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ABSTRACT 

Actions taken by building occupants and facility managers can have significant impacts on building energy 
performance. Despite the growing interesting in understanding human drivers of energy consumption, 
literature on the topic remains limited and is mostly focused on studying individual occupancy actions (e.g., 
changing thermostat set point temperatures). Consequently, the impact of uncertainty in human actions on 
overall building performance remains unclear. This paper proposes a novel method to quantify the impact 
of potential uncertainty in various operation actions on building performance, using a combination of Monte 
Carlo and Fractional Factorial analyses. The framework  is illustrated in a case study on educational 
buildings, where deviations from base case energy intensity levels exceed 50 kWh/m2/year in some cases. 
The main contributors to this variation are the thermostat temperature set point settings, followed by the 
consumption patterns of equipment and lighting systems by occupants during unoccupied periods. 

1 INTRODUCTION 

In most developed countries, the building sector accounts for more than one third of overall demands for 
energy (IEA 2015). This has motivated significant research efforts to develop energy efficient building 
design and technologies (e.g., building materials, heating and cooling systems, lighting fixtures, and 
appliances), as well as energy management and automation systems (ASHRAE 2011; Granderson et al. 
2011; Levine et al. 2007). Despite the large-scale adoption of such systems, buildings consistently consume 
more energy than the predictions made by engineers when designing those buildings. Discrepancies 
between actual and predicted energy levels are in fact commonly observed, reaching up to 100% in some 
cases of buildings with high electric loads such as research facilities (Turner and Frankel 2008). In order to 
address or mitigate the mentioned performance gap, there is a growing interest in literature to understand 
key drivers of building energy consumption, and consequently devise proper and targeted energy 
conservation strategies. Literature on the topic is particularly divided between investigating building design 
related drivers of energy consumption on the one hand, and operation or human related parameters on the 
other. 

Stating with the first, various studies investigate the influence of technical or physical building 
parameters on energy performance (Afshari et al. 2014; Wang et al. 2011; Lam et al. 2008; Lee and Chen 
2008). Examples of parameters include building envelope and thermal characteristics (e.g., U-values, 
infiltration rates), chiller Coefficient of Performance (COP), air flow rates, window glazing characteristics, 
to name a few. For instance, Lam et al. (2008) conducted a sensitivity on 10 key building parameters to 
identify their impact on energy consumption levels. Results indicate that Chiller COP and lighting intensity 
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have the highest influence for the particular buildings under study. Similarly, Afshari et al. (2014) 
studied both the impact of building design and air conditioning settings on building performance of one 
commercial and one residential building. They evaluated retrofit options such as wall and roof insulations, 
glazing, chiller COP, envelope air-tightness, and cooling set-point temperatures. Their study concluded that 
changing cooling temperature set-point by a couple of degrees is extremely effective with the next best 
factor being the enhancement of wall insulation. Other similar studies have evaluated influential building 
design parameters and used them to propose building retrofitting options (AlAwadhi et al. 2013; Yalcintas 
2008; Tavares and Martins 2007). 

On the other hand, recent research efforts have focused on quantifying the impact of human actions on 
building energy consumption  (Azar and Menassa 2014, 2012; Peschiera et al. 2010; Sanchez et al. 2007). 
For instance, Azar and Menassa (2012) studied the impact of occupancy-related parameters on energy 
models of office buildings. Parameters included equipment and lighting energy use patterns, cooling and 
heating set points, hot water consumption, and building schedule. Results indicate that occupancy 
operational parameters have a significant influence on the results of building energy models, confirming 
the need to better account for them during the design phase. As another example, Sanchez et al. (2007) 
studied the energy consumption patterns of plug-load usage in commercial buildings. They found that 
occupants consistently leave more than half of equipment in their buildings running during unoccupied 
periods, resulting in unnecessary use of energy. 

In summary, the interest in human and operation related drivers of energy use has increased over the 
past years. However, important gaps can be found in the literature, which motivate the need for this work. 
First, studies on human drivers of energy use are in general scarce in literature, when compared to studies 
on parameters related to building design and systems’ characteristics. Consequently, the true impact of 
human actions on overall building performance remains understudied and unclear. Second, the few studies 
on the topic are mostly focused on commercial or residential buildings; other building types such as 
educational buildings, which can have different energy consumption patterns, have not been specifically 
studied. Finally, and most importantly, existing studies have typically evaluated the impact of parameters 
on energy consumption individually (i.e., single parameter effect). As a result, it is currently unclear how 
simultaneous uncertainty in various parameters, can affect energy consumption and put the efficient 
performance of buildings at risk. 

This study addresses the aforementioned gaps in the literature by proposing a building modeling and 
analysis framework that evaluates the impact of uncertainty in human actions on building energy 
performance. More specifically, the framework quantifies the magnitude of the performance risk when 
accounting  for a certain randomness in how people (e.g., building occupants and facility managers) operate 
and control various building systems. It is important to highlight that this study does not investigate 
particular drivers of people actions (e.g., economic, social, psychological, etc.). It rather focuses on how 
uncertainty in the operation of various building systems affects energy consumption levels. 

2 METHODOLOGY 

The  proposed methodology is illustrated in Figure 1 and detailed in the next sub-sections. While the method 
is general, it is illustrated through an application on typical educational buildings located in Abu Dhabi, 
United Arab Emirates (UAE). Two types of typical, or prototype, buildings are considered, namely an office 
and a classroom building. 
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Figure 1: Proposed methodology. 

2.1 Data Gathering and Model Development 

The first step in the methodology is to gather information about the typical office and classroom buildings 
considered in this study. Modeling such typical, or prototype, buildings is a common practice in energy 
modeling studies, ensuring that the results of the study are general and not limited to specific individual 
buildings (Azar and Menassa 2014, 2012). Therefore, data was gathered from a multitude of sources to 
assemble characteristics of typical educational buildings in the UAE. The sources included a report prepared 
for a governmental entity in the UAE (Arup 2010), a local building benchmarking effort (Afshari et al. 
2014), building standards such as ASHRAE (2013), as well as other studies on the development of 
prototype commercial buildings (Deru et al. 2011; Gowri et al. 2009). Examples of the collected 
information are presented in Table 1. 
 Following data gathering, BPS models are developed to emulate the performance of the considered 
typical office and classroom buildings. The BPS software used in this study is the IES-VE software (DOE 
2011), where two models are developed, one for the office and another for the classroom building. In 
general, BPS models require inputs regarding building geometry, construction material and building 
systems characteristics, building and end-use schedules, as well as outdoor weather conditions 
corresponding to the location of the modeled buildings. Therefore, the data from Table 1 are used to define 
these parameters for the modeled office and classroom buildings. As for the weather data, by setting the 
location of the buildings in IES_VE to Abu Dhabi, UAE, the software automatically fetches local weather 
data information from meteorological sources. A 3D representation of the models is shown in Figure 2. 
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Table 1: Typical building characteristics. 

Building Characteristic Values for Office and Classroom Buildings (Respectively)  
Floor area 4,982 and 19,592 m2 

Building shape Square 
Number of floors 3 and 2 floors 
Window-to-Wall ratio 50 and 33% 
People density 18.5 and 3.7 m2/person 
Lighting intensity 10 and 11 W/m2 
Equipment intensity 15 W/m2 
Roof U values 0.53 W/m2.K 
Wall U values 1.71 W/m2.K 
Air Changes per Hour (ACH) 0.5 ACH 
Cooling system type Packaged air conditioning unit and air-cooled chiller 
Air distribution system type Multizone Variable Air Volume (VAV) 
Building, equipment, and 
lighting schedules 

Obtained from ASHRAE (2013), tables 5-J (schedule A) and 
table G-K, respectively 

 
 

Office building Classroom building

Location: Abu Dhabi, UAE

Developed 
in IES-VE

 
Figure 2: Office and classroom models. 

 
The models are then run, generating base case yearly predictions of 257.1 and 195.1 kWh/m2/year for 

the office and classroom buildings, respectively. In order to ensure the validity of the results, they are 
compared to actual energy consumption levels observed in 4 office and 5 classroom buildings in Abu Dhabi, 
similar in characteristics to the modeled ones (i.e., type and size). The observed average energy intensities 
of those buildings are 278.1 and 191.8 kWh/m2/year, respectively, which are within the 10% acceptable 
range of error from the predictions of the developed energy models (Azar and Menassa 2012). Furthermore, 
data was also gathered from a database in the United States (US) (EIA 2003), specifically from 113 
buildings of similar characteristics to the modeled ones (i.e., type, size, and weather conditions). Average 
energy intensities of 278.1 and 191.8 kWh/m2/year are obtained for the groups of office and classroom 
buildings, here again falling within the acceptable range for error of 10% from the models’ predictions. The 
developed models in this paper and their predictions are therefore considered valid. 

2.2 Simulating  Uncertainty in Human Actions 

Two parametric variation methods are combined to comprehensively evaluate uncertainty in human actions: 
Monte Carlo and Fractional Factorial analyses. 
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2.2.1 Monte Carlo Analysis 

Monte Carlo analysis is a method typically used to simulate uncertainty in the input values of a model (e.g., 
simulation or statistical), and quantify the resulting variability in the outputs of the model (Nguyen and 
Relter 2015). In this study, the inputs are the parameters of the developed BPS models that reflect how 
people operate or control various building systems. The output on the other hand is the predicted energy 
consumption by the models given the changes or uncertainty in input parameters. A total of 60 iterations of 
the model are performed, as commonly recommended (Nguyen and Relter 2015; Lomas and Eppel 1992). 
Each iteration is characterized by randomly selected values for the input parameters, generated using 
uniform distributions. It is important to highlight that while other distributions (e.g., normal, gamma, etc.) 
can also be used, literature lacks sufficient information on the studied human-related parameters to force a 
particular distribution when simulating them. Therefore, a uniform distribution was chosen as it avoids 
making such assumptions and helps capture the overall potential range of variability in these actions. The 
input parameters studied in this phase, along with their ranges are presented in Table 2. 

Table 2: Varied input parameters for the Monte Carlo analysis. 

Input Parameters Variation Range  
Equipment use during unoccupied periods From 0 to 30%, 10% increment 
Lighting use during unoccupied periods From 0 to 30%, 10% increment 
Window opening From 0 to 3 hours, 1 hour increment 
Shifting HVAC set point temperatures From 20 ⁰C to 24 ⁰C for occupied periods, 1 ⁰C increment 

From 22 ⁰C to 26 ⁰C for unoccupied periods, 1 ⁰C 
increment 

Shifting schedules From – 2 Hours to + 2 Hours, 1 Hour increment 

2.2.2 Fractional Factorial Analysis 

Fractional Factorial analysis is a method typically used to evaluate the relative effect of individual, or pairs 
of input parameters, on overall output values. In this study, the relative effect of individual input parameters 
is calculated to estimate their contribution to the overall variations in outputs observed in the Monte Carlo 
Analysis phase. In other words, by calculating main effects of individual parameters and normalizing them 
(i.e., their sum equals to 1 or 100%), the contributions of inputs such as equipment and lighting use, or 
HVAC set points, to the observed variability in the energy predictions of the BPS models are estimated. 
Four input parameters are chosen for this stage, where each is varied between a base case value (i.e., used 
in the base case model), and a test value (i.e., alternative value used to test the impact of change). The 
choice of two-level fractional factorial design (i.e., base case and test) is commonly used in building energy 
research (Langner et al. 2012), and is considered appropriate for this study. A total of 4^2 simulations is 
therefore required at this stage (combinations of base and test values for 4 parameters). The relative impact 
of a parameter x, 𝑅𝑅𝑥𝑥, is calculated in the equation 1 below, which is adapted from Langner et al. (2012). 
 

𝑅𝑅𝑥𝑥 = �Ȳx_base− Ȳx_test
Ȳ

�  (1) 
 

Where, Ȳx_base is the energy intensity (i.e., output) average for all runs where the value of parameter x 
is at its base level, Ȳx_test the energy intensity average of all runs where parameter x is at its test level, and 
Ȳ the average energy intensity of all runs. Table 3 illustrates the varied parameters with their base and test 
values. 
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Table 3: Varied input parameters for the Fractional Factorial analysis. 

Input Parameters Base and Test Values Respectively 
Combined lighting and equipment use during 
unoccupied periods 

 0 and 30% 

HVAC set point temperatures 22 ⁰C and 20 ⁰C for occupied periods 
Window opening 24 ⁰C and 22 ⁰C for unoccupied periods 
Shifting schedules 0 and – 2 hours 

3 RESULTS 

The results of the Monte Carlo analysis are shown in Figure 3, illustrating the spread of the energy 
intensities for the 60 iterations of the office and classroom models. Each circle represents the output of one 
run, more specifically the energy intensity predicted by the models for a random variation of the input 
parameters of Table 2. A low spread of the circles indicates a low dependence of the model outputs to 
changes or uncertainty in their inputs. A large spread on the other hand means that building energy 
performance can significantly be affected from changes or variations in how people operate the building 
systems represented in Table 2. 

As shown in Figure 3, large spreads are observed for both the office and classroom buildings. Starting 
with the office building, the values range from 196.9 to 293.9 kWh/m2/year, with an average of 253.2 
kWh/m2/year. As for the classroom building, the range is from 157.6 to 265.6 kWh/m2/year. These results 
confirm the significant influence of human actions on the energy performance of the educational buildings 
considered in this study. 

 
 

 
Figure 3: Monte Carlo analysis results. 

As for the Fractional Factorial analysis phase, the calculated relative effects of individual parameters 
are shown in Table 4. The goal of this phase was to explain how much each of the studied parameters 
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contribute to the variability in outputs observed in the Monte Carlo analysis (Figure 3). In order to better 
visualize the results, the values from Table 4 are normalized and plotted in Figure 4. As shown from the 
pie charts, for the office building, the most significant contributor to the variability in energy consumption 
is the “HVAC set point temperatures” parameter. In other words, uncertainty in how people adjust 
thermostat set point temperatures can explain 53% of the energy intensity range observed in Figure 3 (left 
side). Window opening and lighting/equipment afterhours use follow with 20 and 17%, respectively. The 
results confirm the significant effect of thermostat settings on building performance, given the extremely 
hot weather conditions in Abu Dhabi, UAE (Afshari et al. 2014). 

As for the classroom building,  the most influential parameter is the equipment/lighting afterhours use 
with 44%, closely followed by the HVAC set points parameter with 38%. The increase in the influence of 
equipment/lighting use, when compared to the office building, is mainly attributed to the longer hours per 
week where the building is unoccupied. More specifically, the classroom building is more often unoccupied 
(e.g., during evenings and on weekends) than the office building. As a result, changing the afterhours 
equipment/lighting energy use patterns have a more significant impact on its energy performance. 

Table 4: Fractional Factorial relative effects. 

Input Parameters Relative Effect for Office 
Building 

Relative Effect for 
Classroom Building 

Combined lighting and equipment use 
during unoccupied periods 0.030 0.170 

HVAC set point temperatures 0.092 0.147 

Window opening 0.034 0.037 

Shifting schedules 0.018 0.034 

 
 

 
Figure 4: Fractional Factorial analysis normalized results. 
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4 CONCLUSIONS 

This study proposes a comprehensive framework to quantify the impact of uncertainty in human actions on 
building energy performance. The framework integrates BPS modeling on the one hand, and energy 
analysis methods, namely Monte Carlo and Fractional Factorial analyses, on the other. The proposed 
method is general and can be applied on any building. It is illustrated in this study through an application 
on typical educational buildings in the UAE. Results confirm the significant impact of human actions on 
building performance, and help explain the commonly observed discrepancies between predicted and actual 
energy consumption levels in buildings (i.e., energy efficiency gap). Several recommendations can also be 
made based on the observed results. First, when predicting building energy consumption levels during the 
design phase of buildings, it is integral to properly account for uncertainty in human-related actions and 
activities. Such a proactive modeling approach is expected to result in better predictions of life-cycle 
operational energy consumption and costs, potentially justifying the need for building design features such 
as advanced energy monitoring systems or smart thermostats. Second, future energy saving initiatives and 
policies should consider methods that aim to promote energy conservation practices among building 
occupants and facility managers (e.g., energy education, feedback mechanisms, and game-based 
conservation campaigns). As shown in this study, simple changes in these stakeholders’ actions could lead 
to important energy savings. Finally, while the main focus in literature has traditionally been on improving 
building design and technologies, this study confirms that similar efforts are also needed to further improve 
how people use and operate building systems. Both approaches are complimentary and together, can 
contribute to effectively reducing the energy intensity and carbon footprint of our built environment.  

REFERENCES 

Afshari, A., C. Nikolopoulou, and M. Martin. 2014. “Life-Cycle Analysis of Building Retrofits at the Urban 
Scale—A Case Study in United Arab Emirates.” Journal of Sustainability 6(1): 453–473. 

AlAwadhi, W., A. AlNaqbi, A. Manneh, A. Kazim, and B. Abu-Hijleh. 2013. “Energy Saving Potential 
Due to Refurbishment of Federal Public Housing in the UAE.” Journal of Engineering 5(1): 132–136. 

Arup Consultants (Arup). 2010. "Pearls Design System New Buildings." Technical Report, Urban Planning 
Council, Abu Dhabi, UAE. 

American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE). 2013. “ASHRAE 
90.1-2013, Energy Standard for Buildings Except Low-Rise Residential Buildings”. ASHRAE Inc., 
Atlanta, GA. 

American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE). 2011. “Advanced 
Energy Design Guide for Small and Medium Office Buildings”. ASHRAE Inc., Atlanta, GA. 

Azar, E., and C. C. Menassa. 2012. “A Comprehensive Analysis of the Impact of Occupancy Parameters 
in Energy Simulation of Office Buildings.” Energy and Buildings 55: 841–853. 

Azar, E., and C. C. Menassa. 2014. “A Comprehensive Framework to Quantify Energy Savings Potential 
from Improved Operations of Commercial Building Stocks.” Energy Policy 67: 459–472. 

Deru, M., K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D. Winiarski, and 
M. Rosenberg. 2011. “U.S. Department of Energy Commercial Reference Building Models of the 
National Building Stock.” Technical Report, National Renewable Energy Laboratory (NREL), Golden, 
CO. http://www.nrel.gov/docs/fy11osti/46861.pdf [Accessed Mar. 25, 2016]. 

Gowri, K., D. Winiarski, and R. Jarnagin. 2009. “Infiltration Modeling Guidelines for Commercial Building 
Energy Analysis.” Pacific Northwest National Laboratory (PNNL), Richland, WA. 

Granderson, J., M. A. Piette, B. Rosenblum, and L. Hu. 2011. “Energy Information Handbook: Applications 
for Energy-efficient Building Operations.” Lawrence Berkeley National Laboratory (LBNL), Berkeley, 
CA. 

International Energy Agency (IEA). 2015. “Energy Efficiency”. IEA 
http://www.iea.org/aboutus/faqs/energyefficiency/ [Accessed July 4, 2015]. 

1743



Azar and Al Amoodi 
 

Lam, J. C., K. K. Wan, and L. Yang. 2008. “Sensitivity Analysis and Energy Conservation Measures 
Implications.” Energy Conversion and Management 49(11): 3170–3177. 

Langner, M. R., G. P. Henze, C. D. Corbin, and M. J. Brandemuehl. 2012. “An Investigation of Design 
Parameters that Affect Commercial High-rise Office Building Energy Consumption and Demand.” 
Journal of Building Performance Simulation 5(5): 313–328. 

Lee, W. L., and H. Chen. 2008. “Benchmarking Hong Kong and China Energy Codes for Residential 
Buildings.” Energy and Buildings 40(9): 1628–1636. 

Levine, M., and D. Urge-Vorsatz. 2007. “Residential and Commercial Buildings.” Climate Change 2007: 
Mitigation, Cambridge University Press, Cambridge, UK. 

Lomas K. J., and H. Eppel. 1992. “Sensitivity Analysis Techniques for Building Thermal Simulation 
Programs.” Energy and Buildings 19: 21–44. 

Nguyen, A., and S. Relter. 2015. “A Performance Comparison of Sensitivity Analysis Methods for Building 
Energy Models.” Building Simulation 8: 651–664. 

Peschiera, G., J. E. Taylor, and J. A. Siegel. 2010. “Response Relapse Patterns of Building Occupant  
Electricity Consumption following Exposure to Personal, Contextualized and Occupant Peer Network 
Utilization Data.” Energy and Buildings 42(8): 1329–1336. 

Sanchez, M., C. Webber, R. Brown, J. Busch, M. Pinckard, and J. Roberson. 2007. “Space Heaters, 
Computers, Cell Phone Chargers: How Plugged in are Commercial Buildings?.” Lawrence Berkeley 
National Laboratory (LBNL), Berkeley, CA. 

Tavares, P. F. D. A. F., and A. M. D. O. G. Martins. 2007. “Energy Efficient Building Design using 
Sensitivity Analysis—a Case Study.” Energy and Buildings 39(1): 23–31. 

Turner, C., and M. Frankel. 2008. “Energy Performance of LEED for New Construction Buildings.” New 
Buildings Institute, Vancouver, WA. 

US Energy Information Administration (EIA). 2003. “Commercial Buildings Energy Consumption Survey 
(CBECS).” EIA, Washington, DC. http://www.eia.gov/consumption/commercial/data/2003/ [ 
Accessed Feb. 3, 2016]. 

US Department of Energy (DOE). 2011. “Building Energy Software Directory”. DOE. 
http://apps1.eere.energy.gov/buildings/tools_directory/subjects.cfm/pagename=subjects/pagename_m
enu=whole_building_analysis/pagename_submenu=energy_simulation [Accessed Feb. 3, 2016]. 

Wang, J., Z. J. Zhai, Y. Jing, X. Zhang, and C. Zhang. 2011. “Sensitivity Analysis of Optimal Model on 
Building Cooling Heating and Power System.” Applied Energy 88(12): 5143–5152. 

Yalcintas, M. 2008. “Energy Savings Predictions for Building Equipment Retrofits.” Energy and 
Buildings 40(12): 2111–2120. 

AUTHOR BIOGRAPHIES 

ELIE AZAR received his Ph.D. from the University of Wisconsin-Madison, and currently is an Assistant 
Professor in the Engineering Systems and Management department at Masdar Institute, Abu Dhabi, UAE. 
His research interests include optimizing the performance of the built environment with an emphasis on 
human actions and energy use behaviors. His email address is eazar@masdar.ac.ae. 

 
AHMED AL AMOODI received his MSc in Engineering Systems and Management at Masdar Institute.  
His research interests focus on developing methods to quantifying the impact of human action on the energy 
performance of buildings. His email address is aalamoodi@masdar.ac.ae. 

1744


