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ABSTRACT 

In the face of climate change, cities are becoming interested in developing policies and programs that will 

increase sustainability and resilience in their neighborhoods.  In particular, government officials, planning 

agencies, and residents of the City of Des Moines, Iowa, would like to find ways to improve the energy 

efficiency of their urban built environment.  Weatherization of residential buildings is one way of 

reducing energy consumption, particularly in winter months.  While financial incentives might increase 

residents’ adoption of weatherization measures, research has shown that social interactions more strongly 

influence this decision.  To enable stakeholders to explore different scenarios for encouraging 

weatherization, a hybrid simulation model that integrates an urban energy model with an agent-based 

model has been developed to connect the physical processes of built environment systems with the goals, 

constraints, and interactions that drive resident behavior.  This paper describes an application of the 

model to a specific residential city block. 

1 INTRODUCTION AND BACKGROUND 

Buildings in the United States consume approximately 40% and 72% of all energy and electricity use, 

respectively (US EIA 2013).  Existing residential buildings are responsible for much of this consumption.  

While there has been considerable focus on how to reduce energy use in newly-constructed commercial 

buildings, many existing residential buildings in urban neighborhoods have poor energy performance 

conditions and are in need of upgrades.  As urban communities attempt to reduce energy use in the face of 

limited energy resources and changing climate, attention has begun to turn to existing buildings, which 

have significant potential for energy savings through the implementation of a variety of retrofit strategies, 

including weatherization.  This paper focuses specifically on the impact that individual residents’ 

weatherization decisions have on overall urban energy consumption.   

 Weatherization includes a wide variety of energy efficiency measures that encompass the building 

envelope, its heating and cooling systems, its electrical system, and electricity consuming appliances.  

Weatherization benefits residents by reducing their energy bills over a long period of time. According to 

the United States Department of Energy (DOE), the average value of weatherization improvements is 2.2 

times greater than the cost, with some measures, such as increasing the efficiency of heating/cooling 

equipment, providing savings for 10-15 years, and other measures, such as insulating walls or roofs, 

providing savings for the lifetime of a house, i.e., 30 years or more (U.S. DOE 2016a).  However, 

weatherization involves up-front investment and potentially long-term financial payback, which may be 

unappealing or infeasible, particularly for low-income residents.  

 To address this issue, federally-funded weatherization programs have been created to increase 

adoption among low-income residents by subsidizing home improvements.  For example, the DOE 

Weatherization Assistance Program (WAP) provides grants to states, territories, and some Indian tribes to 
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improve the energy efficiency of the homes of low-income families. These governments, in turn, contract 

with local governments and nonprofit agencies to provide qualified residents with state-of-the-art and 

cost-effective energy efficiency upgrades that improve their building’s thermal performance.  Since the 

program began in 1976, the DOE has helped improve the lives of than 7 million families by reducing their 

energy bills (U.S. DOE 2016b).  Furthermore, these upgrades not only increase energy performance, but 

also address health concerns associated with poor indoor air quality.  

 Despite these benefits, government programs that subsidize weatherization are often inefficient and 

underutilized (Fowlie, Greenstone, and Wolfram 2015).  Reasons for this vary.  Many low-income 

residents are unaware that they are qualified to receive weatherization assistance, and even if they are 

aware, the application and approval process is often slow and inconvenient (Higgins and Lutzenhiser 

1995).  However, awareness alone is not enough to encourage widespread adoption.  In a recent study 

Ternes et al. (2007) concluded that the success of a weatherization program depends on whether the 

program is framed as a social policy-oriented program or an energy-related program. This suggests that 

energy-related benefits are not well understood nor well communicated.   

 Innate human biases also confound residents’ decision to weatherize and contribute to a lack of 

enthusiasm for weatherization programs.  According to Stern (2014, p. 44), the determinants of residents’ 

energy-consuming behaviors are “many, complex, and context-dependent”.  These behaviors result from 

complex and sometimes apparently paradoxical interactions among the nature of the decision, the 

characteristics of the decision-maker, and the natural, designed, and social characteristics of the 

environment (Guerin, Yust, and Coopet 2000; Madlener and Harmsen-van Hout 2011; Wilson and 

Dowlatabadi 2007).  One ethnographic study found that few households took serious interest in easy 

weatherization measures, even those that had been willing to invest in expensive retrofits (Wilk and 

Wilhite 1985). This was due to the relative “invisibility” and lack of “glamour” of weatherization; unlike 

major home improvements, it does not affect the value of the house, nor does it send a visible sign of 

identity-related values to neighbors or friends.  

 Another study revealed that identical weatherization programs offered by different utility companies 

had rates of uptake almost an order of magnitude apart (Stern et al. 1985). The study concluded that there 

was no systematic relationship between the adoption of weatherization measures and the size of a subsidy 

(p. 170).  However, “marketing” the incentive through a community group was one of the best ways to 

improve participation rates, especially for low-income households.  A nationally-representative survey 

confirmed the importance of social variables, finding that having interactions with others about energy 

issues was the single largest determinant of weatherization (Southwell and Murphy 2014).  In fact, 

residents that participated in such social interactions were more than twice as likely to have weatherized 

their homes.  This is likely because the interactions served to convey locally relevant knowledge about 

weatherization, as well as social norms, both descriptive (“people like us weatherize”) and injunctive 

(“it’s good to weatherize”).  By contrast, general knowledge about energy – the ordinary content of most 

campaigns – had little impact.  Based on these findings, it is critical that urban policymakers consider the 

implications of social interactions for the success of weatherization programs.  Understanding how 

interactions and information sharing in a community influence its residents’ decisions could greatly help 

governments and planners leverage this social tendency for improved energy efficiency outcomes. 

Agent-based modeling (ABM) has proven to be a popular method of analyzing the impacts of 

individual occupants’ decisions with respect to energy use and conservation.  Most models described in 

the literature focus on the energy-related behaviors of heterogeneous commercial building occupants 

(e.g., opening windows, turning on fans, or removing layers of clothing), with an objective of finding 

ways to reduce energy usage while maintaining adequate occupant thermal comfort (e.g., Langevin, Wen, 

and Gurian 2015).  Many of these models link the ABM to a building energy simulation model, which is 

typically EnergyPlus (Cao, Wang, and Song 2015; Lee and Malkawi 2014; Azar and Menassa 2012).  The 

literature describing ABMs of residential energy applications is sparser.  Hicks, Theis, and Zellner (2015) 

developed an ABM that captures the adoption of energy-efficient lighting technologies (e.g., LEDs) 

among individual residents, using survey data to inform agent behavior.  Chen, Taylor, and Wei (2012) 

used individual resident electricity consumption data to inform the development of an ABM to analyze 
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the effects of social network structure on energy conservation behaviors.  They found that strong 

associations among network members had a greater influence on energy conservation behavior than 

network size.  Friege, Holtz, and Chappin (2016) incorporated social and geographic factors into an ABM 

of individuals’ decisions to install insulation in their homes.  Their results suggest that the residents’ 

social networks have a much stronger influence on this decision than financial incentives. 

 To help the City of Des Moines, Iowa, assess the implications of various policies in support of 

weatherization, a hybrid simulation model of a residential block in the Capitol East Neighborhood has 

been developed.  An urban energy model, which calculates the monthly energy consumption of the 

buildings, provides the inputs to an agent-based model, which captures the decision making and 

interactions of the residents with respect to weatherization.  This paper describes the model and provides 

an example of how the model can be used to assess weatherization adoption rates and overall energy 

consumption over time for an urban neighborhood under varying experimental conditions.    

2 HYBRID SIMULATION MODEL OF URBAN WEATHERIZATION 

This section provides relevant background information on the Capitol East Neighborhood, which was 

selected as a test case for the hybrid simulation modeling methodology.  The two constituent simulation 

models that comprise the hybrid model are then described in detail. 

2.1 Case Study: Capitol East Neighborhood 

The Capitol East Neighborhood was chosen as a test case for a pilot study, primarily because of its social 

and economic composition.  In the 1990s Capitol East was one of the first neighborhoods in Des Moines 

to take part in the neighborhood revitalization program “to help enhance, stabilize and revitalize 

neighborhoods” throughout Des Moines (Capitol East Neighborhood Charter Plan Update 2014). This is 

an indication for a strong neighborhood association and buy-in by the local residents, which will be 

important for future development and implementation of modeling and decision support tools.   

 Capitol East is situated just east of the Iowa state capitol building, near downtown Des Moines. It is a 

young and diverse neighborhood, but it faces some economic challenges: its median income is less than 

half the Des Moines average, and there are more renter-occupied properties than other neighborhoods in 

Des Moines.  Capitol East has been targeted by Habitat for Humanity’s “Rock the Block” program, which 

includes building ramps and door modifications, repairing roofs, porches, siding, windows, driveways and 

sidewalks, insulating, weatherstripping, painting, landscaping and other maintenance projects.  The hybrid 

simulation model described in this paper has been developed as a decision support tool that will help city 

officials, planners, and residents to develop policies and programs that will enhance these efforts and 

increase weatherization adoption among Capitol East residents. 

2.2 Urban Energy Model 

To generate the comparative building energy consumption data that informs the weatherization decisions 

of the agents in the agent-based model (described below), a detailed energy model of a single residential 

block in the Capitol East Neighborhood was developed to show the potential energy savings that would 

result from a resident’s decision to weatherize their home.  The one-block area of the neighborhood that 

was chosen for this analysis was selected because of the similarity of the buildings in both use and 

construction, while still representing a large range of square footage. The 29 buildings that comprise this 

block are all residential and built with wood-framed construction. Rhinoceros 3D and the Urban 

Modelling Interface (UMI) plugin from MIT’s Sustainable Design Lab (Reinhart et al. 2013) were used to 

create a digital model of the block and then simulate the energy performance of each house within the 

selected area, based on generalized building characteristics templates. UMI offers the ability to edit the 

material assembly of individual houses in the neighborhood, such that the potential impact of different 

weatherization strategies (e.g., re-caulking windows to decrease air infiltration; adding spray insulation in 

unfinished attics to prevent heat loss during the winter) can be tested.  Datasets that represent pre- and 

post-weatherization conditions and energy consumption can then be compiled.   
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 The first step in developing the energy use model was to model the physical geometry of the 

neighborhood with Rhinoceros 3D.  Spatial information used to model building footprints, streets, 

sidewalks and lot boundaries was extracted from GIS maps that are maintained by the City of Des 

Moines.  Rough floor plans that indicate which areas are more than one story high are available for each 

house, and this information was used to refine the individual 3D building models.  The second step was to 

use the information available in the Polk County Assessor’s database (Polk County Assessor 2015) to 

extract the building-related data needed to build the UMI simulation model.  Each building’s address, 

parcel number, number of building stories, date of construction, and number of separate residences 

contained within were extracted. An identification system for each house was derived from the parcel 

number of each lot and was used to cross-reference information between the Rhino-UMI model and the 

Assessor’s data.  The 3D building models were created by extruding each building’s footprint to the given 

roof elevation included within the GIS data, and then manually edited later using measurements from the 

Assessor’s floorplans to more accurately reflect the true size of the house. This step is important, because 

the UMI energy simulation analyzes each structure based on the volume of a given structure, and most 

multiple-story houses are only “full height” over a certain percentage of their floor area.  Once the 3D 

model of the neighborhood block was constructed, it was ready be used to simulate each building’s 

energy performance, yielding energy consumption data that would serve as inputs to the agent-based 

model.   

2.3 Agent-Based Model 

In this section, the agent-based model (ABM) of the Capitol East Neighborhood block is described. The 

model was built using NetLogo (v. 5.0.2).  First, the agents are described, and then an overview of the 

ABM submodels is provided. 

2.3.1 Agents 

A single agent type inhabits the ABM – the household agent.  There are 29 household agents in the 

model, each of which represents the occupants of a household in the selected block of the Capitol East 

Neighborhood. Each agent represents a household of people, rather than an individual occupant, since the 

decision to weatherize is assumed to be made at the household level.  It is assumed that every agent is 

qualified to receive weatherization assistance. Weatherization assistance is assumed to include full 

financial support (i.e., the applicant pays nothing out of pocket) and implementation assistance (i.e., 

experienced installers perform the weatherization implementation tasks).  Each household agent is 

characterized by four key parameters, which have values that are held constant over the entire 24-month 

simulation run: 

 House number: Each household agent is assigned a unique house number, which links the agents 

to their respective buildings in the Rhino-UMI model. 

 Household monthly energy use: The energy use generated by each agent’s building (provided by 

the Rhino-UMI simulation output), both before and after weatherization, is assigned to each 

household agent. 

 Satisfaction threshold: This defines the satisfaction (i.e., utility) value below which an agent is 

dissatisfied.  The satisfaction threshold has the same value for all agents and is set to 0.25. 

 Social network: Each agent is assigned to a group of agents that comprises its social network.  

The size of the agents’ networks is varied experimentally.  It is assumed that the agent’s social 

network contains only members of the 29-household block of Capitol East that is considered in 

this study. 

Each agent is also characterized by eight state variables that may be updated in each monthly time-step: 

 Current weatherization level: This variable can either take on a value of zero (i.e., the agent has 

not weatherized its home) or one (i.e., the agent has weatherized). Once an agent has weatherized, 

it is assumed that it cannot return to the non-weatherized state.  
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 Current utility: The agent’s utility in a given month is assumed to be a linear function of its 

current energy costs c, where the minimum possible value (i.e., a utility of zero) occurs for the 

agent’s maximum possible energy expenditure (cmax), and the maximum (i.e., a utility of one) 

occurs for the agent’s minimum possible energy usage (cmin).  These minimum and maximum 

values are provided by the Rhino-UMI energy use model.  While a nonlinear utility function (e.g., 

an exponential function) could have been used to capture the effect of diminishing returns, a 

linear proportional scale was chosen for simplicity, primarily because of a lack of sufficient data 

to estimate the agents’ risk tolerance parameters (Chelst and Canbolat 2012, pp. 137-139). The 

utility function is defined as follows: 

 

      ( )  
      

         
             (1) 

 

 Utility history: Each agent stores its “memory” of its energy costs from previous months in a list 

of length m.  At the end of each month, the agent appends its current energy costs to the list and 

removes the oldest value (i.e., it “forgets” this value). 

 Cost history: As with the utility history, each agent stores m energy cost values in this list, which 

represents the agent’s “memory” of previous energy expenditures. 

 Satisfaction level: Each agent’s decision about weatherizing its home and applying for assistance 

is motivated by a weighted average of its utility history.  The agent’s current satisfaction level is 

based on a weighted average of the previous m months, where m is the experimentally-varied 

value of the agent’s memory.  The energy costs of more recent months are weighted more heavily 

to account for recency effects.  For example, if m = 3 and ut is the agent’s utility in time-step t, in 

the tenth month the agent’s weighted utility is: 

 

                                (2) 

 

If the weighted utility value is less than the agent’s threshold value, its satisfaction level is set to 

one (i.e., satisfied); otherwise, it is set to zero (i.e., dissatisfied). 

 Self-weatherization probability: This value represents the likelihood in a given month that an 

agent will decide to pay out of pocket (i.e., without waiting to receive assistance) to weatherize its 

home.  This value depends on the agent’s estimate of the length of the payback period for 

weatherizing, which is calculated by dividing the cost of weatherization by the weighted average 

of the agent’s cost history.  The cost of weatherization is fixed throughout each simulation run 

and is assumed to be the same for each agent.  It is also assumed that each agent is able to 

accurately assess this cost.  The probability that an agent decides to pay for weatherization 

increases/decreases with decreasing/increasing payback period values. 

 Assistance status: The value of this variable depends upon the stage that the agent is currently in 

with respect to applying for weatherization assistance.  An agent’s status can take on one of five 

discrete values:   

o Level 0: The agent has not yet applied for assistance. 

o Level 1: The agent has applied for assistance and is waiting for a response. 

o Level 2: The agent has been approved to receive assistance.  

o Level 3: The agent has made an appointment to receive weatherization assistance.   

o Level 4: The agent’s home has been weatherized by the agency providing the assistance. 

If the agent has made an appointment to receive assistance, it may decide to cancel its 

appointment (i.e., its status may revert from Level 3 to Level 2).  Otherwise, an agent’s assistance 

status cannot return to a previous value.   

 Information level: This value represents the degree to which an agent is informed about the 

weatherization assistance program (e.g., how to apply, whether they are eligible, what the 

potential benefits are). It falls between zero (i.e., completely uninformed) and one (i.e., fully 
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informed). It is assumed that each agent’s level of information will remain the same or will 

increase in each time-step; the agent never becomes less-informed. 

2.3.2 ABM Overview 

The ABM consists of five main submodels, which are described below.  The initialization submodel is 

only run once, at the beginning of each simulation run.  The remaining four submodels are run in 

sequence in each monthly time-step. 

Initialization: The agents’ houses are all assigned a unique number, which corresponds to their 

location in the neighborhood and the UMI model, and they are all initialized at a weatherization level of 

zero (i.e., no weatherization). The agents are initialized to an assistance status of zero (i.e., not applied), a 

satisfaction level of one (i.e., perfectly satisfied), an information level of zero (i.e., no information about 

assistance), and all entries in the utility history list set to one (i.e., perfect utility). Each agent’s social 

network is also initialized with randomly-selected constituents – it is assumed that membership in a social 

group does not depend on the proximity of the agents’ homes.  The size of each agent’s network is 

experimentally varied, and it is assumed that each agent is a member of only one social network (i.e., 

there are no overlapping groups). Finally, each agent is assigned 24 energy consumption values (in 

kilowatt hours) that are specific to its own house that were generated by the Rhino-UMI energy use 

model.  The first 12 values correspond to the monthly energy consumption for the agent’s house without 

any weatherization.  The remaining 12 values represent the monthly energy consumption with 

weatherization applied to the agent’s home. 

Update application and weatherization status: If the agent’s assistance status is at level 1 (i.e., it has 

applied for assistance and is waiting for a response) or level 3 (i.e., it has made an appointment and is 

waiting for service), and the waiting period for that agent has ended in the current time-step, the agent’s 

status is updated to level 2 (i.e., it has been approved for assistance) or level 4 (i.e., it has received 

weatherization assistance), respectively.  If the agent is now at level 4, its current weatherization status is 

updated from zero (i.e., not weatherized) to one (i.e., weatherized), and its utility and cost histories will be 

reinitialized. 

Update memory, assess satisfaction, and assess self-weatherization probability: Based on its current 

weatherization level and the current month, each household agent determines its total monthly energy 

consumption (in kilowatt hours) and multiplies this value by the current cost per kilowatt hour to obtain 

the total energy cost for its home.  This value is appended to the agent’s cost history list, and the oldest 

value in this list is removed.  The agent then calculates the weighted average of this updated list and uses 

it to update its self-weatherization probability.  The agent uses its current energy cost value to calculate its 

current utility value, which it appends to its utility history list, and the oldest value in the list is removed.  

The agent accesses this list to calculate its weighted average utility value, which it compares to its 

threshold utility value. Based on this comparison, the agent’s status is updated to “satisfied” or 

“dissatisfied”. 

Gather information: This submodel represents the agent’s acquisition of information with respect to 

the weatherization assistance program. If the agent is already fully informed about the program (i.e., its 

information level is equal to one), then it does not execute this submodel. The increase in an agent’s level 

of information is random and depends upon its interactions with other agents in the neighborhood, as well 

as its current satisfaction level. If the agent does not interact with other agents, as in the base-case 

experiment, then the incremental increase in information is simply a uniformly-distributed random value 

between zero and 0.05 (if the agent is satisfied) or zero and 0.10 (if the agent is dissatisfied), with an 

upper bound of 1.0 on the information level.  This logic is based on the assumption that a dissatisfied 

agent will be more motivated to seek out information and will therefore be more likely to increase its 

knowledge of the assistance program in a given time-step. 

If an agent is allowed to interact with other agents, its increase in information will depend upon the 

number of agents in its social network and the current state of the other agents in the model.  In each time-

step, it is assumed that an agent is guaranteed to interact and share information with every agent in its 
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social group.  It is also possible that an agent will interact with agents outside its social network; however, 

these interactions are not guaranteed – the probability of interacting with each non-member in a given 

time-step is 0.10.  When Agent A interacts with another Agent B, if Agent B previously received 

assistance to have its home weatherized and is currently satisfied, then Agent A’s information level will 

increase.  The size of the increase is random and depends upon Agent A’s current satisfaction level: if 

Agent A is satisfied, then its information level will be incremented by a random amount between 0 and 

0.10; if Agent A is dissatisfied, the increment will be a random value between 0 and 0.25.  By contrast, if 

Agent B’s home has been weatherized and it is satisfied, but it did not receive assistance (i.e., it paid for 

the weatherization out of pocket), then its interaction with Agent A will increase Agent A’s self-

weatherization probability by a random amount between 0 and 0.10 (if Agent A is currently satisfied) or 0 

and 0.25 (if Agent A is currently dissatisfied). 

Deliberate: This submodel includes each agent’s decision process with respect to weatherization, both 

with and without support from the weatherization assistance program. If an agent is currently satisfied, 

the only potential change to its state variables is an update of its assistance status from level 3 to level 2 

(i.e., it cancels its appointment).  The probability that a satisfied agent cancels its appointment increases 

for increasing overall utility values, based on the assumption that a highly satisfied agent might not want 

to bother with the inconvenience of the weatherization appointment.  The amount of time remaining is 

also a factor – if the agent has already waited a long time for the appointment, it is more likely to go 

ahead with the appointment than if it has just scheduled (i.e., the agent has a sunk cost bias with respect to 

waiting time).  The probability of canceling is: 

 

          (                      )           (3) 

 

 If an agent is dissatisfied, and its assistance status is at level 0 (i.e., it has not applied for assistance), it 

must first decide whether it will apply for assistance.  This decision depends on the agent’s weighted 

average utility and its information level.  The lower the utility value and the higher the information level, 

the greater the likelihood is that an agent will apply.  The probability that an agent with information level 

i will apply is: 

 

                (                      )            (4) 

 

 If the agent decides to apply, its assistance status is updated to level 1.  It is also assigned a randomly-

selected application waiting period, where the maximum possible wait time is six months.  If the agent 

decides not to apply, it will subsequently consider whether or not it will pay for weatherization out of 

pocket, with a likelihood that is defined by the agent’s self-weatherization probability.  If the agent 

decides to weatherize without assistance, it is assumed that it does not have to wait – its current 

weatherization status is updated from zero to one in the current time-step. 

If an agent is dissatisfied, and its assistance status is at level 1 (i.e., it has applied for assistance and is 

waiting for a response), it must decide whether to continue waiting for a response or to pay for 

weatherization out of pocket.  The probability that an agent will decide to pay to weatherize its home 

increases for larger self-weatherization probability values and longer elapsed wait times.  If the agent 

decides to pay, it is assumed that the agent’s home will be weatherized in the current time-step.   

If an agent is dissatisfied, and its assistance status is at level 2 (i.e., it has been approved for 

assistance), it is assumed that the agent will schedule an appointment for weatherization assistance.  Its 

assistance status is updated to level 3, and it is assigned a randomly-selected appointment waiting period, 

where the maximum possible wait time for an appointment is two months.  If a dissatisfied agent has 

previously made an appointment to receive weatherization assistance (i.e., its assistance status is at level 

3), it is assumed that the agent will continue waiting for its appointment. 
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3 EXPERIMENTATION AND RESULTS 

Creating a comparative energy consumption dataset required that the energy use model represent pre- and 

post-weatherization conditions.  UMI was used to assign a simulation template to each of the 29 houses in 

the 3D Rhino building model.  This template reflects the construction type and condition of the house.  

UMI translated this information into values of thermal performance and infiltration rate (i.e., the rate at 

which a given structure allows conditioned air to exchange with unconditioned outdoor air), which have a 

significant impact on energy consumption.  Using infiltration rate and thermal resistance as the target 

impact areas, the baseline pre-weatherization file used the ASHRAE minimum performance requirement 

for attic insulation within wood framed attic construction (i.e., a 0.15 meter thick layer of fiberglass batt 

insulation and a 0.12 meter thick layer of polystyrene insulation).  The total R-value of the roof assembly 

was 8.55 m2
•K/W.  The post-weatherization file doubled the thickness of both layers to 0.3 meters and 

0.24 meters, respectively, increasing the R-value to 16.04 m
2
•K/W. The assumed air infiltration rate for 

existing structures in the baseline template was 0.75 ach, and the post-weatherization rate was 0.25 ach.   

 Combined with a historical weather file (TMY3/EPW) for the City of Des Moines 

(https://energyplus.net/weather), the model was then used to simulate the monthly energy performance of 

each household, split into subcategories such as heating, cooling, and lighting. The simulation was run 

twice – once using the pre-weatherization templates, and then again using the post-weatherization 

templates. This yielded two comparative data sets, which were exported as text files.  A color-coded 

visualization of the pre-weatherized energy consumption for the 29 houses is shown in Figure 1. 

 To verify the ABM and to demonstrate its ability to incorporate the effects of various factors 

(including social interactions) on household agents’ weatherization decisions, a set of experimental 

scenarios was developed and tested over 24-month replications.  In the first set of scenarios, the agents 

were not allowed to interact or share information about their weatherization experiences.  In the second 

set of experiments, all 29 agents were allowed to share information in each time-step (i.e., there was a 

single 29-member social network).  In the third set of experiments, the agents were broken into six 

mutually exclusive social networks (i.e., five groups of five agents and one group of four agents), and the 

agents were allowed to share information within groups.  Within all three information-sharing scenarios, 

the lengths of the agents’ utility and cost histories were varied such that they all had either “short” 

memories (i.e., they could hold two months of data) or “long” memories (i.e., they could hold five months 

of data), for a total of six unique experimental configurations.  The experimental design is summarized in 

Table 1.  For each scenario, thirty 24-month replications were run.  In each replication, two measures of 

system performance were captured: the number of weatherized buildings in each monthly time-step, and 

the average monthly energy consumption for the entire 29-building block (in kilowatt hours).      

 

 
 

Figure 1: Energy visualization showing the current energy consumption of all residential parcels on a 

single block in Capitol East for the pre-weatherized condition. 
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Table 1: Summary of ABM experimental conditions. 

Input Parameter Experimental Values 

agent interactions allowed / not allowed 

# agent social groups one / six 

agent memory length short (2 months) / long (5 months) 

   

 The plots in Figure 2 show how many of the 29 household agents decided to weatherize their homes 

over the course of a single representative 24-month replication when they were not allowed to interact or 

share weatherization information with one another.  The plot in Figure 2a was generated for the scenario 

in which the agents had short memories, whereas the plot in Figure 2b shows results for agents with long 

memories.  As the figures indicate, more agents tended to weatherize when they had short memories – 

they were apparently more sensitive to the high energy costs that occurred in the winter months.  

However, without any information sharing among agents, overall adoption rates were relatively low. 

 

    
(a)                              (b) 

 

Figure 2: Number of weatherized buildings over 24 months for a single replication, without interactions 

among agents with a) short and b) long memories. 

 By contrast, when the agents were allowed to interact and share information, the number of agents 

that decided to weatherize was typically higher, although the length of the agents’ memories affected the 

outcome significantly.  The plots in Figure 3 show the number of agents that decided to weatherize over 

the course of a single representative 24-month replication in which there were six social networks for 

agent interactions.  In the scenario that yielded Figure 3a, the agents’ memory lengths were short (i.e., two 

months).  By the end of the simulation run, all 29 agents had decided to weatherize.  For the scenario 

represented by Figure 3b, the agents had long (i.e. 5-month) memories, and only three agents adopted 

weatherization measures.  For the long-memory scenario, it seems that the influence of social interactions 

was tempered by the reductions in energy costs that occur in the warmer months.  

 

     
(a)                              (b) 

 

Figure 3: Number of weatherized buildings over 24 months for a single replication, with interactions 

occurring within six social networks of agents with a) short and b) long memories. 
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 Figures 4a and 4b show the mean values and associated 95% confidence intervals for the number of 

weatherized households and overall neighborhood energy consumption, respectively, at the end of each of 

thirty 24-month simulated replications, for each of the six experimental scenarios.  When the household 

agents are allowed to interact and share information about the positive impacts of weatherization, if they 

have short memories (i.e., they are more sensitive to energy cost increases that occur in a given month), 

more agents decide to weatherize, and neighborhood energy consumption reduces accordingly.  However, 

if the agents have long memories, weatherization and energy consumption outcomes do not benefit much 

from social interactions and information sharing.  While longer agent memories were expected to have a 

tempering effect on weatherization adoption rates, the strength of this effect was somewhat surprising.  

The results of these experiments suggest that weatherization could be encouraged through periodic 

reminders to homeowners about high winter heating costs.  For example, in the summer, the utility 

company could send residents a twelve-month graphical energy use summary that clearly indicates the 

winter peaks.  Additionally, the City of Des Moines might consider organizing and/or attending periodic 

social events (e.g., neighborhood picnics, church events) to encourage discussion about weatherization. 

    
(a)                              (b) 

 

Figure 4: The effects of different combinations of agent memory length and social network structure on a) 

the mean number of weatherized buildings and b) the mean monthly system energy consumption.  

4 CONCLUSION 

This paper has demonstrated the usefulness of combining a Rhino-UMI building energy use simulation 

model with an agent-based model in modeling weatherization decisions in a community.  This conceptual 

hybrid model is the first step in a larger data collection and modeling effort to assist planners and 

government officials in the City of Des Moines in making decisions about the most effective policies to 

encourage residents to weatherize and conserve energy.  Although the initial focus of this project is on the 

Capitol East Neighborhood, other neighborhoods in Des Moines are also of interest.  Different 

neighborhoods are likely to have different types of building construction, and residents will likely differ 

in their attitudes about weatherization and energy conservation, their financial constraints, and their social 

network structures.  The hybrid Rhino-UMI/ABM modeling methodology is particularly well-suited to 

capturing this heterogeneity of physical and human entities across the urban landscape, enabling decision 

makers to tailor their policy approaches appropriately for each neighborhood. 

 While the energy use model is based on publicly available data for residential buildings in the Capitol 

East Neighborhood of Des Moines, the other parameter values and the relationships among variables in 

the ABM, including the agents’ logic and behaviors, are theoretical.  That is, they are currently based on 

assumptions that are supported by the literature and expert opinion, rather than empirical data from 

Capitol East.  As such, the version of the model presented in this paper has not been validated.  However, 

ongoing research involves the development of methods to engage the community and gather empirical 

data about the residents’ beliefs, objectives, and social networks.  Once this empirical data is available, it 
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will be incorporated into the ABM, and at that time an effort will be made to at least partly validate the 

model.  

 In the meantime, there are many potential avenues for future experimentation with and development 

of the existing theoretical model.  For example, in the current version of the ABM, it is assumed that 

home ownership does not affect the occupants’ decisions.  However, this assumption could be modified to 

account for a mix of occupants in the neighborhood – those who own their homes and those who are 

renters, since this factor will very likely influence the decision to weatherize.  Currently, the agents are 

assumed to have perfect information about the costs and benefits of weatherization – this assumption 

could be relaxed for greater realism, such that agents have imperfect estimates of these values.  Also, in 

the current model, it was assumed that only two levels of weatherization were possible.  However, the 

Rhino-UMI model has the ability to generate energy consumption values for a variety of different levels 

of weatherization, and the ABM could be adapted to allow residents to select from multiple 

weatherization options.  With these modifications and the inclusion of empirical data, the hybrid Rhino-

UMI/ABM modeling methodology described in this paper has significant potential for supporting urban 

policy and planning decisions that will yield a more sustainable and resilient City of Des Moines. 
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