments
were conducted on a standard IEEE example of a power grid (Christie 2006), and results of which (in
Section 6) show a remarkable saving in the function evaluations required in the TBA against the existing
method from Wadman, Crommelin, and Zwart (2016). In most cases, TBA seems to require an order of
magnitude smaller number of function evaluations than the conventional method requires.

2 POWER GRID MODEL

Let the vector-valued stochastic process {Xε(t), t ≥ 0} denote n uncertain power injections of a power grid
as a function of time t. We define this process as the multidimensional Ornstein-Uhlenbeck (OU) process

dXε(t) = D(μ −Xε(t))dt +
√

εLdW (t), Xε(0) = x0, (1)

where D := diag(θ1, . . . ,θn) ∈ R
n×n is a diagonal matrix with mean-reverting terms θ1, . . . ,θn > 0 on the

diagonal. Here, μ ∈ R
n is the vector of long-run means, ε > 0 is a scalar called the rarity parameter,

L ∈R
n×n is a lower triangular matrix with Σ := LL� the covariance matrix of LW (1), and W (t) is a vector of

i.i.d. standard Brownian motions. Then Xε
i (t) is clearly a one-dimensional OU process with mean-reverting

term θi, long-term mean μi, volatility
√

εΣii and initial value x0,i. The injection pattern at node i therefore
deviates according to

√
εΣii but reverts back to mean μi with force θi. Dependencies between different power
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injections are captured in the model through L, thus reflecting the correlation between the meteorological
sources of renewable energy or between consumption at different nodes. Wadman, Crommelin, and Zwart
(2016) show that Xε(t) follows a multivariate normal distribution.

We define the function p : Rn → R that maps the power injections to the power flowing through a
specific grid connection. A common choice for p involves alternating current (AC) power flow equations,
which compose a nonlinear algebraic system of steady state equations that relates the power injections at
each grid node to the voltages at all nodes. This nonlinear algebraic system has to be solved numerically for
the nodal voltages in order to compute a connection power flow at some time t given the power injections
at that time. Ohm’s law and the definition of power will then immediately yield the power flow through a
connection. We refer to (Grainger and Stevenson 1994, Chapter 9) for additional details.

Another choice for p is a linear function of the power injections to the power flow through the connection
of interest, namely

p(x) = v�x (2)

for some constant vector v ∈R
n. The direct current (DC) power flow equations form a well-known example

of this choice for p (Seifi and Sepasian 2011, Appendix A). Moreover, linear functions for p have been
derived for radial AC networks (Low 2014). In this paper, we assume that p is a deterministic and continuous
linear function of x that solves a system of steady state equations. Additional details on this linear model
can be found in (Wadman, Crommelin, and Zwart 2016).

Our specific interest lies in the overload probability

γ := P

{
sup

τ∈(0,T ]
p(Xε(τ))≥ Pmax

}

before some time T > 0, where Pmax > 0 is the maximum allowed value of power flowing through the
connection. Since Xε and p are continuous, the event of interest will occur precisely when the power flow
equals Pmax at least once before T , so we have

γ = P{∃ τ ∈ (0,T ] : p(Xε(τ)) = Pmax} . (3)

We will now show that if no overload occurs under nominal loading conditions, probability γ is small for
vanishing ε (explaining the term rarity parameter). Suppose that no overload occurs if the power injections
are equal to their expectation:

p(E[Xε(t)])< Pmax for all times t. (4)

Wadman, Crommelin, and Zwart (2016) show that

E[Xε(t)] = e−Dt(x0 −μ)+μ

where the exponential is a matrix exponential, and thus assumption (4) implies that there is neither an
overload at the starting time, p(x0)< Pmax, nor under average circumstances, p(μ)< Pmax, nor under the
most likely circumstances in between. Hence, for vanishing ε , P{p(Xε(t)) ≥ Pmax} goes to zero for all
t. We then can conclude that, for fixed T , γ goes to zero as ε vanishes, which is why γ is a rare event
probability if ε is small.

From large deviations theory, we know that the most likely path to the rare event set will become
dominant as the rare event probability vanishes, i.e., the decay rate of the vanishing probability converges
to the good rate function of this most likely path. In particular, the minimum good rate function of the
probability in (3) converges to I∗(0,x0), suggesting the following approximation for small ε:

γ ≈ e−I∗(0,x0)/ε .
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This approximation serves to help distinguish connections with a significant overload probability, where the
most likely path sheds light on the typical combination of power injection paths that leads to an overload.
We will next use this approximation to construct a suitable importance function for a splitting simulation,
expressing the decay rate I∗(s,xs) as a minimization over τ ∈ (s,T ] of an infimum gs,xs(τ) for general τ:

I∗(s,xs) = inf
τ∈(s,T ]

gs,xs(τ), with gs,xs(τ) := inf
x:p(x(τ))=Pmax

Is,xs(x). (5)

3 THE SPLITTING METHOD

Our goal is to estimate the overload probability γ in (3) using crude Monte Carlo (CMC) simulation, where
following Wadman, Crommelin, and Zwart (2016) we sample trajectories from the discretization Xε

t of
Xε(t) in (1) to see whether p(Xε

t )> Pmax at some discrete time t. The CMC estimator for γ , defined as

γ̂CMC :=
1

N

N

∑
i=1

1{∃ τ∈(0,T ]:p(Xε
τ )≥Pmax in sample i},

is in principle biased because rare event occurrences between subsequent time steps are ignored. However,
consistent with (Wadman, Crommelin, and Zwart 2016), we shall assume that the discrete time steps are
chosen sufficiently small to ignore this discretization bias.

One may need a prohibitively large number of samples to estimate a very small probability for such
rare events using CMC simulation, since the squared relative error of the CMC estimator is given by

Var γ̂CMC

γ2
=

γ(1− γ)
γ2N

=
1− γ
γN

(6)

which diverges to infinity as O(1/γ) when N is fixed and γ → 0. An effective rare event simulation
technique developed to decrease this computational burden is called splitting; refer to, e.g., Rubino and
Tuffin (2009). Key to any splitting technique is the definition of an importance function h : [0,T ]×R

n 
→R

that assigns a value to each chain state (t,x) such that h(t,x)≥ 1 exactly when (t,x) corresponds to a rare
event occurrence and h(0,x0) = 0. Higher values of a suitable importance function correspond to a chain
state from which the rare event is more likely. More precisely, the interval [0,1] is divided into m subintervals
with intermediate thresholds 0 = l0 < l1 < · · ·< lm = 1 where we define Tk := inf{t > 0 : h(t,Xε(t))≥ lk}
to be the first time of hitting the k-th level and Ek := {Tk < T} to be the event that the k-th level is hit
during [0,T ]. Clearly, the value of interest P(Em) is equal to γ .

Since Em ⊂Em−1 ⊂ ·· · ⊂E0, withP(E0) = 1, we can express γ as a product of m conditional probabilities
pk := P(Ek|Ek−1), namely

γ =
m

∏
k=1

P(Ek|Ek−1), (7)

which we will estimate separately. Independent sample paths from the conditional distribution of the
entrance state (Tk−1,Xε(Tk−1)), given Ek−1, would provide an estimate for pk. However, we do not know
this distribution for levels k > 1, and therefore we use its empirical distribution which is obtained from
samples of the previous level. Proceeding recursively in this manner, where at each level k we estimate pk
by the proportion p̂k of sample paths for which Ek occurs, we then have

γ̂ :=
m

∏
k=1

p̂k (8)

as an unbiased estimator of γ for several variants of the splitting technique. One such technique is
called Fixed Number of Successes (FNS) that repeatedly generates sample paths at each level k until
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a prespecified number rk hits of the next level are observed. Then the conditional probabilities pk are
estimated by p̂k := (rk − 1)/(nk − 1), with nk the number of samples generated at level k. Amrein and
Künsch (2011) show for this definition of p̂k that (8) is indeed an unbiased estimator for γ and that, under
ideal circumstances, the squared relative error of the FNS estimator diverges as O((logγ)2) when γ → 0.
This squared logarithmic divergence rate is slower than the divergence rate of the CMC squared relative
error in (6), and we therefore use the FNS splitting technique to realize this potential gain of splitting.

Our choice for the importance function is crucial for variance reduction of the splitting estimator, which
has been an active area of research. The goal is to select an importance function that splits sample paths
which are more likely to hit the rare event set, where the levels should be chosen consistent with the most
likely path to the rare event. Following Wadman, Crommelin, and Zwart (2016), we use a result from large
deviations theory to find an asymptotic probability of the rare event in the limit of the rarity parameter
ε . In particular, we are interested in the decay rate I∗(s,xs) of the limiting probability that, conditional
on Xε(s) = xs for general s ∈ (0,T ] instead of on Xε(0) = x0, the rare event p(Xε(τ))≥ Pmax will occur
at some time τ ∈ (s,T ] in the remaining time domain. The decay rate I∗(s,xs) is used to compute an
approximate probability to hit the rare event given a realized chain state, which then serves as a proxy of
the importance function for deciding whether or not to split the sample path at the corresponding time step.

From the derivations and results of Wadman, Crommelin, and Zwart (2016), we have that the most
likely path from Xε(s) = xs to the rare event is of the form

x(t) = (VeDt − e−D(t−s)VeDs)c+ e−D(t−s)(xs −μ)+μ (9)

for t ∈ [s,T ] and that the decay rate for general s ∈ (0,T ] is given by (5) where

gs,xs(τ) =
1

2
inf

c∈Rn:p(x(τ))=Pmax

c�eDτ Cov(X1(τ − s))eDτc. (10)

Assuming linear power flow equations p(x) = v�x, the latter minimization has the closed-form solution

gs,xs(τ) =
1

2

(
Pmax − v�μ − v�e−D(τ−s)(xs −μ)

)2

v� CovX1(τ − s)v
. (11)

Next, to compute the rare event probability using splitting, we proceed by expressing γ as the product
of conditional probabilities in (7) and by defining these conditional probabilities in terms of the decay rate
in (5). This renders

γ = P
{∃s ∈ (0,T ] : I∗(s,Xε(s)) = 0

∣∣ ∃s ∈ (0,T ] : I∗(s,Xε(s))< αI∗(0,x0)
}

×P{∃s ∈ (0,T ] : I∗(s,Xε(s))< αI∗(0,x0)}
for any threshold α ∈ (0,1), which obviously holds since the condition {∃s ∈ (0,T ] : I∗(s,Xε(s)) <
αI∗(0,x0)} is a subset of the rare event {∃s ∈ (0,T ] : I∗(s,Xε(s)) = 0}. Upon iterating this decomposition
by defining thresholds 0 =: l0 < l1 < · · ·< lm := 1 and events

Ek :=

{
∃s ∈ (0,T ] : 1− I∗(s,Xε(s))

I∗(0,x0)
≥ lk

}
,

for k = 0, . . . ,m, together with the facts P{E0} = 1, P{Em} = γ and E0 ⊃ . . . ⊃ Em, we conclude that
the decomposition (7) holds. In turn, this decomposition suggests the large deviations based importance
function h : [0,T ]×R

n → R defined by

hLD(t,x) := 1− I∗(t,x)
I∗(0,x0)

. (12)
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This importance function is similar to that of Miretskiy, Scheinhardt, and Mandjes (2012), who choose an
importance function equal to the exponential decay rate to estimate a probability of first entrance into a
rare set and then prove asymptotic efficiency of their proposed Fixed Splitting scheme.

A direct implementation of the above decomposition approach can provide significant computational
improvements through the benefits of splitting. As a specific example, described in Section 5.1 of (Wadman,
Crommelin, and Zwart 2016), one can assume that the minimizer τ∗ ∈ U := {s,s+Δ , . . . ,T} lies on a
uniform grid and then approximate the true optimum by computing the objective function gs,xs(τ) in (11)
for each such grid point. The resulting approximation minτ∈{s,s+Δ ,...,T} g(τ) approaches the true optimum
as Δ tends to 0. We shall refer to this as the Uniform Trials algorithm (UTA).

4 OPTIMIZING THE HITTING TIME OF THE RARE EVENT SET

Although significant improvements in efficiency are realized through splitting, UTA can still be compu-
tationally intensive because the optimization problem in (5) of gs,xs(τ) over τ ∈ (s,T ] that defines the
good-rate function I∗(s,xs) for any state X(s) = xs is in general non-convex. Thus, the UTA approach of
direct-enumeration of gs,xs over a discretization of the range (s,T ] may require numerous evaluations of
gs,xs(τ), potentially even outweighing the benefits of splitting. As an example, such evaluations of gs,xs(τ)
cost on average 85% of the total CPU time in the experiments performed in Section 6.1. Our goal in this
paper is to develop new algorithms and derive results that significantly improve upon the computational
complexity of UTA by reducing the number of evaluations of gs,xs(τ).

Wadman, Crommelin, and Zwart (2016) show that the τ−dependent matrix in the denominator in (11)
is Cov(X1(τ − s)) = V − e−D(τ−s)Ve−D(τ−s), where V and D are symmetric matrices defined by the OU

process data. Additionally, D is a positive diagonal matrix by assumption, and hence the matrix e−D(τ−s) is
a diagonal matrix consisting of terms of form e−di(τ−s). Since the variable τ appears in (11) only via these
terms, let z= v�e−D(τ−s) and rewrite gs,xs = (P̄−z�x̄s)

2/(K−z�V z), where P̄= (Pmax−v�μ), x̄s = (xs−μ)
and K = v�V v. Minimizing gs,xs over z is a program in a convex-fractional form (with a convex quadratic
numerator and denominator) and hence can be reformulated as a convex program. However, since the
power-injection vector v will have both positive and negative components, z is in general not a monotone
function of τ , and so this technique does not lead to reducing the non-linear problem of minimizing gs,xs

over τ to minimizing a convex program.
Differentiating with gs,xs respect to τ (using the symbol ẋ to represent ∂x(τ)/∂τ for any x(τ)),

ġs,xs =
2(P̄− z�x̄s)

[
(P̄− z�x̄s) ż�V z− ż�x̄s(K − z�V z)

]
(K − z�V z)2

. (13)

We seek a τ such that ġs,xs = 0 in order to find (first-order) optimal solutions to the optimization problem (5).
By the definition of K and z, the denominator in (13) is always positive, and hence it is sufficient to seek a
zero of the numerator. Denoting the numerator in (13) as N(τ), substitute ż =−v�De−D(τ−s) and rearrange
to get a form

N(τ) = ∑
i

aie−bi(τ−s) + ∑
j

c je−l j(τ−s),

= f (τ) + h(τ) (14)

where bi, l j > 0, and the coefficients ai > 0 while c j < 0.
The Tree-based Bisection Algorithm presented in Section 5 exploits this structure in determining the

τ where N(τ) = 0. Specifically, note that the function f (τ) is decreasing in τ while the function h(τ) is
increasing in τ , and for any τ ∈ [τ ,τ],

f (τ)+h(τ) ≤ N(τ) ≤ f (τ)+h(τ). (15)
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Thus, if the upper bound f (τ)+h(τ)< 0, then gs,xs is minimized over [τ,τ] at τ . Similarly, if the lower
bound f (τ)+ h(τ) > 0, then gs,xs is minimized over [τ,τ] at τ . TBA calls this elimination rule as E,
and checks this rule over subintervals of (s,T ] iteratively. If the function N does not satisfy E over an
interval, it can be applied over a subinterval partition. TBA applies rule E to eliminate subintervals of
(s,T ] till sufficiently small intervals have been identified as containing candidate optimal solutions. TBA
then enumerates over a discretization of the remaining intervals in order to identify the optimal solution
defining I∗(s,xs).

5 THE TREE-BASED BISECTION ALGORITHM

At each time step s of each sample path Xε(s) of the splitting simulation, the Tree-based Bisection algorithm
(TBA) reduces the search space (s,T ] of the optimization problem in (5) of gs,xs(τ). To be more precise,
the search space is reduced as follows:

Algorithm 1 We define the full search space S := (s,T ] as the first interval to observe. The left and right
endpoints of the interval are τ := s, τ := T , respectively. Then we perform the following steps:

1. We check whether the event E := { f (τ)+h(τ)< 0} holds.
(a) If E holds, then certainly f (τ)+h(τ)< 0, so ġs,xs(τ)< 0 for all τ ∈ [τ,τ] and thus argmings,xs(τ)=

τ . Therefore, we can remove this interval except the right endpoint from the search space by
setting S := S\ [τ,τ).

(b) If E does not hold, we check E for both the left and right half of the interval. That is, we
repeat Step 1a after updating

i. τ := τ and τ = (τ + τ)/2, and
ii. τ = (τ + τ)/2 and τ := τ .

In this way we proceed recursively, checking bound E for the left and right half of an interval whenever
this bound was not valid for the entire interval. We kill a branch in this tree of checks whenever the interval
width τ − τ ≤C has become smaller than a prespecified minimum interval width C.

The resulting search space S is a union of intervals, which is a subset of the original search space (s,T ].
If we assume just as in the UTA algorithm that argmings,xs(τ) is one of the U = {s,s+Δ , . . . ,T}, the
minimization immediately reduces to computing g(τ) for all τ ∈U ∩S. Since U ∩S may contain a much
smaller number of points than the original U , TBA can be seen as an improvement to UTA, preserving
accuracy and potentially saving a large amount of workload.

s
¬E

T

s
E ¬E

T

(s+T )/2

E E
T

Iteration 1

Iteration 2

Iteration 3

Figure 1: An example run of TBA, where after three iterations the search space (s,T ] is reduced to the

single point T .

Note that Algorithm 1 ignores the opposite check whether { f (τ)+h(τ)> 0} as described in previous
section. The reason is that simulation showed that the minimizer is often close to the end point T , and that
proving ġs,xs(τ)< 0 on large intervals before the minimizer constitutes the lion’s share of the computational
gain.
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6 EXPERIMENTS

We adopt the setting experiments on a IEEE 14 Bus Test Case in Section 6.1 of Wadman, Crommelin, and
Zwart (2016) to compare computational efficiency. To keep this paper self-contained we briefly introduce
all parameter values of the model and refer to Section 6.0 and 6.1 in Wadman, Crommelin, and Zwart
(2016) for details.

The IEEE 14 grid has 20 connections connecting 14 nodes, of which 11 have nonzero power injections
(Christie 2006). Although these power injections are constant in the original IEEE 14 Bus Test Case,
we model nodes 2 and 3 as a two-dimensional OU process as in (1), so n = 2. This OU process
fluctuates around the original deterministic power injections Pdet by setting μ := x0 := Pdet, ε := 0.1 and
θi = 1+(i− 1)/(n− 1). Matrix L is chosen as the lower Cholesky factor of covariance matrix LL� :=
diag(σ)(ρ11�+(1−ρ)I)diag(σ). Here correlation ρ := 0.5 reflects the typically positive correlation of
power injections, 1 ∈R

n is a vector of ones and the vector σ of standard deviations is such that volatilities
εσi := ε(1+(i−1)/(n−1)) of the marginal OU processes increase from 0.1 to 0.2.

We choose end time T = 1 hour and step size Δ = 0.01 hour for the splitting simulation, so the
experiment can be interpreted as an operational assessment of grid relibiality of the coming hour. For
each connection i → j between grid nodes i and j, we estimate the probability γ of an overload in that
connection, where the arrow distinguishes the direction of the overload:

γ =

{
P{supτ∈(0,T ] v�Xε(τ)≥ Pmax} if i < j,
P{infτ∈(0,T ] v�Xε(τ)≤−Pmax} if i > j.

(16)

All experiments are performed on an Intel Core i7-4700MQ 2.40GHz computer in MATLAB R2015b.
We choose the maximum allowed power flow Pmax = 1.5|v�μ| equal to 1.5 times the average absolute

power flow. Using r = 100 hits per level we estimate the overload probabilities of all connections for
which the decay rate proxy I∗(0,x0) is larger than 10−20, assuming the overload probabilities of the other
connections are negligible.

6.1 Search Space Reduction

First we compare TBA with UTA by comparing the number of evaluations of g required to estimate
each overload probability. Each row in Table 1 corresponds to (the overload probability of) another grid
connection. The first column lists which overload probability as defined in (16) is concerned. Since no
evaluation of g is required at the last splitting level, we ommitted overload probabilities of connections for
which the splitting estimation would use only one level. The second level contains the number of levels m.
For each connection we compute the average γ̂ of 100 splitting estimates and its relative error SE(γ̂)/γ̂ , as
listed in columns three and four, respectively. Note that TBA and UTA provide the exact same estimates
and therefore they have equivalent accuracy. Furthermore, even when γ decreases by orders of magnitude,
the resulting relative errors only increase modestly; in fact, one can easily verify that the divergence is
consistent with the rate O((logγ)2) discussed in Section 3.

The fifth column displays the number nUTA of evaluations of g required to obtain 1 splitting estimate,
averaged over 100 splitting simulations, all using UTA. The sixth column similarly displays the number
nTBA of evaluations, but now using TBA instead of UTA. Therefore, the difference nUTA −nTBA is exactly
the number of evaluations of g avoided by TBA. We kill a branch of the tree in TBA whenever the interval
width τ −τ <C := Δ is smaller than the grid step size, since removing smaller intervals will not necessarily
remove a point from the set {s,s+Δ , . . . ,T} we have to compute g at. The last column reflects how much
less evaluations of g TBA requires, by showing 1 minus the ratio between the counts of TBA and UTA.
This column shows that TBA avoids evaluating g at around 90% of the grid points in this example. This
decrease seems robust in the rarity of the event of the overload: even though γ̂ varies from roughly one
percent to almost 10−20, this decrease stays between 89% and 92%.

Figure 2 shows for four connections which levels and which time steps contribute most to this decrease.
More precisely, each bar shows the number of evaluations of g avoided by TBA at that time step s. Each bar
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Table 1: Comparison of UTA and TBA in terms of the average number of evaluations required to find 1

splitting estimate.

m γ̂ SE(γ̂)/γ̂ nUTA nTBA 1− nTBA

nUTA

5 → 4 3 1.2E−2 0.15 3.0E6 3.1E5 0.90

1 → 5 4 1.4E−3 0.17 4.3E6 4.1E5 0.91

3 → 4 5 2.5E−4 0.23 4.8E6 5.1E5 0.89

11 → 10 6 6.3E−5 0.22 5.2E6 5.6E5 0.89

2 → 4 15 5.5E−11 0.50 8.0E6 8.5E5 0.89

9 → 10 19 3.2E−14 0.51 9.9E6 8.5E5 0.91

6 → 11 26 5.2E−19 0.75 1.2E7 9.7E5 0.92

consists of stacked bars to further distinguish over levels, and all bar values in one figure sum exactly up to
nUTA −nTBA for the corresponding connection, as displayed in Table 1. First, one can see that most of the
decrease is clearly achieved at lower levels. This can be attributed to the process Xε starting at the mean
Xε(0) = μ: at lower levels, Xε(s) will still be relatively close to the mean μ , implying that the most likely
time to hit the rare event set will be close to end time T (see also Section 4.2 and Figure 4 in (Wadman,
Crommelin, and Zwart 2016)). Simulation results confirm that at lower levels TBA typically removes the
full interval (s,T ) from the search space, leaving end time T only, so then apparently the righthand bound
in (15) is sufficiently strict to solve optimization problem in (5) of gs,xs(τ) over τ ∈ (s,T ] directly. Second,
at the first level TBA clearly avoids less evaluations of g at later time steps. This is intuitive since at later
time steps there simply are less evaluations to avoid by TBA: at every time step s UTA will evaluate g
at (T − s)/Δ + 1 hitting times (i.e., τ = s,s+Δ , . . . ,T ). The approximate linearity of the decline of the
first level bars suggests that TBA removes a relatively constant precentage of evaluations. At higher levels
an approximate linear decline can only be distinguished at the last couple of time steps: at the start of a
sample path, TBA starts avoiding evaluations after some time steps only. This can be attributed to sample
paths entering higher levels at later time steps only, since it typically takes some time steps to enter a
subsequent level.
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Figure 2: The number of evaluations of g avoided by TBA for each level (stacked) and at each time step

s. Each figure corresponds to another connection.

In Figure 3 again the number of avoided evaluations are plotted, but now for each rare event hitting
time τ instead of for each simulation time step s. More precisely, each bar shows the number of avoided
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evaluations of g for which the rare event hitting time is assumed to be τ . Again each bar consists of stacked
bars to further distinguish over levels, and again all bar values in one figure sum up to nUTA −nTBA. To
better understand these results, note that each plot contains exactly 99 stacked bars, since at the last time
step τ = 100 the bar is zero. This is intuitive since TBA is not capable of removing the last time step
τ = T from the search space, as explained in Step 1a of Algorithm 1 in Section 5 and as illustrated in
Figure 1. The plots in Figure 3 show that more evaluations of g at later hitting times are avoided than
those at earlier hitting times. An explanation is that UTA evaluates g more often for larger τ , so that there
are simply more evaluations that TBA can potentially avoid.
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Figure 3: The number of evaluations of g avoided by TBA for each level (stacked) and at each rare event

hitting time τ . Each figure corresponds to another connection.

6.2 Sensitivity to the Number of Time Steps

Suppose we would simulate grid reliability over a longer time horizon than T = 1 hour. Assuming a constant
time step size Δ this will increase the number of time steps M := T/Δ , and thus the number of evaluations
of g that UTA will perform. We now investigate how evaluations TBA will require in comparison when
increasing the number of time steps. We focus on the overload of connection 11 → 10 (see Table 1) only.
To compare simulations with different numbers of time steps, ceteris paribus, we keep T = 1 constant but
vary the time step size Δ . In this way the underlying continuous model and thus the rarity of the event of an
overload, number of splitting levels, etcetera, remain unchanged. Table 2 shows that for M ≥ 50 the ratio
of evaluations avoided by TBA stays around 90% in this example. The suggested upper limit of this ratio
can be attributed to the strictness of bound (15). Furthermore, it suggests robustness of the performance
of TBA in the number of time steps.

6.3 Sensitivity to the Minimum Interval Size

We choose the time step size Δ = 0.01 again and now investigate the influence of the minimum interval
size C for TBA as described in Section 5. TBA will continue checking bound E on the left and right half
of the current subinterval if its width is larger than this parameter C. Table 3 shows how much the ratio
of evaluations avoided by using TBA increases in the example grid when choosing a smaller minimum
interval width C. One can see from the table that choosing C ≤ 0.02 smaller than twice the time step size
does not substantially improve the search space reduction.
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Table 2: The number of evaluations of g using either UTA and TBA, for different numbers of time steps

M.

M nUTA nTBA 1− nTBA

nUTA

10 7.1E4 2.2E4 0.68

20 2.3E5 4.4E4 0.81

50 1.2E6 1.3E5 0.89

100 5.2E6 5.5E5 0.89

200 2.1E7 2.2E6 0.89

500 1.1E8 8.3E6 0.92

1000 4.6E8 4.5E7 0.90

Table 3: For different minimum interval sizes C, the fraction of evalutions avoided by using TBA instead

of UTA during one splitting simulation. All displayed results times are averages over 10 simulation runs.

C 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001

1−nTBA(C)/nUTA 0.48 0.64 0.76 0.83 0.88 0.89 0.89 0.90 0.90

6.4 Ongoing Research

Although a decrease of C will often further reduce the search space, the total workload does not necessarily
decrease because evaluations of the bound f (τ)+ h(τ) may nullify the computational gains of avoided
evaluations of g. We are exploring this interesting tradeoff as part of ongoing research. In addition, we
are investigating the workload gains in larger grids with a higher number of uncertain power injections.
Instead of focusing on one specific connection, the overload of any connection in due time will be of great
importance for the grid operator. This generalization may involve repeating the computation of minimum
good rate functions over all connections and then choosing the minimum over all connections, although
we are exploring opportunities to further improve computational efficiency. In this setting there may be
upfront calculations that avoid even more evaluations of g, for example by exploiting the fact that some
lines are much less likely to overload than other lines.

7 CONCLUSION

We considered a power grid model with dependendent Ornstein-Uhlenbeck processes reflecting uncertain
power generation and demand. When simulating overload probabilities with an asymptotically efficient
splitting technique the computational bottleneck is the numerical optimization of the most likely time of the
overload. We proposed to accelerate this optimization by first removing subintervals from the search space
where the derivative of the objective function has a negative upper bound. We found in an experiment on
an example power grid that around 90% of the numerical evaluations of the objective function are avoided
in this way. Experimental results show that this reduction of a factor ten is robust in the rarity of the event
of an overload, as well as in the number of simulation time steps.
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