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ABSTRACT 

Large-scale environmental models have become a vital tool in studying the effects of climate change. 
Possibly due to the massive computational expense that many of these models require, the representation 
of social systems within these models is often limited. As part of an ongoing project on improving land-
disturbance modeling in the Community Land Model (CLM), we have developed an economically 
motivated model of timber harvests that can be fully coupled to CLM. The model relies on simulating 
auctions between profit-maximizing agents in order to solve for a market solution level of timber harvest 
on the landscape. Using this model, we are able to improve the representation of this social system within 
CLM in a computationally manageable and unique way.  
 
1 INTRODUCTION 
 
The impact of climate change on forests and the wood products industry has been a subject of intense 
research (e.g. Sohngen, Mendelsohn, and Sedjo 2001). Land use change out of forestry has long been 
linked to large environmental impacts (Lebowski, Plantinga, and Stavins 2006). Furthermore, it is known 
that forest management can be influenced by a changing climate (Spittlehouse and Stewart 2004). This 
feedback loop is a difficult thing to endogenize within a model, as modeling both systems simultaneously 
represents a potentially huge computational effort. Despite the obstacles, there is a significant benefit to 
performing such an analysis. For instance, it becomes possible to investigate the impacts of future climate 
change on forestry at a regional scale, as well as adaptive economic behavior. It can also clarify ways in 
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which human activity can manipulate environmental phenomena, such as wildfire frequency and pest 
outbreaks.  

As part of a project investigating forest mortality in the western United States, we have developed an 
economically motivated, spatially explicit model of timber harvesting for the western United States within 
the Community Land Model (CLM) (Oleson et al. 2013). The community land model is a large-scale 
environmental model of land processes used as part of Community Earth System Model (CESM) (Hurrell 
et al. 2013). The harvest model presented here solves for the market equilibrium harvest pattern, and is 
based on economic theory. This project is novel in that it represents a major advance in coupling a 
theoretically consistent social science model to a large-scale environmental model, which allows for a 
more detailed study of the feedback between the two systems that was not possible before. Furthermore, it 
provides a door to run more detailed policy experiments using CLM.  

This paper will provide the basic set up of the model, as well as its theoretical motivations and future 
goals. Since this is still a work-in-progress, the material provided below should be treated as preliminary 
with respect to the ultimate goal of the project, which is a fully coupled run with CLM. That being said, 
the algorithm we show does converge, and does solve for the market equilibrium, and does so in an 
interesting and novel way. Thus, it is useful at this point to provide the material below so that we can 
show what has worked for our group in the hope that it may further other efforts at integrating social 
systems models into large-scale environmental simulations. 
 
1.1 Timber Harvest and Climate Adaptation 
 
There is a large body of research on forestry and climate change adaptation. Much of the economics 
literature centers around changes in the productivity of the land, which in turn affects the returns on the 
land. This then affects management of that land. Papers such as Hanewinkel et al. (2013) and Lindner et 
al. (2010) study changes on the intensive margin, such as production intensity. The extensive margin, 
which covers decisions of land-use change, are also part of this literature (e.g. Dale 1997).   

Land management, especially that of forests, can have a large effect on the environment as well. 
Large scale environmental changes or changes in land management, such as deforestation or 
development, play a significant role in diminishing the capacity of the environment to sequester carbon 
(Pielke et al. 2002).  Sequestering carbon through forest management has been suggested as a viable 
option for policy makers (Latta et al. 2011; Galik and Jackson 2009). The recognition of forestry’s 
potential as part of the solution to reigning in emissions highlights the importance of modeling the 
feedback between it and the environment. 
 
1.2 Forest Sector Models 
 
The model presented in this paper differs in a number of ways from the timber market models already in 
existence. For an in-depth review of forest sector models, see Latta, Sjølie, and Solberg (2013). A 
substantial difference between the model presented here and those presented in Latta, Sjølie, and Solberg 
(2013) is that most models focus on regional forest management, such as FASOM (Adams et al. 1996), 
whereas our model is spatially explicit. This is an important distinction, since the higher resolution allows 
the modeler to capture adaptive behavior, such as capacity changes across the landscape, or shifting 
harvest intensities. A regional model would be unable to observe this in detail, since the model is 
constrained to observing changes only at the regional level, and not the grid-cell level. 

 Our solution technique also differs dramatically from previous studies. Whereas many models use 
optimization techniques to maximize net surplus, our model employs a fixed point algorithm based on 
prices instead. By working in price space as opposed to quantity space, our solution technique is able to 
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achieve two things. First, it dramatically reduces the number of variables the algorithm needs to adjust 
during the optimization process. Second, it allows the algorithm to find the solution to the problem 
outright, which is consistent with previous models since the fixed point it solves for (market equilibrium) 
maximizes consumer and producer surplus. Compared with previous models, our technique provides a 
faster way at solving for the solution.  

Our solution considers different temporal scales as those presented in Latta, Sjølie, and Solberg 
(2013). Many models incorporate forward looking behavior, where the decision makers in the model 
consider potential future actions. Our model is constrained to a single time-period, though we do 
incorporate opportunity costs into the model through the discount rate and the decision whether or not to 
harvest.  

A final difference presented here is that many models linearize the maximization problem, such as 
FASOM (Adams et al. 1996). A notable exception is the Timber Assessment Market Model (TAMM), 
which is a non-linear optimization model (Adams and Haynes 1980). Our model is similarly non-linear, 
since the mills compete with one another for timber. This non-linearity is necessitated by the resolution of 
our solution, which must be at the grid-cell level.  
 
1.3 Timber Harvests in CLM 

Currently, CLM doesn’t incorporate timber harvests as an endogenous phenomenon within the model. 
Instead, harvests are prescribed by input datasets. There are multiple harvest scenarios crafted from 
different representative concentration pathways (RCPs). For our project, we use RCP 8.5 (Riahi et al. 
2011; Moss et al. 2010; Van Vuuren et al. 2011). RCP8.5 is characterized by a steady increase of carbon 
emissions up to a level of 1370ppm by 2100 (Van Vuuren et al. 2011). Harvests in CLM are represented 
by annual percent removal of biomass from a grid-cell. Because the data tends to be downscaled from 
lower resolutions, the default harvests are spread out, where each individual grid-cell experiences a very 
low quantity of removal (Hurtt et al. 2006). These removals are sorted into one of five types: primary 
forest, primary non-forest, secondary mature forest, secondary young forest, and secondary non-forest 
(Oleson et al. 2013). 

2 METHODOLOGY 
 

In order to improve the representation of timber harvest within CLM, the model must be able to solve for 
a market equilibrium level of harvest in a short period of time, while also being able to communicate with 
CLM at regular time-steps. This involves designing an algorithm that can balance the amount of timber 
and wood products demanded by the market with those supplied by the landscape and mills respectively. 
Furthermore, the algorithm must provide an avenue to incorporate relevant economic datasets. In this 
section, we will describe the solution method and discuss the coupling procedure.   
 
2.1 Solution Technique Overview 
 
Properly selecting the scale of a model, along with other factors, is considered by Overton (1977) to be an 
important factor of a model’s overall quality. Our model must therefore be at a scale that is able to 
accomplish all of our intended goals. These goals are: to produce fine-scale spatially explicit harvest 
patterns, to track the movement of biomass across the map, to incorporate new economically relevant 
datasets, and to link the model with macroeconomic GDP projections. We determined that the relevant 
scale for this model would therefore be at a regional level (or state level). A large reason for selecting this 
scale is that it coincides with the scale at which the relevant CLM simulations are run. One potential 
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drawback is that timber moving in and out of the region, such as mill inputs, are not incorporated into the 
model.  

Along with the spatial scale, this model can also be thought of as having an economic scale. We have 
identified three markets that drive harvest decisions. These markets include the timber market, 
intermediate goods market, and output market. The output market provides the main linkage between the 
model and the broader economic projections (such as GDP), while the timber market provides the main 
linkage between the model and CLM, as well as some of the other economic datasets (forest ownership, 
mill location, etc.). The intermediate goods market significantly influences both the timber and output 
market. In order for a solution (a particular set of harvest decisions and the corresponding price set) to be 
considered optimal, these three markets must be in equilibrium.  

However, there are agent interactions on the landscape. Mills will compete with one another for 
timber inputs, and can sell intermediate goods to one another. Thus, the amount of timber a mill is 
supplied is a function not only of that mill’s own price, but also a function of conceivably every mill’s 
price. This agent interaction is difficult to solve for analytically, and so we simulate repeated auctions 
between the mills and timber plot owners to approximate the market solution. 
 
2.2 Price Search Algorithm 
 
The market solution in each of the three aforementioned markets (input, intermediate, and output) is 
solved using a price search algorithm. As opposed to quantity-based methods, our algorithm searches over 
price space. For our particular problem, this dramatically reduces the search-space. Furthermore, it allows 
the search to be guided by economic theory.  

The price set for a given market is initialized with a guess. Each buyer is given their own offer price, 
and the sellers observe the entire price set. The sellers then calculate the marginal benefit of supplying to 
each buyer, and select the buyer that provides the largest benefit. The quantity supplied is then calculated 
from this value. Once the buyers observe how much product they have collected, they check to see if it 
matches what their demand would be given the price level. The supply ilicited by the offer price is then 
fed into the mill’s demand curve to produce an implied price of timber. Then, a new price is calculated 
which is a linear combination of the initial offer price and the implied price. This new price is guaranteed 
to be closer to the equilibrium timber price. This process is illustrated by Figure 1 below. 
 

 
Figure 1: An iteration of the price search algorithm, demonstrating how it moves towards convergence. 
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Though Figure 1 depicts the price search algorithm for an individual mill, the same process describes 

the output market as well as the individual mill’s demand for intermediate goods. The full algorithm 
(input, intermediate goods, outputs) can be characterized as a set of nested loops. That is, the input and 
intermediate goods loop is nested within the output loop. A series of auctions is simulated until the price 
search finds a solution for the input and intermediate goods markets. The amount of output produced is 
then checked against the amount demanded, output prices are adjusted in the same way described above, 
and then the input/intermediate loop is re-run with the new output prices. It is important to note that the 
mill’s demand for timber will change depending on the output price of their product. The algorithm 
terminates when, for all three markets, the implied price is sufficiently close to the price guess, which 
implies that supply is equal to demand within a given tolerance. 
 
2.3 Input and Intermediate Goods Market 
 
The input and intermediate goods market is characterized by two different sets of agents: timber-plot 
owners and mills. Timber-plot owners are represented by CLM grid-cells. Timber plot owners are 
assumed to be profit maximizers who are faced with two decisions: where to send their timber (including 
sending it nowhere), and how much timber to send. This first decision is determined through the timber 
plot owner observing the growth rate of their particular cell, and comparing it with an exogenously 
specified interest rate. This interest rate is based on the findings of Provencher (1995). If the timber is 
growing faster than the interest rate, the plot owner will choose not to cut, otherwise, the plot is eligible 
for harvest.  
 
2.3.1 Timber Plot Owner’s Problem  
 
Currently, the model is constrained such that a single plot can send their timber only to a single mill. The 
plot chooses the mill that has the highest gate-price, which is defined as the timber price minus 
transportation costs. Transportation costs are calculated from a road network dataset for the state of 
Oregon (ArcGIS Content Team 2012; Zamora-Cristales et al. 2015; Zomora-Cristales et al. 2013). Once 
the plot is deemed eligible for harvest, and a destination has been selected, the quantity harvested is 
determined through the timber plot owner choosing a quantity that maximizes their profit function, 
presented below. 
 
 

𝝅𝒑𝒍𝒐𝒕 = 𝑹𝒆𝒗𝒆𝒏𝒖𝒆 − 𝑪𝒐𝒔𝒕 = 𝑷𝟏
𝒈𝒂𝒕𝒆𝒕𝟏 − 𝑲

𝒕𝟏𝜶

𝑻𝟏𝜹
 

(1) 

 
Where the revenue consists of the gate-price (𝑃8

9:;<) multiplied by the timber sold (t1). Harvest costs 
are a function of timber sold and available timber (T1). There are three parameters: a scale parameter (K > 
0), an exponential parameter on timber sold (𝛼 > 1) and an exponential parameter on available timber 
(δ ≥ 0). Note that the cost function as well as its first derivative are increasing in the quantity harvested. 
Previously, harvest costs have been modeled by Lyon and Sedjo (1983) as a function with a positive first 
derivative and negative second derivative. We deviate from this assumption in order to make the profit 
function concave, which is necessary for our algorithm. Choosing the amount of timber such that profit is 
maximized produces the supply function, presented below. 
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𝒕𝟏
𝒔𝒖𝒑𝒑𝒍𝒊𝒆𝒅 =

𝑻𝟏𝜹𝑷𝟏
𝒈𝒂𝒕𝒆

𝑲𝜶

𝟏
𝜶F𝟏

 

 

(2) 

As we can see from Equation 2, the supply function is increasing in the gate-price. This ensures that 
the supply function will, at some point, cross the mill’s demand function, which will be described below. 
This is the equation used to calculate the amount of timber supplied to a given mill at a given offer price. 
 
2.3.2 Mill’s Problem 
 
The mill’s problem is a profit maximization problem where the mill sells outputs to the open market and 
intermediate goods to the other mills. The costs on the mills side include purchasing timber from plots 
and associated inputs, such as labor and electricity.  A Leontief fixed-input production function is one of a 
few methods that have been used to model sawmill production (Latta and Adams 2000). While we model 
mill production as a substitutable input production function with decreasing returns to scale, we 
incorporate the fixed input approach as well. We assume that if we know how much timber or 
intermediate good is used, and we know what the associated input ratio is for the mill, then we can 
calculate the cost of the other inputs as a function of timber and intermediate goods alone. This results in 
the following mill profit function.  

 
 𝝅𝒎𝒊𝒍𝒍 = 𝑷𝑶𝑨(𝒕𝟏 + 𝜸𝒕𝟐𝒕𝒐𝒕𝒂𝒍)𝜷 + 𝑷𝟐

𝒐𝒇𝒇𝒆𝒓𝒕𝟐𝒔𝒐𝒍𝒅 − 𝑷𝟐𝑴𝒂𝒓𝒌𝒆𝒕𝒕𝟐
𝒑𝒖𝒓𝒄𝒉𝒂𝒔𝒆𝒅 − 𝑷𝟏

𝑶𝒇𝒇𝒆𝒓𝒕𝟏 − 𝑪𝟏𝒕𝟏 − 𝑪𝟐𝒕𝟐 
 

(3) 

 
In Equation 3, we have two inputs: timber (t1) and an intermediate good (t2) such as chips. The 

intermediate good has a linear conversion factor (𝛾 ≥ 0) that converts it into units of input. For mills that 
don’t use intermediate goods, we can set (𝛾 = 0). Since there are three actions that the mill has with 
respect to the intermediate good (buy, sell, produce), we divide the intermediate good into three groups. 
The total intermediate good (t2

total = t2
produced + t2

purchased - t2
sold) is what enters into the production function, 

where the market output price is given by (PO). The quantity of intermediate goods sold to the market 
(𝑡WXYZ[) is sold at the price the mill offers to other mills. The mill can also purchase intermediate goods 
from other mills (𝑡W

\]^_`:X<[) at the best price on the market (𝑃Wa:^b<;). Furthermore, the mill will 
purchase timber from plots (t1) at the price the mill offers (𝑃8

cdd<^). Each unit of timber produced has a 
constant production cost, which for timber is (	𝐶8 > 0	) and for intermediate goods is (	𝐶W > 0	). The 
production function has a scale parameter (A > 0), and an exponential parameter (0	 < 𝛽 < 1). 

 The mill level demand curves for timber and intermediate goods are found by taking the derivative of 
profit with respect to timber and the intermediate good respectively. Because we have specified a 
production function with decreasing returns to scale, we get demand curves that are downward sloping. 
This ensures that, given our upward sloping timber supply curve, that we have a point at which the two 
curves cross.  There are 16 varieties of mills in our model, each with the potential of having different 
inputs, production costs, and production parameters. 
 
2.4 Output Market 
 
One of the biggest distinctions between the previous two markets and the output market is that the output 
market is not inherently spatial, while the input and intermediate goods market are. Instead of selling to 
agents distributed spatially across a landscape, mills are assumed to sell their output directly to the 
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market. Thus, the supply curve of the output market is an aggregation of all the individual mill level 
supply curves. The demand curves are constant-elasticity national-scale demand curves. The 16 mill types 
are grouped into 9 output groups. Elasticities for those output groups are given by past studies (Ince et al. 
2011; Latta, Plantinga, and Sloggy 2016). 

It is assumed that for each output group, Oregon produces a fixed proportion of that output. Changes 
in this proportion are not modeled, but could easily be incorporated into the model at a later date. These 
market demand curves provide a way to link the model with the greater socio-economic scenario in 
RCP8.5. Since RCP8.5 includes GDP and Population projections, these will be used to shift the market 
demand curves as the model progresses through time. 
 
2.5 Parameterization 
 
Because we utilize a set of generalizable functions to describe agent behavior, parameterizing these 
functions becomes an important consideration. We chose to use a particle swarm optimization (PSO) 
algorithm (Eberhart and Kennedy 1995) and a simulated annealing (SA) algorithm (Kirkpatrick 1984) in 
order to fit the model to historical harvest data. The historical harvest data was retrieved from multiple 
RPA assessments (Forest Service 2012) and consists of county level harvests recorded every five years 
since 1997. We also attempted to fit the model to output data, which was based on the regional capacity 
levels for each mill type (Spelter, McKeever, and Toth 2009). This resulted in a dual-objective 
optimization problem that both algorithms had a difficult time with. Generally, only one of the datasets 
(historic harvests or production targets) were fit well. For this paper, we use the set of parameters that 
were fit to historical harvests. In the future, an algorithm better suited to multi-objective optimization will 
be utilized, such as a specialized evolutionary algorithm (e.g. Coello, Coello, and Van Veldhuizen 2002). 
 
2.6 Communication with CLM 
 
A major difference between CLM and the harvest model is that CLM does not allow for horizontal flows 
between grid-cells, which is a necessary component of the harvest model. It would be computationally 
simpler to remove horizontal flows between grid-cells from the harvest model, but that also remove the 
model’s ability to solve for an economic solution. In order to maintain the theoretical integrity, we needed 
to find a way to approximate grid-cell to grid-cell communication within CLM.  

CLM simulates each grid-cell independently, and so is able to run the entire model in parallel. 
However, if we schedule a regular time step at which CLM communicates with the harvest model, we can 
initiate communication at every time step. We do this by running each grid-cell in CLM for the allotted 
time step, then stopping the simulation, collecting the results, feeding these results to the harvest model 
which simulates the annual harvest, then giving it back to CLM to begin a new time step. Instead of 
manipulating biomass directly, which would require a variety of extra manipulations as well, the harvest 
model alters the pre-existing annual harvest percentage dataset. This simplifies the interaction and lowers 
the potential for error. 
 
3 RESULTS 
 
As the model is still being updated and improved, the results presented here give only an example of 
what’s possible with our approach. We are currently in the process of linking the model to CLM, and so 
the runs shown here are uncoupled, but based on CLM biomass data. We are also currently in the process 
of testing our model’s compatibility with CLM through an uncoupled CLM run, where the harvest model 
generates harvest data without taking into account the feedback directly. This is done as a debugging 
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exercise.  The final goal of this project, as stated before, is to conduct a fully integrated run with CLM. 
Presented below are the preliminary results of the model for Oregon. We are also in the process of 
moving the model into other areas, such as Washington.  

We present a set of model outputs from an uncoupled run for a single year. The biomass data is a 
CLM netcdf file from based on biomass levels in 2005, and the transportation costs are based on the 
network dataset described earlier. Our study area is the state of Oregon.  
 
3.1 Spatial Distribution of Harvest 
 
Perhaps the main deliverable from the harvest model to CLM is the spatial distribution and intensity of 
Harvest. Compared with the default harvest datasets from CLM (Hurtt et al. 2006) we would expect to see 
fewer grid-cells harvested at higher intensities.  
 

 
 

Figure 2: The spatial distribution of harvests throughout the study region. 
 

From Figure 2 we see that harvests are focused in the productive cascade regions as well as the 
southern part of Oregon. Furthermore, we observe significant harvesting in the east, which is something 
that the lower resolution default harvest data does not include (Hurtt et al. 2006). The harvesting 
occurring in the coastal range is relatively light compared with other regions. As expected, the harvests 
are more selective, with the total number of grid cells with harvests totaling 571 grid-cells.  

Figure 2 only reveals where the harvests are occurring. Also relevant is the distribution of harvest 
magnitudes. As expected, the reduction in number of grid-cells exhibiting harvest results in those harvests 
being of a larger magnitude than the default dataset. This is a substantial departure from the default, and it 
will be of interest how CLM responds to a dataset with this large of a difference. For this current run, we 
have summarized the harvest magnitudes with the figure below. Harvest magnitudes are calculated as the 
percent of biomass removed from a grid-cell, which we call the harvest percentage. Figure 3 below shows 
what proportion of all harvested grid-cells have a harvest percentage within a given range. 
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Figure 3: Distribution of harvest percentages. 

 
The distribution of harvest percentages appears to be concentrated between 2% and 6%, and has a 

positive skew. There are also a few grid-cells that experience a relatively large amount of biomass 
removal (greater than 24%). The variety of harvest magnitudes that Figure 3 shows demonstrates that 
importance of modeling this system at a high resolution. 
 
3.2 Mill Outputs 
 
Along with harvest patterns and intensities, our model also produces output tables for each product 
included in our model. Table 1 below lists the output groups and the quantity produced for each output 
group for the model run presented in this paper 
 

Table 1: Mill Outputs. 
Mill Type Output Level Unit (Thousand) 
Lumber  2,797    m3 
Pulp  848 m3 
Newsprint  261 Tons 
Printing and Writing Paper 357 Tons 
Paperboard  1,691 Tons 
Pellets and Biofuel  1,497 m3 
Plywood  3,244 m3 
Oriented Strand Board 0 m3 
Boards  1,533 m3 

 
Aside from Oriented Strand Board (OSB), for which there are no mills in the study area, each output 

group is producing. The capability of the model to track mill outputs will later be extended to track 
carbon into these particular output pools. This will result in a more refined carbon accounting procedure 
for wood products than what’s in the model already. Furthermore, this allows the model to track industrial 
shifts due environmental changes, which is itself a form of adaptation. 
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4 CONCLUSION 
 
The harvest model presented in this paper presents a novel way to incorporate a social systems model into 
a large-scale environmental model. The level of integration required that we overcome two significant 
obstacles. The first was representing harvests in a spatially explicit way that was relevant and usable for a 
model such as CLM. The second was solving the problem using a method that, though more 
computationally expensive, was not restrictively so. Though in many ways this is still a work in progress, 
we have demonstrated a method that successfully overcomes both obstacles.  

There are many extensions possible with this model. As stated before, the complete version of this 
model will provide a way to utilize CLM to run a specific class of policy experiments. A variety of 
economic scenarios can also be investigated with this model, especially those that involve ownership or 
harvest restrictions. Carbon policies, such as taxes or permit programs, are also a possibility. Another 
extension could be adapting the model for lower resolution runs. 

Incorporating human behavior into climate models is a very difficult but necessary task. The benefits 
of modeling these feedbacks include a greater understanding of the effects of climate change as well as 
human behavior on the environment.  
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