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ABSTRACT 

Discrete event simulation is an established methodology for investigating the dynamic behavior of complex 
systems. Apart from conventional simulation studies, which focus on single model aspects and answering 
specific analysis questions, new methods of broad scale experiment design and analysis emerge in 
alignment with new possibilities of computation and data processing. This paper outlines a visually aided 
process for knowledge discovery in simulation data which is applied onto a real world case study of a 
mining facility in Western Australia.  

1 INTRODUCTION 

Discrete event simulation is a broadly accepted methodology for planning new production and logistic 
systems, or for evaluating and improving existing ones. Traditionally, simulation studies focus on a 
specifically outlined project scope, guided by concrete and quantifiable questions in a way that conducting 
experiments is performed by varying distinct and preselected parameters that are supposed to be influential 
to the simulation project goal (Law 2014). Apart from conventional simulation studies, new forms and 
methods of simulation based applications have recently been developed.  

Those leverage new possibilities through recent advancements in computing power and database 
technology. These recent advancements in computing power enable to conduct large and broad scale 
simulation ensembles (Matkovic et al. 2015; Theodoropoulos 2015). In previous papers, we outlined an 
approach called knowledge discovery in manufacturing simulations that is based on large scale simulation 
experiments and introduced new possibilities of simulation data analysis led by data mining and visual 
representations (Feldkamp et al. 2015a). This approach primarily supports the idea of finding interesting 
patterns and relations in the simulation data that have been unknown beforehand. While in previous work 
this was demonstrated and validated by simple academic models, here we apply our approach on a real 
world simulation model of an underground gold mine. 

The remainder of this paper is structured as follows: In section 2 we introduce related work on data 
farming, visual analytics and knowledge discovery in simulation data. In section 3 the mine and the 
underlying circumstances of the simulation model are described, as well as the general setup, experimental 
design and analysis procedure. Section 4 discusses selected results of the case study investigation followed 
by a conclusion and future work discussion in section 5.
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2 RELATED WORK: KNOWLEDGE DISCOVERY IN SIMULATION DATA 

The core concept of the recent approach (Feldkamp et al. 2015a) is built around smart experimental design. 
New approaches in design of simulation experiments manage the balance between broad scale parameter 
combination and variation on the one hand and manageable data volume neglecting inefficient design 
patterns (Kleijnen et al. 2005; Sanchez and Wan 2009) on the other. However, a tight coverage of the 
model’s possible response space is essential to discover effects that occur exclusively through the 
combination of distinct multiple parameter values and also finding those knees in the curve that would 
remain unknown when experimental design is limited to the combination of parameter value extrema. This 
concept is called data farming. The farming metaphor describes how the data output yield can be optimized 
by experimental design like a farmer that cultivates his land to maximize his crop yield (Sanchez 2014). 
We incorporated those design concepts in our approach for knowledge discovery in simulation data in order 
to use the simulation model as a black box data generator. 

The actual data analysis of the generated output data and its relation to simulation input data relies 
heavily on visual inspection. Visualization in general is an important tool when an interpretation of data is 
required (Thomas and Cook 2005) and therefore is commonly applied in almost any simulation study. 
Typical visualization techniques applied in the context of discrete event simulations include animation, 
time-plots of outputs and business graphics or, as a part of traditional simulation output analysis, graphs of 
certain performance indicators in a confidence interval obtained from replicating runs (Law 2014).  

Our approach outlined in recent papers (Figure 1) goes beyond those commonly applied techniques in 
a way that visualization is the central anchor point in the simulation data analysis process. This is based on 
the research area visual analytics. Visual analytics can be defined as “an iterative process that involves 
information gathering, data preprocessing, knowledge representation, interaction and decision making” 
(Keim et al. 2008). It combines the strengths of machines, e.g., for processing huge amounts of data, with 
those of humans, e.g., for pattern recognition and drawing conclusions. As such, visual analytics combines 
methods from knowledge discovery in databases (KDD), statistics and mathematics as driving forces 
behind automatic data analysis with human capabilities to perceive, relate, and conclude (Fayyad et al. 
1996). Unlike traditional simulation data visualization, data preprocessing is essential. In recent work we 
showed the application of clustering algorithms on simulation data (Feldkamp et al. 2015a), but other data 
mining tools like regression analysis are also applicable (Kallfass and Schlaak 2012). 
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Figure 1: Knowledge Discovery Process in Discrete Event Simulations (Feldkamp et al. 2015a). 

1608



Feldkamp, Bergmann, Strassburger, and Schulze 
 
In order to investigate simulation data preprocessed by data mining algorithms, we investigated suitable 

visualization and interaction methods in a recent work (Feldkamp et al. 2015b; Feldkamp et al. 2016). The 
portfolio of diagram types mainly fall in two categories: One is for coarse assessment of data and estimation 
of parameter value distribution to begin with, the other is for the in depth analysis of data subsets that 
usually follows throughout this process. Furthermore, visualization types in the second category benefit the 
most from options of interaction, mainly selection, filtering and coloring of data. Also, rotating camera 
angles as well as zooming in and out may be beneficial in 3D plots. 

3 CASE STUDY 

3.1 Background 

Investigations in this case study are carried out on a simulation and animation model of an underground 
gold mine.  

As today, the mine currently operates only on a campaign basis on a level of 1100 meters below surface. 
With increasing gold prices as external condition, evaluations of possibilities for re-opening the facility 
permanently and even descending to lower loading levels have been investigated with the existing 
simulation model. 

 

 

Figure 2: Top: 2D-Layout of the decline. Bottom left side: 3D-Model of the decline. Bottom right side: 3D-
Model of a mining haul truck traveling down the decline. 

Figure 2 shows layout and 3D screenshots of the model. The constructed simulation model represents 
the current state of operating the mine with loading ports at 1100 and 1200 meters below the surface. 
Loading ports are those areas where mined material is loaded onto trucks, which then hauls the material up 
to a port at 125 meters below sea level where the facility switches from underground to opencast mining. 
At this port, haul trucks dump their load which then can be processed and separated into valuable ore and 
waste. This dumping port furthermore marks the boundary of the simulation model, so that the main focus 
here is the transportation of material from the loading port to the dumping port. Daily limit for the quantity 
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of conveyed material is about 5000 tons per day, as this is the daily limit for the following material 
processing at the surface. 

Additional loading ports deeper than 1200 meters below surface are already implemented in the model, 
so an investigation of scenarios with deeper loading points is possible. Furthermore, the model takes into 
account the impact and interaction of equipment breakdown so that haul trucks have to visit a workshop 
located at the surface for scheduled and unplanned maintenance. A truck driver decides after dumping 
whether or not he has to drive to a workshop. The transportation routes are modeled on very detailed, 
microscopic scale. On its route, a haul truck has to interact with other trucks and/or light vehicles. Finally, 
a shift regime is implemented that influences active work hours as well as pausing times within and between 
shifts. With the application of the knowledge discovery concept, mining engineers can get some new or 
additional insights into the model. Besides conveying unknown and interesting patterns, the visual 
investigation is guided by some coarse analysis questions that are described below.  

3.2 Description of Questions 

The main application of the knowledge discovery in simulation data concept is conveying interesting 
patterns and relations between all modeled input and output parameters. Additionally, in this case study the 
configuration of trucks is of peculiar interest. Configuration refers to number and tonnage of the haul trucks. 
Because leasing contracts are rather long term and inflexible, a constellation of trucks that performs well at 
the base level (1100 meters) and remains well if the company decides to go deeper is a very interesting 
question. From that we derive three coarse investigation questions to guide the discussion of results: 

 
1. Are there any interesting patterns and relations in the simulation data that may create additional 

knowledge for the mining engineers? 
2. Which configuration of haul trucks performs consistently well at base level 1100?  
3. How does it hold up against deeper loading levels and how do performance and cost parameters 

alter when depth of loading points increases?  

3.3 Experimental Design 

Adjustable input factors have been split up into two categories, which are decision and noise factors. 
Decision factors are those parameters that are influenceable by the decision-maker, whereas noise factors 
are not. Table 1 shows a list of input factors with their corresponding parameter value range and type level 
of measurement. 

Table 1: Input Factors for the simulation experiments. 

Factor Margin Scale Description 
Decision Factors 

#Trucks 1 – 20 discrete number of haul trucks 
Tonnage [20-50] 

(increments of 10) 
categorical payload of a haul truck in ton  

LoadingPort [1100-2000] 
(increments of 100) 

categorical depth of loading port in meters below surface  

Shift 9 - 11 discrete shift regime with active shift duration in hours 
Noise Factors 

SpeedDown 8 - 14 continuous truck down driving speed in km/h 
LoadingTime 2 - 5 continuous loading time for a haul truck in minutes 
WorkshopRate 10 - 20 continuous probability for unscheduled maintenance 
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Note that in addition to the noise factors margin, we also incorporated a small stochastic deviation for 

each noise factor in a way that we replicated every design point ten times. Furthermore, the depth of the 
loading port stands out from other decision factors in a way that the influence of the loading port depth is 
obviously tremendous and creates different scenarios rather than a variation of a simple input parameter. In 
fact, investigating each loading port scenario as well as the investigation of parameter distribution over 
different depth levels might give some interesting insights in the model. 

With the given number of factors and margins, a full factorial design would not be feasible (Sanchez 
2007). Therefore, we used a design of experiment method called nearly balanced nearly orthogonal 
hypercube design (Vieira et al. 2011). We created one design for each of the two input factor categories. 
Finally, those designs were crossed to investigate the distribution and robustness of the decision factors 
against the noise factors. This resulted in an experiment table with 262,144 design points. Each simulation 
run simulates a period of 31 days, with a warm up period of one day and 30 days for result data collection 
after the warm up. 

The model was implemented in SLX, which is known to be a very fast performing simulator (Henriksen 
1999). Furthermore, the design points have been split to be distributed onto multiple machines. Result data 
was written into flat CSV-files and collected and aggregated through a dedicated MongoDB instance, which 
is a schemaless databases known for its speed, scalability, and flexibility (MongoDB Inc. 2010) and 
therefore fits given requirements for a data generation and analysis environment. Computation of data 
(experiment design and data mining) was performed in MATLAB and visualization as well as review, 
interaction, and discussion of given visualizations were mediated by a 42 inch touch sensitive display which 
can be seen in Figure 3. 

 

 

Figure 3: Simulation Data Analytics Setup, including a 40 inch touch panel display. 

4 DISCUSSION OF RESULTS 

4.1 Analysis Process for Sub-Question 1: Understanding the Model and Important Parameters 

For a quick and coarse overview of the model’s parameters, we performed a correlation analysis for all 
given input and output parameters. Although this does not give insight into effects and relations occurring 
between multiple parameter combinations, it does give some interesting information on how parameters are 
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linked to each other pairwise. Table 2 shows the corresponding correlation matrix. Note that parameter one 
to seven are input parameters, whereas the following ones are output parameters. Therefore, the correlation 
between input parameters seen in the first quadrant is not relevant. In fact, in order to create a good 
experiment design, input parameters should have a minimum correlation. Furthermore, the bottom right 
quadrant in Table 2 marks the correlation between output parameters, the bottom left quadrant marks the 
correlation between input and output parameters. 

Table 2: Correlation matrix of input and output parameters. 

 
 
There are some correlations whereas most of them are obvious like fuel costs and tonnage or the depth 

of the loading port against the average cycle time. Furthermore we can derive that the number of trucks is 
correlated with the daily output of material, but is also highly correlated with the cost per ton of material 
that is transported to the surface.  

If we look at correlations between output parameters, there is a perfect positive correlation between the 
average total waiting time for trucks and the average waiting time while driving down, which is unexpected. 
In order to investigate those parameters in more detail, we created a matrix scatter plot visualization for all 
of the waiting time output parameters, which can be seen in Figure 4. This plot clearly shows the perfect 
correlation between the average waiting time while down driving (AWTDownDriving) and the average total 
waiting time (AverageWaitingTime), but also corresponding histograms show that even the numbers are 
exactly the same. Additionally we see that other waiting time parameters - e.g. waiting time while loading 
(AWTLoadingTime) and dumping (AWTDumoingTime)- are very small and negligible, so it is safe to say 
that waiting times are occurring exclusively while driving down. We validated this effect by adding the 
number of trucks (nTrucks) parameters to the plot and a scaling between trucks in the system and occurring 
waiting times becomes visible as expected.  

After consulting domain experts we determined the daily output (productivity) and the total cost per 
ton as the most important target performance values. In order to automatically group and select given 
simulation runs, we used a clustering algorithm against those two outlined parameters. This means 
simulation runs in the same cluster are very similar regarding the productivity and cost per ton values. 

Input Parameter Output Parameter

nT
ru
ck
s

To
nn
ag
e

Sp
ee
dD
ow
n

Lo
ad
in
gT
im
e

Lo
ad
in
gP
or
t

Sh
ift

W
or
ks
ho
pR
at
e

Pr
od
uc
tiv
ity

Av
er
ag
eC
yc
le
Tim

e

Av
er
ag
eW
ait
in
gT
im
e

AW
TD
ow
nD
riv
in
g

AW
TU
pD
riv
in
g

AW
TL
oa
di
ng
St
at
io
n

AW
TD
um
pi
ng
St
at
io
n

Co
st
Pe
rT
on

To
ta
l K
M
 d
riv
en

Fu
elC
os
tP
er
To
n

To
ta
lC
os
tP
er
To
n

To
ta
lC
os
t

nTrucks

Tonnage 0.00

SpeedDown 0.00 0.01

LoadingTime ‐0.01 ‐0.01 0.00

LoadingPort 0.00 0.00 0.00 0.00

Shift 0.00 0.00 0.00 0.00 0.00

WorkshopRate 0.00 0.00 0.00 0.00 0.00 0.00

Productivity 0.80 0.43 0.09 ‐0.01 ‐0.28 0.14 ‐0.01

AverageCycleTime 0.40 0.12 ‐0.28 0.03 0.86 ‐0.04 0.03 0.09

AverageWaitingTime 0.96 0.06 0.07 0.00 0.18 ‐0.07 ‐0.01 0.73 0.54

AWTDownDriving 0.96 0.06 0.07 ‐0.02 0.17 ‐0.08 ‐0.01 0.74 0.53 1.00

AWTUpDriving 0.24 0.01 ‐0.05 ‐0.07 0.86 ‐0.01 0.00 ‐0.08 0.85 0.39 0.38

AWTLoadingStation 0.38 ‐0.01 0.21 0.56 ‐0.40 ‐0.01 ‐0.01 0.47 ‐0.24 0.27 0.26 ‐0.37

AWTDumpingStation 0.09 ‐0.02 0.03 ‐0.06 ‐0.03 ‐0.10 0.00 0.05 0.00 0.09 0.09 0.02 ‐0.01

CostPerTon 0.97 ‐0.05 0.10 ‐0.03 0.08 0.17 ‐0.01 0.76 0.41 0.93 0.93 0.31 0.33 0.07

Total KM driven 0.33 0.10 ‐0.26 0.03 0.80 ‐0.39 0.03 0.01 0.93 0.49 0.49 0.79 ‐0.23 0.03 0.29

FuelCostPerTon 0.00 0.99 0.00 ‐0.01 0.00 0.00 0.00 0.42 0.12 0.07 0.07 0.01 ‐0.01 ‐0.02 ‐0.05 0.11

TotalCostPerTon 0.30 0.43 ‐0.24 0.03 0.72 ‐0.35 0.03 0.15 0.88 0.47 0.46 0.72 ‐0.21 0.02 0.24 0.94 0.44

TotalCost 0.81 0.52 0.01 0.01 ‐0.05 0.02 0.00 0.94 0.34 0.81 0.81 0.15 0.34 0.06 0.75 0.28 0.53 0.43

In
p
u
t 
P
ar
am

et
e
r

O
u
tp
u
t 
P
ar
am

et
e
r

1612



Feldkamp, Bergmann, Strassburger, and Schulze 
 

Figure 5 shows the result of the clustering. Simulation runs have been grouped into five clusters, which are 
indicated through different colors. 

 

 

Figure 4: Matrix scatter plot of selected parameters. 

Through the given clusters, we get a coarse but helpful grouping of simulation runs. First of all, 
simulation runs in the green cluster are low in productivity but also in cost per ton. The yellow cluster 
contains simulation runs that are nearly similar in productivity but higher in cost per ton. Being dominated 
by the green cluster, these runs can be neglected. Furthermore, the blue cluster dominates the green one in 
productivity and the yellow one both in cost and productivity.  

 

 

Figure 5: Clustering Results. 

1613



Feldkamp, Bergmann, Strassburger, and Schulze 
 
The orange and purple clusters show that there is a relation between productivity and cost per ton, 

which is very interesting. In fact a high material output seems to come along with higher cost per ton of 
material. This is a rather unexpected effect because usually an increase in production bears a degression of 
unit costs, at least up to a certain marginal cost level. In our case, there is a linear scaling between production 
output and unit costs or cost per transported ton to be precise.  

The blue cluster hits the intended maximum target production level quite well and therefore might 
reveal an optimal truck configuration, which will be analyzed in the following chapter. 

4.2 Analysis Process for Sub-Question 2: Haul Truck Configuration 

The next step of our analysis therefore is the investigation of clusters in detail. Here, the investigation 
objective is to find input parameters values that are dominant in a certain cluster and therefore lead to a 
certain cluster allocation. 

To get a quick summary on which input parameters are generally important towards the clustering 
parameters, we created a linear regression function for each of the two clustering parameters productivity 
and cost per ton. These functions describe the contribution of independent parameters to the variance of a 
dependent parameter, respectively the influence of the input parameters on the given output parameter in 
our case. Results of this computation can be reviewed in Table 3.  

Table 3: Linear regression models for the clustering parameters Productivity and Cost per Ton. Parameters 
with high influence are highlighted. 

 
 
By looking at the t-values in Table 3, we see that the number of trucks (nTrucks) and the corresponding 

payload (Tonnage) are the most contributing parameters to the variance of Productivity. For the explanation 
of Cost per Ton, we also have to take the shift length into account. After identifying those parameters as 
most relevant, we investigate their distribution among each distinct cluster in a radar plot, which can be 
seen in Figure 6.  

The plots in this figure mark the median and quartiles for each parameter. In between the quartiles lay 
50% of all observations or simulation runs to be precise. So if quartiles lay close together, the corresponding 
parameter value is dominant in the given cluster. 

From the blue cluster, which fits our target criteria best, we can derive that a shift regime with a high 
shift length, and medium number of trucks and tonnage is dominant and therefore leads to this cluster 
allocation. Furthermore, we can validate our assumption that the shift length has a stronger effect on the 
cost per ton than on the actual production output by looking at the radar plot for the purple cluster. This 
cluster has maximum productivity with a high number of trucks and maximum tonnage, but a shift regime 
with a medium (10 hours) shift length. Figure 7 illustrates this effect even more.  

Linear Regression Model for Productivity Linear Regression Model for Cost per Ton

Estimate SE tStat tStat% pValue Estimate SE tStat tStat% pValue

(Intercept) ‐7660.36 58.304 ‐131.39 0 1.788 0.0024 758.21 0

nTrucks 313.77 0.673 466.51 54% 0 0.015 0.0000 558.05 24% 0

Tonnage 98.97 0.386 256.19 30% 0 0.013 0.0000 812.00 35% 0

SpeedDown 96.31 2.137 45.07 5% 0 ‐0.028 0.0001 ‐324.50 14% 0

LoadingTime ‐8.08 4.275 ‐1.89 0% 0 0.009 0.0002 52.85 2% 0

Shift 372.47 4.542 82.00 10% 0 ‐0.095 0.0002 ‐518.15 22% 0

WorkshopRate ‐8.36 1.173 ‐7.13 1% 0 0.002 0.0000 48.42 2% 0
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Figure 6: Radarplots of the relevant input parameters and the clustering parameters nTrucks and 
CostPerTon seperated by one for each cluster. 

 

 

Figure 7: 3D Scatterplot of truck configurations (number of trucks and tonnage) against cost per ton. 

Here, we see the truck configuration (number and tonnage of trucks) against the cost per ton plotted 
over all experiments. We also inserted a regression plane that interpolates the surface between existing data 
points, respectively simulation runs. Note that in this figure, the color of the plane marks a certain cost level 
and not a cluster allocation. We can see that the average total cost per ton increases with number of trucks 
and higher tonnage, but still experiments are distributed with a varying range of cost per ton valued for each 
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given nTrucks/tonnage combination. If we investigate those datasets in detail, we see that the reason for 
this effect is that the shift length value differs among those simulation runs. 

To finally answer the question for an optimal truck configuration for our base level loading point, we 
investigated the parameter values of our target cluster (the blue one) in detail through boxplots and 
histogram analysis and found out that in fact the dominating truck configuration in this cluster is between 
10 and 16 trucks with 30t payload and a 11h shift regime. Conducting an new set of experiments for 
validating and optimizing those numbers is advisable when plans for reopening the mine become more 
specific. 

4.3 Analysis Process for Sub-Question 3: Investigating Deeper Loading Ports 

Part of our investigation is also the distribution of output parameters against the depth of the loading port, 
and also an investigation of how a good base level truck configuration performs if decision makers really 
decide to exploit deeper loading levels.  

 

 

Figure 8: Target truck configuration against different Loading Levels. 

Figure 8 shows exemplarily the shifting in productivity and cost per ton over a selection of loading 
levels. The depth of the loading port narrows the maximum reachable productivity regardless of truck 
configuration, and also a doubling of average total cost per ton from base level loading port to the deepest 
loading port on 2000 meters below surface. In order to investigate how our suggested truck configuration 
performs on different loading levels, we marked corresponding experiments in orange color. At loading 
port 1100 and 1200, this configuration hits the maximum target productivity. On deeper loading ports, we 
can simply add more trucks of the same tonnage to our portfolio to reach the target productivity (blue color). 
Note that a homogenous truck pool is the preferred solution for decision makers in this case study. From 
loading ports deeper than 1800 meters below surface, even the maximum number of 30t trucks is not able 
to reach the productivity goal, so bigger trucks with a heavier payload become necessary with a drastically 
increase in cost per ton.  

5 SUMMARY AND FUTURE WORK 

We successfully showed how to apply a knowledge discovery process onto a real world simulation model. 
General knowledge was created regarding waiting times of haul trucks and how cost per ton and 
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productivity parameters are related to each other. Interestingly, the length of the shift regime does have a 
greater impact on the cost per ton progression than it does have on the output quantity of material. In terms 
of haul truck configuration, big trucks with maximum payload do not provide a good solution at the base 
level loading port, because they are dominated in cost per ton by lighter trucks. We recommend a 30t 
payload truck portfolio and showed how this configuration remains stable on deeper loading ports by simply 
adding more trucks of the same kind. Nevertheless, very deep loading levels bear a drastic increase of costs 
because target productivity can solely be reached with costly 50t payload trucks. Therefore it is questionable 
if exploiting loading levels deeper than 1800m below surface is profitable at all and is deepened on an 
appropriate gold price that needs to remain stable for a decent amount of time. 

The knowledge created with our method guidelines a certain path, so future work should perform a 
more detailed simulation based optimization of our findings when plans for re-opening the mine are 
enacted. Regarding the outlined knowledge discovery process, we currently investigate a broader portfolio 
of suitable data mining algorithms and also we continue to further automate the knowledge discovery 
process to make it more end user friendly. 
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