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ABSTRACT

Drought and water scarcity are growing challenges to agriculture around the world. Farmers can adapt
through both individual and community-based collective actions. We draw on extensive field-work conducted
with paddy farmers in rural Sri Lanka to study adaptations to water scarcity, including switching to less
water-intensive crops, farming collectively on shared land, and individually turning to groundwater by
digging wells. We explore how variability in climate affects agricultural decision-making at the community
and individual levels using three types of decision-making, each characterized by an objective function:
risk-averse expected utility, regret-adjusted expected utility, and prospect theory loss-aversion. We also
assess how the introduction of individualized access to irrigation water with wells affects community-based
drought mitigation practices. Preliminary results suggest that the growth of well-irrigation may produce
sudden disruptions to community-based adaptations, but that this depends on the mental models farmers
use to think about risk and make decisions under uncertainty.

1 INTRODUCTION

Future changes in climate will significantly stress agricultural systems around the world. In tropical Asia,
research suggests that crop yield decreases caused by climate change could seriously impact food security
(Sivakumar et al. 2005). In many South Asian countries, farmers are adapting to existing changes in water
availability by pumping groundwater, switching to less water-intensive crops, or leaving the agricultural
sector (Shah et al. 2013, Shah et al. 2003). Moreover, farmers’ behavior (i.e. their choice of what to grow
and what fraction of available cropland to cultivate) in response to an uncertain and changing climate may
have a larger impact on agricultural output than the direct effects of climate change on biological crop
yield (Cohn et al. 2016).

Simulation models have become important means of assessing the impact of changing climate, tech-
nological diffusion, farmer interactions, and farmer decision making on agricultural systems (Baggio et al.
2015, Janssen and Baggio 2016). In this paper, we explore the interactions between water availability and
access, farmer decision-making, and collective water scarcity mitigation activities using an agent-based
model. The model focuses on agricultural decision making in rural Sri Lanka, an area in which farmers
have historically cultivated water-intensive paddy using surface water irrigation systems. We explore how
dynamics of increased groundwater irrigation, changes in crop selection, and collective water scarcity miti-
gation practices vary with the heuristics farmers in rural Sri Lanka use to make decisions under uncertainty.
Our preliminary results suggest that farmers individual decision heuristics strongly influence their decision
making during periods of extreme water scarcity.
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2 BACKGROUND

Sri Lanka is a small island nation off the southeastern coast of India, which is home to nearly 21 million
people, 30 percent of whom are involved in the agricultural sector (Department of Census and Statistics
2014). The nation experiences two monsoon seasons annually (Gunda et al. 2016). The northeast monsoon
lasts from October to December and brings nearly two-thirds of annual rainfall to Sri Lanka. The southwest
monsoon lasts from May to October and brings rain primarily to the southwestern region of the island.
This rainfall pattern divides the island into a wet zone and a dry zone and creates two distinct cultivation
seasons, the wet Maha season and the dry Yala season (Samad 2005, Senaratne and Scarborough 2011).
Today, the dry zone is home to thousands of surface water irrigation systems in which wet-season water
is stored in reservoirs to enable dry-season cultivation. Many farmers in these systems cultivate paddy
because rice is the staple food of Sri Lanka, with annual per capita consumption around 100 kilograms
(Gamawelagedara et al. 2011) (“paddy” refers to the plant, and “rice” refers to the processed grains).

Climate scientists predict that the prevalence of low rainfall during the dry season will increase in the
future (De Silva et al. 2007, Jayawardene et al. 2005, Malmgren et al. 2003). In response to projected
changes in water availability and a desire to achieve domestic food security, the Sri Lankan government is
encouraging farmers to shift from water intensive paddy cultivation to the cultivation of other field crops
(OFCs) such as soy, sesame, chilies, and onions during the dry seasons (Elakanda 2010, Imbulana et al.
2006, Kikuchi et al. 2002). Many farmers have been reluctant to switch to OFC cultivation. In this paper,
we analyze survey and qualitative data to inform the construction of an agent-based model (ABM) that
explores the role of water scarcity, farmer preferences, and technology diffusion in farmers’ decisions to
cultivate OFCs or paddy.

Previous work on modeling farmer response to climate change and to potential water scarcity found
that when climate forecasts are uncertain, farmers’ response depends strongly on the way they think about
risks and uncertainty (Jacobi 2014, Podestá et al. 2008, Hansen et al. 2004). Much economic decision
analysis and modeling of response to climate change assumes that actors will respond to risks and changes
by making rational choices to maximize expected income or wealth, possibly with a degree of risk-aversion
(Nordhaus 2008, Kolstad 2011), but a large body of empirical research in behavioral economics has found
that people facing decisions under uncertainty often use different heuristics to think about uncertainty and
seek different objectives from simply maximizing expected wealth or income (Tversky and Kahneman
1992)

In analyzing the likely response of farmers to water scarcity, we drew on interviews conducted with key
decision makers, water managers, and farmers during the 2013 and 2015 dry seasons as well as survey data
collected in 607 households in twelve dry zone communities. Our qualitative data suggests that farmers are
reluctant to cultivate OFCs for two reasons. The first is a strong cultural preference for paddy cultivation.
Sri Lankan farmers have cultivated paddy for centuries and many government programs focus on supporting
paddy cultivation. These include fertilizer subsidies, agricultural extension, and government purchase of
paddy harvest at a set price (Jinapala et al. 2010). In addition, OFCs are difficult to store, so farmers must
bring them to market immediately after harvest. In many cases, this causes market gluts at the end of the
season that significantly reduce OFC prices for farmers.

The second reason farmers cite for preferring paddy cultivation is the difficulty of cultivating OFCs
during periods of extreme water scarcity. This may seem counterintuitive, since OFCs generally require less
water than paddy, but the widespread practice of bethma drives many farmers to cultivate paddy when little
water is available. Bethma is an ancient practice in which farmers divide their fields and cultivate paddy on
a subset of the command area. Under bethma, permanent field boundaries are temporarily abolished and
land is redistributed amongst all farmers who cultivate in the command area. This redistribution process
is complex and varies from system to system, but in general, each family received equal-sized parcels
of land regardless of the amount of land owned (de Jong 1989, Thiruchelvam 2010). During periods of
extreme water scarcity, engaging in bethma is the best option for many farmers, as it ensures they are able
to achieve modest yields for the season. In recent years, however, the diffusion of agrowells in the dry
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Figure 1: Regression coefficients for choice to grow OFC instead of paddy. The dots show the median of

the posterior probability distribution, the thick lines indicate the 66% highest-density interval and the thin

lines indicate the 95% highest-density interval.

zone has allowed farmers to cultivate OFCs using groundwater during water scarce seasons (Kikuchi et al.
2002).

3 FIELD RESEARCH

We asked over 600 farmer heads of households whether they regularly planted OFCs in their irrigated fields.
Responses yi were labeled as 1 if farmers regularly cultivate OFCs in their irrigated fields and 0 if they
regularly plant paddy in these fields, with Pr(yi = 1) = logit−1(βiX). The respondent-level design matrix
X is a set of binary indicators for key demographic variables including agrowell ownership, location in a
high-capacity irrigation system, gender, ethnicity, land ownership, location at the head-end of a canal, and
farmer organization membership. We also include a measure of socio-economic status constructed using
household assets listed by interviewees. Following Gelman et al. (2008), we assign weakly informative
Cauchy priors with a mean of zero and a standard deviation of 2.5 to each of the coefficients in the logistic
regression except the constant term. We tested to ensure these priors do not unduly constrain the posterior.
The data model is as follows:

Pr(yi = 1) = logit−1(α +βAW AWi +βmajor majori +βfemale femalei +βSinhala Sinhalai

+βstatus statusi +βlandowner landowneri +βHE HEi +βFO FOi)
(1)

where AW is a binary indicator of agrowell ownership, major is a binary indicator of location within a
large surface water irrigation system, female indicates survey respondent sex, Sinhala indicates whether
the respondent belongs to the dominant Sinhalese ethnic group or to a minority group, status indicates
high socio-economic status, landowner indicates whether the farmer is the legal owner of the land they
cultivate, HE is a measure of the proportion of paddy fields cultivated by a farmer located at the head-end
of their field canal, and FO indicates farmer membership in the local farmer organization.

We used the rstan interface to the Stan Hamiltonian Monte Carlo software to perform the regression
analysis (Carpenter et al. 2016). Figure 1 shows the results: though none of the effects are very strong,
our results suggest that farmers with agrowells, who are Sinhalese, with a relatively high socio-economic
status and who own land are more likely to plant OFC during the Yala season. This suggests that farmers
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who are relatively better off (e.g. Sinhalese ethnicity, male, land owners, located in high-capacity irrigation
systems, owning agrowells) will have a higher capacity to engage in risky cultivation practices and will
be more likely to cultivate OFCs. As the proportion of farmer fields in the head-end of the field canal
increases, farmers are less likely to plant OFCs. Head-end farmers typically receive water before tail-end
farmers and do not face the positional water scarcity often faced by tail-end farmers (Chandrapala et al.
2013, Bastakoti et al. 2010).

4 MODEL DESIGN

We developed an agent-based model to study the role of farmer decision-making on adaptation to changing
levels of water scarcity. We explore farmer adaptation across varying preference structures, forms of water
access, and environmental settings.

This model simulates a single community of farmers, who share a distribution canal (DC) in the Sri
Lankan dry zone. The DC is fed by a reservoir and distributes its water equally to a number of field canals
(FCs), which carry water to the farmers’ fields. Each farmer has a field on one FC. Collective action
occurs at the FC level: each season, the farmers sharing an FC vote on whether that FC will collectively
practice bethma for that season, and the decision follows the majority. This suggests that gradual changes
in preference may produce abrupt effects when the number of supporters crosses the majority threshold.

Crop yields depend on access to water: the reservoir level, the amount of rain that falls on the DC
(seasonal rainfall is uniform across the DC), and whether an individual farmer has an agrowell. Interviews
with local water managers suggest that officials generally think about the level of water in a reservoir
categorically (average, below average, or above average) rather than quantitatively, and choose seasonal
operating and management strategies for the district accordingly. Similarly, farmers describe seasonal
rainfall as wet, normal, or dry.

Here, we present the model structure using the Overview, Design concepts and Details (ODD) protocol
(Grimm et al. 2010). All code is available online at https://github.com/eburchfield/agrowell abm.

4.1 Entities, State Variables, and Scales

The active entities in this model are farmers. Each farmer is characterized by an objective function,
socioeconomic status, and agrowell ownership. The objective function characterizes how the farmer makes
decisions under uncertainty. Following Podestá et al. (2008), the possible objective functions are risk-averse
expected utility, regret-adjusted expected utility, and prospect theory loss-aversion (see Appendix A). Our
logistic regression found that ethnicity was an important predictor of cropping decisions, but communities
in the Sri Lankan dry zone are ethnically very homogeneous, so we did not include ethnicity in our model.

There are 10 FCs on the DC, and each FC serves 15 farmers. There are no persistent state variables for
DC and FC. Each iteration represents one growing season, and the simulations loop through 20 seasons.

4.2 Process Overview and Scheduling

At the beginning of the simulation, the farmers’ state variables are initialized. At the beginning of each
season (iteration), the level of water in the irrigation system’s reservoir is randomly set to high (with
25% probability), medium (50%) or low (25%).

Farmers know that there is a 25% probability of an especially wet season, a 50% probability of a
“normal” season, and a 25% probability of an especially dry season. Based on these probabilities, farmers
calculate expected utility for different crop choices (growing paddy under bethma, growing paddy without
bethma, growing OFC with bethma, and growing OFC without bethma). The farmers then rank their
preferences and the farmers of each field canal vote on whether to practice bethma in that season. After
making the bethma decision, the farmers choose which crop to grow.

After the farmers make their cultivation decisions, seasonal rainfall is randomly set to wet, normal,
or dry and the harvest yield is determined from a payoff table with some stochastic variance. The payoff
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table lists mean crop yields and variances for growing conditions, which were derived from government
reports on crop prices and farmer self-reports of seasonal income reported in survey data. The full payoff
table is available at the model repository. Finally, farmers’ socioeconomic status is adjusted based on a
balance of income and expenses. At this point, farmers who are sufficiently wealthy (socioeconomic status
> 120,000 rupees, corresponding to one standard deviation above the population mean) will purchase an
agrowell, financing it with payments over the following 10 seasons.

4.3 Design Concepts

Basic Principles: When farmers acquire agrowells, they gain an individual ability to irrigate their fields.
This reduces their dependence on canal irrigation, which requires coordination and collective action among
the farmers who share a canal. Under conditions of water scarcity, we hypothesize that expansion of
agrowells may undermine traditional collective adaptations such as bethma. This is complicated because
farmers must commit to planting before they know what the weather will be, and seasonal forecasts are very
uncertain. Thus, the interaction between agrowells and collective action will be mediated by the details of
how farmers make decisions under uncertainty.

Emergence: We expect to see emergence occur through the collective decision-making about bethma
on a field canal. If farmers’ cultivation preferences change when they acquire agrowells, a gradual change in
the number of agrowells could produce a sudden change in cultivation when a critical number of well-owners
tips the balance in voting.

Objectives and Adaptation: Farmers seek to maximize their objective function. Farmers compute
their expected profit for each cultivation option, given known parameters (reservoir levels and agrowell
ownership), under the probability distribution of seasonal rainfall (low, average, or high). When calculating
prospect-theory utility, farmers use their income from the previous growing season as their reference point.

Farmers calculate their objective function for the four possible cultivation decisions—choosing paddy
vs. OFC and whether or not to practice bethma—and rank the choices from best to worst. They vote for or
against bethma, with the majority ruling. After bethma has been decided for the field canal, each farmer
then chooses between growing paddy or OFC.

Sensing: Farmers sense reservoir levels. They do not know what the weather for the upcoming season
will be when they make their bethma and crop decisions.

Interaction: Farmers on the same field-canal interact by voting on whether to practice bethma.
Stochasticity: Farmers are initialized with random socioeconomic status. At each growing season,

the reservoir level and rainfall are stochastically generated from the probability distributions described in
section 4.2.

Bethma decisions are determined by the majority vote at the field-canal level, but after the field-canal
makes this decision each farmer’s crop choice is modeled as a Bernoulli process, using a logistic function
to map the difference in expected utility between OFC and paddy onto a probability in the interval [0,1].
The different utility functions have vastly different natural scales, and these scales change as we change
parameters (e.g., from logarithmic to power-law for expected utility), so we scale all of the utilities to bring
them to the same range before applying the logistic mapping.

Collectives: Irrigation is managed at the field-canal level, so irrigation decisions (here, the decision
whether to practice bethma) are taken collectively by all the farmers on the field canal.

Observation: When running the model, we observe the reservoir levels, farmers’ income, status, crop
decisions, adoption of agrowells, and the field-canals’ votes on bethma.

4.4 Initialization

Farmers are initialized with an agrowell ownership flag, socio-economic status, an objective function for
decision making, and a set of risk parameters. Groups of fifteen farmers are randomly assigned to each
field canal.
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Farmers’ socio-economic status is drawn from a normal distribution with a mean of 100,000 rupees
and a standard deviation of 2,000 Rs (Central Bank of Sri Lanka, 2014). A fraction of the farmers with a
socio-economic status one standard deviation above the mean socio-economic status receive an agrowell
at initialization. We assume that loans for these agrowells have been paid in full prior to initialization. See
section 5.1 for tests of sensitivity to these assumptions.

4.5 Submodels:

Crop yields: Crop yields have a complex relationship with reservoir level, rainfall, whether farmers on a
field canal practice bethma when the reservoir is low, and whether farmers growing OFCs have agrowells.
We devised our crop-yield table based on survey data and records from the Sri Lanka Ministry of Agriculture.

Paddy requires a great deal of water. If the reservoir level is normal or high, paddy will produce a full
yield, averaging 100,000 Rs of seasonal profit, regardless of the rain. When the reservoir is normal or high
and rainfall is normal or low (dry), OFC produces higher incomes than paddy, averaging 120,000 Rs; but
in wet years (high rainfall), water damage to OFC and possible flooding reduce OFC yields to 90,000 Rs.

If the reservoir is low, paddy yields will depend strongly on the amount of rain, producing 20,000–
40,000 Rs. Practicing bethma can raise yields to 50,000–60,000 Rs. For all rainfall conditions, OFC
produces 20% more income than growing paddy without bethma, but growing paddy with bethma produced
higher yields for all levels of rainfall.

Agrowells are especially valuable for OFC growers. With an agrowell, a farmer growing OFC can
earn 84,000–144,000 Rs: much more than paddy under all conditions except high rainfall with a normal
or high reservoir.

This complex payoff table yields interesting dynamics under low-reservoir conditions. Normally, when
reservoirs are low, it is economically advantageous for farmers to work together under bethma. This produces
significantly higher income than either growing OFC or growing paddy without bethma. However, once
agrowells enter the picture, those farmers who have agrowells can earn far more growing OFCs on their
land, and thus they have an incentive to block bethma.

Investing in agrowells: Farmers with high socioeconomic status (more than one standard deviation
above the population mean) invest in agrowells. An agrowell costs 70,000 Rs, which is paid in annual
installments over 10 seasons.

5 RESULTS

We ran a 20-year simulation 100 times for each of four conditions of the farmer’s objective function: all
farmers using risk-averse expected utility, all farmers using regret-averse expected utility, all farmers using
prospect theory, and a mixture with each farmer randomly assigned one of the three objective functions,
with equal probability.

Figure 2 shows how the fraction of field-canals choosing bethma varied with the penetration of agrowells.
Unsurprisingly, no field-canals choose bethma when the reservoir has an ample supply of water. But in
conditions of water scarcity, the choice of bethma depends on the combination of the prevalence of agrowells
and the objective functions farmers use to make decisions under uncertainty over the coming season’s rainfall.

For risk-averse and regret-averse expected utility, all field-canals choose bethma when the reservoir
is low, regardless of how many farmers own agrowells, but under prospect theory, bethma drops to zero
when a large fraction of farmers own agrowells.

Risk-averse and regret-averse expected utilities reference only the possible outcomes, and are weighted
proportionally to the probability of each outcome. The prospect theory objective depends not only on the
possible outcomes, but also on the reference point (in this case, the farmer’s income in the previous season),
and the probability weightings are nonlinear (Eq. 8). The panel for mixed objective functions shows that
even partial representation of prospect theory among the farmers can have a significant effect on bethma
decisions, although the effect is much less dramatic than when all the farmers use prospect theory.
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Figure 2: Variation in bethma as a function of agrowell ownership for different reservoir levels and different

objective function. The figures show the aggregate outcomes over 100 sequences of 20 growing seasons.

Dots represent individual model runs and are jittered by 0.02 to aid visualization of overlapping points.

The blue lines are lowess-curves.

Figure 3 shows how the individual farmers’ profits vary over time, broken down by the conditions of
the reservoir. In general, farmers with agrowells have both greater average income and greater variation in
income (because they are more likely to plant OFC when reservoir levels are normal or high, which makes
them vulnerable to flooding and water damage if the rainfall is heavy that year). When farmers follow
prospect theory, the decline of participation in bethma leads to growing income inequality in years with low
reservoir levels because farmers with agrowells grow OFC without bethma and earn 80,000–108,000 Rs,
depending on rainfall, but farmers without agrowells only earn 24,000–48,000 Rs, which is considerably
less than the 50,000–60,000 Rs they would have earned growing paddy under bethma.

5.1 Robustness and Sensitivity Testing

To test how robust our results were to the specific values of the parameters for the objective functions
described in Appendix A, we ran an ensemble of simulations using different values for each parameter,
both above and below the nominal value, following the example of Podestá et al. (2008), from whom
we took values for many parameters, and the methodological recommendations of Railsback and Grimm
(2012). For risk-averse expected utility: r ∈ {−0.5,0,0.5,1,2,3,4} (nominal = 1, 0 = risk-neutral, < 0 =
risk-seeking). For regret-adjusted expected utility: all combinations of r as before, k ∈ {0,0.155,0.564}
(nominal = 0.155), and β ∈ {5×10−4,0.5,0.9} (nominal = 0.5). For prospect theory: all combinations of
α ∈ {0.6,0.7,0.8,0.9,1.0} (nominal = 0.88) and λ ∈ {1,2.25,3.5} (nominal = 2.25).

For each objective function and for each combination of parameters, we ran 100 repetitions of 20-year
simulations and recorded the fraction of farmers owning agrowells, farmer income, fraction of farmers
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Figure 3: Variation in income over time for individual farmers, grouped by agrowell ownership, for different

reservoir levels and different objective function. Each panel shows the simulations in which the reservoir

is at a given level for a given season, so a simulation of 20 growing seasons will have dots that appear in

the “Reservoir low” panel on those seasons in which the reservoir is low, in the “Reservoir normal” panel

for those seasons in which the reservoir level is normal, and so forth. The dots represent individual farmers

in 100 sequences of 20 growing seasons. The colored lines are lowess-curves fit to all the farmers in a

panel with the corresponding agrowell-ownership. Where the dots form sets of three bands, the different

bands correspond to different amounts of rainfall.

cultivating OFCs, and fraction of field canals choosing bethma. For risk-averse expected utility, farmers
earned slightly higher incomes and were slightly more likely to install an agrowell for low levels of
risk aversion (r = 0.5 and r = 1). Results presented above used a value of r = 1, which follows the
empirical literature (Podestá et al. 2008). This value of risk aversion may slightly increase our estimates
of farmer income and agrowell installation. For regret-adjusted expected utility, results were not sensitive
to variations of the parameters. For prospect theory, as α increased, farmer income increased along with
agrowell installation and the cultivation of OFCs. α captures the non-linearity of the value function; it
accounts for degree of risk aversion (concavity) in the gain region and risk seeking (convexity) in the loss
region.

We varied the rate of agrowell ownership at initialization and also tested setting the remaining term
on agrowell loans at initialization to a uniform random distribution between 0 and 10 years. Neither of
these variations changed the results substantively.

Space does not permit a detailed quantitative discussion of this robustness and sensitivity testing, but
qualitatively, across the range of parameter values, the adoption of bethma and farmers’ income did not
change much, usually by less than the variability between different model runs with the same parameter
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values, so we conclude that the qualitative results we present here, such as the impact of prospect theory
plus agrowell ownership, are robust and do not depend on specific values of these parameters.

6 DISCUSSION

The relationship between agrowells and bethma has complicated implications for policy. On the one hand,
there is broad agreement among experts that farmers could be better off, both individually and collectively,
if they would grow more OFC and less paddy. In particular, the lower water demands for OFC would relieve
a good deal of stress on the water supply system and make farmers more resilient to drought. Even when
water is plentiful, agrowells can dramatically increase OFC yields. However, this simulation suggests that
agrowells may also displace traditional collective responses to water scarcity, such as bethma. Agrowells
are expensive and are thus out of reach for most farmers today. As successful farmers become wealthier
and agrowells proliferate, tensions over bethma decisions may grow between farmers with agrowells and
those without. In addition, as farmers with agrowells achieve majorities on field canals, farmers unable
to afford agrowells may suffer economically, leading to growing inequality, as Fig. 3 shows. However,
the relationship between agrowells and bethma only occurs for certain decision heuristics (those using
prospect-theory objectives), so empirical studies of farmer views of risk and decisions under uncertainty
could provide valuable information for policy analysts and decision-makers. This underscores the general
observation by experts on risk and decision support that policies for managing environmental risks are more
likely to be successful if they are grounded in empirical knowledge of people’s actual behavior (Fischhoff
2006). It also highlights the importance of both environmental and social uncertainty in driving agricultural
outcomes.

This simulation did not address additional complexities of OFCs: markets for selling OFCs are much
more volatile than markets for selling rice, both because of government price supports for rice and because
OFCs are perishable and refrigerated storage facilities are scarce. If a large number of farmers harvest
OFCs at the same time, the market may become glutted, reducing prices. Introducing a realistic demand
curve for OFCs into this simulation will be the subject of future work.
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A APPENDIX: OBJECTIVE FUNCTIONS

The farmers’ objective functions—the functions they try to maximize when making cultivation choices—
follow Podestá et al. (2008).

Risk-averse utility: Farmers seek to maximize profit, but the utility of money declines the more one
has ($1000 would make a bigger difference to a person in poverty than to a millionaire). This is formalized
with an isoelastic utility function that produces constant relative risk aversion (meaning that utility is
scale-invariant so multiplying all monetary values by a constant does not change preferences) (Pratt 1964).
The utility of wealth or income w is given by:

urisk-averse(w) =

{
w1−r−1

1−r r �= 1

lnw r = 1
(2)
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where r is a coefficient of risk aversion. Larger values of r correspond to greater risk aversion, negative
values to risk-seeking, and r = 0 represents indifference toward risk. Following the empirical literature,
we use a value of r = 1, which corresponds to small risk aversion, with a constant gain in utility for each
doubling of income or wealth (Podestá et al. 2008).

Regret-adjusted utility: Farmers compare their profit to what might have happened had they made
a different choice and the utility accounts for anticipated regret (Bell 1985, Loomes and Sugden 1982):
This utility function determines the expected value of any one possible outcome by comparing it to all
other possible outcomes. If the set of possible monetary outcomes (wealth or income) is {wi}, then for a
given outcome w∗, we define regret as the difference in risk-averse utility (Eq. 2) between w∗ and the best
possible outcome in the set of wi (the difference between what you have and what you might have had):

regret(w∗) = max(urisk-averse(wi))−urisk-averse(w∗). (3)

The regret-adjusted utility is given by:

uregret-adjusted(w) = urisk-averse(w)− k
(

1−β regret(w)
)
, (4)

where k sets the scale for regret (the impact of infinite regret) and β (0 ≤ β < 1) describes the decision-
maker’s sensitivity to the magnitude of regret (e.g, the impact of doubling regret). Following the empirical
literature, we set r = 1, k = 0.155, and β = 0.5 (Podestá et al. 2008).

Expected utility: Where the consequence of a choice is uncertain, with possible outcomes wi whose
probabilities are pi, the expected utility of the choice, under either risk-averse or regret-adjusted utility, is
the probability-weighted sum of the utilities of the outcomes:

uexpected = ∑
i

pi ux(wi), (5)

where ux is urisk-averse (Eq. 2) or uregret-adjusted (Eq. 4).
Prospect theory: The utility of a given income does not depend on its magnitude, but on how much it

exceeds or falls short of some reference value wref (e.g., expected income), with the pain of losses exceeding
the pleasure in equal gains (Tversky and Kahneman 1992). When the consequence of a choice is uncertain,
as described above, the prospect-theory utility is given by:

uprospect = ∑
i

f (Δwi)g(pi), (6)

where

f (Δw) =

{
(Δw)α Δw ≥ 0

−λ (−Δw)α Δw < 0
, (7)

g(p) =
pγ

(pγ +(1− p)γ)1/γ , (8)

γ =

{
γ+ Δw ≥ 0

γ− Δw < 0
, (9)

Δwi = wi −wref is the change from the reference point (e.g., expecting $100 and getting $80 makes
Δwi =−$20), λ is a coefficient of loss-aversion (how the pain of losing $100 compares to the pleasure of
winning $100), α describes risk aversion/seeking (analogous to r in Eq. 2) and γ accounts for nonlinear
probability weighting. Following the empirical literature, we set α = 0.88, λ = 2.55, γ+ = 0.69, and
γ− = 0.61 (Tversky and Kahneman 1992, Podestá et al. 2008).
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