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ABSTRACT 

This paper proposes a multi-resolution co-design modeling approach where hardware and software parts 

of systems are loosely represented and composable. This approach is shown for Network-on-Chips (NoC) 

where the network software directs communications among switches, links, and interfaces. The 

complexity of such systems can be better tamed by modeling frameworks for which multi-resolution 

model abstractions along system’s hardware and software dimensions are separately specified. Such 

frameworks build on hierarchical, component-based modeling principles and methods. Hybrid model 

composition establishes relationships across models while multi-resolution models can be better specified 

by separately accounting for multiple levels of hardware and software abstractions. For Network-on-Chip, 

the abstraction levels are interface, capacity, flit, and hardware with resolutions defined in terms of object, 

temporal, process, and spatial aspects. The proposed modeling approach benefits from co-design and 

multi-resolution modeling in order to better manage rich dynamics of hardware and software parts of 

systems and their network-based interactions.  

1 INTRODUCTION 

Multi-Resolution Modeling (MRM) aims at describing individual parts of a dynamical system at different 

resolutions with support for composing them to represent also the whole system at different resolutions. 

Model resolution can be in terms of time, space, process, and object (Davis and Bigelow 1998). Models 

can vary in terms of their time granularity, spatial sizes, process mechanisms, and object states and 

functions. These can lead to a multitude of hierarchical model components with varying relationships. 

MRM may be practiced using domain-neutral specification hierarchy (Zeigler, Praehofer and Kim 2000). 

The levels within the system hierarchy establish different model type resolutions. MRM requires domain-

specific abstraction levels. Target abstractions such as Interface, Capacity, Flit, and Hardware for 

Network-on-Chip systems can be cast into one or more levels of a system specification hierarchy. These 

NoC abstraction levels are derived from domain experts and targeted to satisfy certain needs. Within the 

system specification hierarchy, modelers can begin developing a high-level model of a system (e.g., for 

policy analysis) and gradually increasing the model’s resolution toward an actual system (e.g., specifying 

blueprints for implementing the system).  

 As software continues to have a greater role in system complexity, the hardware/software co-design 

paradigm that is used in embedded systems is becoming a necessity for systems such as Network-on-

Chips. In this paradigm, designers embrace separating HW and SW development early on. This is because 

regardless of the actual system we are working with, the requirements of the software and hardware pose 

design constraints on one another. Co-simulation can help tackle some design requirements and solutions 

(Liem et al. 1997). However, co-design must deal with the increasing heterogeneity, complexity, and 

integration issues of HW and SW in electronic systems (Teich 2012).  

 Network-on-Chip as an integrated hardware-software system can handle the increasing complexity of 

the communication subsystems of System-on-Chips. Some key capabilities include reduced messaging 

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 1499



Gholami and Sarjoughian 

 

overhead and packet-based communication using configurable network topology. Like other networked 

system, NoC can be modeled at multiple resolutions using object, temporal, process, and spatial 

abstractions (Davis and Bigelow 1998). In NoC, individual operations can have temporal resolution. NoC 

components have designated locations and dimensions (spatial resolution). Network processes such as 

routing, flow control, and arbitration define process resolution. Finally, NoCs with different number of 

objects and levels of hierarchy can be specified (object resolution).  

New NoC designs are moving toward higher complexity (Lis et al. 2011), 3D structures (Pavlidis and 

Friedman 2007), real-time support (Bolotin et al. 2004, Wiklund and Liu 2003), energy efficiency (Hu 

and Marculescu 2004) and cache coherence (Martin, Hill and Sorin 2012). This calls for more 

sophisticated methods for modeling, simulating, testing, and verifying the NoC before and after 

implementation. Many modeling/simulation frameworks have been developed by the community to 

address these needs. However, few consider the software and hardware components separately; instead, 

NoC is viewed as a single system, ignoring its hybrid nature.  

 Our goal is to provide a new modeling framework for NoC where the static and dynamic aspects of 

NoC are specified using both multi-resolution modeling and co-design. This framework considers the 

NoC models at different resolution levels appropriate for various stages of SW/HW system co-design. 

According to (Dally and Towles 2004), NoCs are defined at four abstraction levels: 1) Interface, 2) 

Capacity, 3) Flit, and 4) Hardware. Although the abstraction levels have distinct hardware and modeling 

resolutions, it is useful to cast them within a multi-resolution modeling framework. From a modeling 

vantage point, NoCs can be described at multiple levels of abstraction. One approach is known as system 

modeling hierarchy (Zeigler, Praehofer and Kim 2000). A system can be specified from highest level to 

lowest level of abstraction: 1) I/O Frame, 2) I/O Relation, 3) I/O Function, 3) Iterative I/O Specification, 

5) I/O System Specification, 6) Coupled System, and 7) Coupled Network of Systems (Zeigler, Praehofer 

and Kim 2000). The I/O Frame affords specifying the least knowledge and the Coupled Network of 

Systems affords specifying the most knowledge. In this modeling hierarchy, an abstraction with more 

knowledge incorporates the abstractions that have less knowledge. We elaborate on abstraction levels 5 

and 6 in this paper. We have network software dedicated to NoC and application software dedicated to 

System-on-Chip.  We consider simulation as a part of co-design which enables designers to synthesize the 

system at some desired levels of resolution.   

 

 

Figure 1: MRM-based HW/SW Co-Design Methodology. 

2 BACKGROUND 

This section provides an introduction to Multi-Resolution Modeling (MRM), Hw/Sw Co-design, and 

NoCs. We highlight some existing works for NoC design/simulation and the key roles MRM and Co-

Design can play in meeting current and future NoC design challenges. In (Marculescu et al. 2009), the 
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authors identify five major categories of open research and future challenges for NoC design and 

designers: 1) application specification and modeling, 2) application optimization for communication, 3) 

communication architecture synthesis and optimization, 4) communication architecture analysis and 

evaluation, and 5) NoC design validation. In this research, we focus on the first, fourth, and fifth 

categories. In the first category, the challenge is application traffic patterns and bandwidth requirements. 

In the fourth category, the aim is identifying congestion points, hot spots, and performance evaluation. In 

the fifth category, the aim is testing and validating the design (Marculescu et al. 2009).  

2.1 Multi-resolution Modeling 

Multi-resolution modeling (Davis and Bigelow 1998) is used in various field of research such as graphics 

(Garland 1999) and defense systems (Davis and Bigelow 1998). The challenges associated with MRM 

have been recognized for many years and application domains. MRM in the context of NoC modeling is 

defined as a set of models, each focusing on serving a particular purpose. We use the NoC model 

resolutions defined in (Dally and Towles 2004). The resolutions are defined from lower to higher 

resolutions as Interface, Capacity, Flit and Hardware levels (see Figure 1). We can observe that lower-

level resolution models are suited for verification using model checking while higher-level resolution 

models are suited for validation using simulation. Thus, verification and simulation offer unique, 

complementary capabilities for designing NoC systems.  

 One important point to note is that no MRM frameworks have been proposed for NoC and System-

on-Chips (Berekovic, Stolberg and Pirsch 2002). Without such a framework, it is difficult to classify what 

could be highest or lowest resolution models (Catania et al. 2015). While one aspect of resolution (such as 

object, process, time, or space) of a model may be increasing, another aspect may be declining (Davis and 

Bigelow 1998). The power of MRM lies in defining levels of model abstractions and more significantly 

how models that have different levels of resolution can be related. We cast the NoC’s levels of abstraction 

in terms of MRM with SW/HW co-design consideration.   

2.2 Hardware-Software Co-design 

Hardware-software co-design process is considered within our proposed NoC modeling framework. Co-

design is needed as in embedded systems (Chiodo et al. 1994). Figure 1 depicts a high-level process flow 

of the NoC design approach. Phases colored in light grey are those applied to the NoC system as a whole. 

These phases include the requirement specification, partitioning, modeling, simulation, and emulation. 

After the partitioning phase, NoC design is carried out in two major branches (the hardware and the 

software). The hardware is further divided into chip hardware and network software. The three 

components (hardware, network software, and application software) are coordinated and tested against 

one another using co-simulation. Multi-Resolution Modeling (MRM) is applied to the dark grey blocks. 

Hardware and software models are devised at various resolutions and co-simulated for the purpose of 

validation or making design decisions. In our integrated design approach, we refer to the software for the 

Processing Elements as application software. As illustrated in Figure 1, the SW Model is not used 

anywhere but for co-simulation to ensure the hardware is optimized for the application software it is 

supposed to support. When a tangible model of hardware is reached, it is converted to real hardware 

specification and validated against sample application software (if exists) via emulation. Via emulation 

one can ensure the designed NoC possesses the desirable properties. After final model refinements, the 

hardware is synthesized into a target system.  

 NoC design and simulation without considering the software is useful but incomplete. Many 

modeling and simulation frameworks such as Booksim (Dally and Towles 2004), Noxim (Catania et al. 

2015), DEVS-NoC (Gholami and Sarjoughian 2012), and NoC-Sim (Jantsch 2006) do not provide models 

for application software. Instead, designers develop abstractions within the confines of the modeling 

framework they are working with.  This makes the design (and the analysis) unnecessarily complicated – 
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i.e., software and hardware model abstractions are not systematically separated. Without considering the 

network and application software, design of the hardware cannot be optimized.  

2.3 Network-on-Chip Modeling Metrics 

The effectiveness of NoC simulation models should be evaluated via metrics. We have provided a set of 

these in Table 1. Although there are many metrics for NoC framework evaluation (such as for verification 

or GUI), we have limited ourselves only to performance and modeling capabilities of the framework. 

Performance metrics evaluate the simulation framework based on its support for measuring the 

throughput, utilization, power consumption, flit latency, application run-time, area requirements of the 

chip, and the frequency required for the application. On the modeling metrics, we seek to measure the 

capabilities of the framework for levels of NoC abstractions. The levels of abstraction supported by the 

framework specify NoC model resolutions. Also, some frameworks have support for more NoC elements, 

which lead to higher resolution models. Other metrics are the levels of support for multi-resolution 

modeling and co-design. 

Table 1: NoC modeling metrics. 

M
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 Area Area requirements of the current design 

Frequency Minimum frequency to satisfy the application needs 

Latency Average latency of delivering flits 

Power/energy Average power usage w.r.t frequency  

Throughput Transfer capability in the network 

Utilization Utilization of the network capability 

M
o
d

el
in

g
 

F
ea

tu
re

s Modeling elements Structural (HW Components) and behavioral (Network SW ) 

Level of abstraction Supported levels of abstraction in modeling NoC components 

MRM Environment support multi-resolution modeling and simulation 

SW/HW co-design Environment capability for hybrid modeling and simulation 
  

 Booksim (Dally and Towles 2004) framework is a flit-level simulation engine with support for 

throughput, latency, and utilization measurement. However,  Booksim 2.0 lacks capabilities such as area 

measurement or power consumption. From modeling point of view, Booksim provides a succinct textual 

format for specifying the NoC, experiments, and the traffic pattern. The elements it supports are at the 

flit-level (internal switch components). However, it does not take into account multi-resolution modeling, 

co-design, and application software. Similar to Booksim is Noxim (Catania et al. 2015). It shares the 

same capabilities and limitation as in Booksim. 

 Wormsim (CMU 2005) is a cycle accurate simulator developed in C++. This simulator supports a 

wide range of topologies, routing algorithms, and switching policies while measuring basic performance 

characteristics of the network. The traffic generations can be also trace-based in addition to synthetic. 

Trace-based traffic gives the modeler the option of resembling the real application better than a synthetic 

workload. This simulator can be coupled with Orion (Kahng et al. 2009) for NoC power modeling. This 

simulator also lacks multi-resolution modeling, co-design, and application software modeling.  

 TOPAZ simulator (Abad et al. 2012) supports configuration parameters for various components of 

the network such as router, topology, and traffic. One can integrate this simulator with full-system 

simulation tools such as GEM5 (Binkert et al. 2011) for holistic performance evaluation and Orion 

(Kahng et al. 2009) for power analysis. TOPAZ does not support application software modeling although 

by integrating with full-system simulators it can.  

 Finally, DART (Wang, Jerger and Steffan 2011) simulator is unique among the ones introduced in 

this section for its support for hardware (FPGA-based) execution. This capability substantially reduces 

simulation runtime compared to other simulators (such as Booksim, NoC-DEVS, and GEM5). The DART 
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simulator specifies the NoC in flit-level as well and provides accurate performance measures. However, it 

has limited or no support for hybrid multi-resolution modeling.  

3 MRM-BASED CO-DESIGN FOR NOC 

Depending on the resolution (object, time, space, and process) at which NoC is modeled (structure and 

behavior), various components of NoC should be included in the model. Prototypical NoC component 

belongs to one of three categories: Switch (SW), Link, and Network Interface (NI). NoC also must have 

network software components required for managing data communication (see Section 3.1). We usually 

add a fourth component known as processing element (PE). This is commonly used in developing 

System-on-a-Chip (SoC) models. Adding the processing element paves the way for adding application 

software where task execution, scheduling, and communication are necessary. Thinking of NoC as a 4-

component system (PE, SW, NI, and Link) is considered a low-resolution view of the system from the 

object, process, and space resolution points of view. Higher resolution modeling of NoC reveals a number 

of sub-components in each of these components, new processes (network software), and spatial 

information, which the 4-component view does not provide. In flit-level abstraction, object resolution is 

increased by decomposing the switch into input ports, output ports, crossbar, switches, routers, arbiters, 

and allocators. Also, at this abstraction level, the NI is decomposed into packetizer/depacketizer 

components. The process resolution is higher as new processes (such as flow control, routing, and 

allocation) are added to the model. For the hardware, in addition to adding new components and processes 

for them (such as error checking modules and link reconfiguration models for error handling), spatial 

information is added so that heat generation and area requirements can also be calculated. 

3.1 Multi-resolution Co-design Modeling 

Our approach toward multi-resolution network-on-chip design leverages hardware/software co-design. In 

contrast, existing MRM concepts and methods do not divide a system in terms of software and hardware.. 

Similarly, co-design methodology does not consider MRM.  It is concerned with gradual progression 

from low-resolution to high-resolution models with much as accuracy and precision as needed can be 

developed. Co-design is an established process in which software, hardware, and their integration are 

incrementally and iteratively specified, modeled, and implemented. A modeler cannot know the software 

or hardware requirements of the system before experimenting using co-simulation. Also, at early stages of 

system design, neither the hardware nor the software can be specified or implemented in detail. Therefore, 

low-resolution models of software and hardware are co-simulated and experimented with in order to make 

early-stage design decisions. Gradually, multiple models at different resolutions are developed which 

contribute to the making of the final product.  

 In order to develop multi-resolution model components of NoC, we ask two questions: 1) what can be 

the resolution of a component? and 2) what relationships model components at different resolutions can 

have? Co-design divides a system into software and hardware with mapping. What follows are answers to 

the two questions for the major components of the system (hardware and software).  

Moving from Interface, to Capacity, to Flit, and to Hardware abstractions leads to more closely 

modeling physical NoC systems. Resolution for the hardware and network software is defined based on 

the abstraction levels introduced in (Dally and Towles 2004). Table 2 categorizes NoC abstraction levels 

in terms of accuracy and precision resolution levels. As defined, the Interface level model has the lowest 

level of resolution; its components are specified as objects without having Temporal, Process, and Spatial 

abstractions. Only a set of objects exchanging data in an ordered discipline. We do not consider this order 

as temporal specification because of its vast difference with temporal specifications in other hardware 

abstractions of NoC. The capacity level introduces timing for delivering messages between two nodes and 

higher resolution objects. The flit level extends the capacity level by introducing processes (for handling 

flits) and more detailed model of time and objects. Finally, the hardware level, in addition to extending all 

models with higher resolution concepts, adds chip spatial information to the specification. 
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Table 2: NoC abstraction levels with accuracy/precision resolutions. 

 NoC Abstraction Levels 

Accuracy/ Precision → 

Resolutions ↓ 
Interface Capacity Flit Hardware 

Object     

Temporal     

Process     

Spatial     
  

  

 Since the Interface level is too high level of a model, we model NoC hardware using the other three 

(capacity, flit, and hardware levels). Figure 2 (left) depicts a 2-node NoC at the Capacity level. Processing 

elements (PEs) communicate via packets, which are routed in the network by the switches and the 

BW/FW (backward/forward) links. Figure 2 (middle) depicts the NoC switch at flit-level abstraction. A 

comparison between capacity and flit levels shows their differences. At the Capacity abstraction, adding 

new components including Packetizer, Depacketizer, Crossbar, and Input ports increases object 

resolution. The Capacity abstraction has temporal resolution. Switches can exchange flits (every packet 

contains several flits) in accordance to clock cycles. Furthermore, allocators, routers, and flow controls 

(i.e., process resolution) are supported. The Router, VC Allocator, and SW Allocators represent the 

network software. Finally, in Figure 2 (right), the input and output ports of a single switch are modeled at 

hardware level. This example clearly shows the amount of details which go inside each level of NoC 

abstraction.  

 

Figure 2: NoC hardware in three resolution levels. 

 Figure 2 provides not only the view of hardware parts of NoC (switch component in particular) but 

the network software as well. A switch network software at the capacity level controls the entire operation 

of the switch (receiving, scheduling, routing of flits and flow control), while the network software at the 

flit level switch is broken up into many pieces for switch allocation, virtual channel allocation, routing, 

flow control, etc. The network software would be broken even further at the hardware level.  

 Mutli-resolution modeling can also lend itself to developing application software. Application 

software can be modeled as a set of distributed tasks, which transmit random messages, set of tasks with 

pre-defined communication volume, or a set of tasks with additional specifications on the execution 

times, threads, dependencies, and function calls (Butler 1994). From process point of view, the software 

tasks are equipped with dependency, execution times, and probabilistic method calls as we model the 
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software in higher-resolution. For each abstraction level, a short description is provided along with the 

specification of resolution in terms of temporal, process, and object resolutions. Network software has no 

spatial resolution. 

 We specified resolution for software and hardware in the previous two paragraphs. Now, we should 

take a bird’s eye view at the system. As mentioned, various levels of system model may be considered 

high-resolution with respect to some aspects of system resolution (time, space, process, and object) and 

low on some others. This is also the case in multi-resolution NoC modeling. While the software is at its 

highest resolution (most accurate) for the Interface-level model, the hardware is at its lowest resolution 

with respect to object and process resolution components. Similarly, the highest resolution of hardware 

(the bottom row in Table 2) in the hardware abstraction level has the least detailed software. The highest 

resolution software contains tasks, dependencies, communication volume, threads, and methods. Figure 3 

visualizes high-resolution software executing on capacity-level hardware modules (inspired from 

(Salminen et al. 2009)). At the application level, the software is defined in detail. The tasks and threads 

are mapped to low-resolution hardware modules (PEs), and then the simulation is carried out. The 

application level software does not exist in flit-level or hardware-level resolutions (see below).  

 Multi-resolution modeling can instrumental in developing NoC and SoC models. Moving from one 

abstraction level to another (e.g., Capacity to Flit) can be systematic using accuracy/precision resolution 

levels and system hierarchy levels. Different resolution levels can be used to categorize abstraction levels 

as well as relating these levels to one another. Without having established relationships between the 

abstraction levels, multi-resolution modeling is vague. For example, Flit NoC abstraction at the I/O 

System level (level 5 in system hierarchy) can be related to the Object and Temporal resolution levels. 

The Flit NoC abstraction is defined at the Coupled System level (level 6 in system hierarchy) and Process 

resolution level (see Figure 2). Comparing models of NoC hardware at different resolutions reveals that 

moving toward higher-resolution converts atomic models into coupled ones and adds new processes in 

accordance with the new capabilities needed. For example, an atomic model of the switch at Capacity 

level is converted to a coupled model at Flit level (Figure 2). The switch model at the flit level possesses 

subcomponents inside the switch for input port, output port, crossbar, router, and allocators. Along with 

these new components comes the urge to implement new processes. A router in addition to being a new 

object, which increases the object resolution of the model, also requires new processes for the task it is 

supposed to execute. These relationships are useful for designing, validating, and testing new models 

relative to one another and ultimately to actual NoCs. The network software also changes from one 

resolution to another. The important point to note here is that network software resolution is always 

synchronized with the resolution of hardware. The relationship between hardware models (along with the 

network software) at different resolutions is defined via Object and Process resolution components. As 

explained above, higher resolution hardware model decomposes atomic models into coupled ones and 

with the new components comes the need for new processes. This also holds true for network software.  

 The application software models define relationships based on Object and Process resolutions as well. 

However, it might not be in sync with the hardware resolution (high-level hardware with low resolution 

application software). High-resolution application software can be modeled with low-resolution (Capacity 

level) as shown in Figure 3. The purpose of modeling the application software is to identify accurate 

benchmark packet traffic among Processing Elements. As a result, the network software is not used with 

high-resolution hardware model (Flit level). A good approximation of application software traffic) 

replaces the application software and then the focus of the simulation shifts to high-resolution NoC 

hardware and software modeling. For this purpose, a transducer model records the packet communication 

between processing elements. This record is then used in the flit-level hardware as application software 

model. The record can be used as only feed-forward (the software is reduced to tasks sending and 

receiving flits using the record) or a feedback-enabled software (tasks are still data sensitive, 

dependencies exist, and the record captures all of them). One way or another, there is no high-resolution 

software application anymore. This record is used for generating packets for NoC. The flit-level model 
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places more emphasis on the hardware while the capacity-level model places more emphasis on the 

application software. The NoC hardware model takes this even further by excluding data from flits. The 

communication between components at the flit-level are recorded and is used in the simulation using 

feedbacks. Similarly, no high-resolution software aspect such as the data in the flits, end-to-end 

communication, and flit sequence number exists in this stage. 

 

 

Figure 3: High resolution software at capacity level hardware (low-resolution). 

4  NOC MODELS 

As discussed in Section 2.2, NoC contains two types of software: application software running on the 

hardware platform and Network Software as a collection of small pieces of software which control the 

network aspect of NoC. This Network Software has to deal with new problems as NoC moves toward 

more general software, size increase, energy-awareness, cache coherency, etc. Therefore, NoC cannot be 

viewed as pure hardware anymore. Software-defined NoCs resemble hybrid systems in which the 

software plays the crucial role of controlling the hardware. In this light, the NoC is a hybrid system with a 

traditional hardware and network software modules which control the most dynamic aspects of hardware 

relative to application software. As shown in Figure 1, simulation plays an important role at the latter 

stages of NoC design where high-resolution hardware sketches are tested against network and application 

software. It is possible to capture the hybrid nature of NoC system in one formalism too. In this work we 

have modeled the NoC in a single formalism and simulated them in one environment. However, the HW 

and network SW models are still inherently different due to the hybrid nature of NoC.  

 Now the question would be which resolutions of (network and application) software and hardware 

can be used with one another. In order to answer this question, we consider link, a simple component of 

NoC and model it’s hardware at three resolution levels, and then show hybrid multi-resolution  models 

can be defined given different abstractions for the network and application software.  The resolution of 

hardware, network software, and application software are defined as follows. Hardware resolutions are 

stated with the level of abstraction used for modeling it (interface, capacity, flit, and hardware levels). As 

for application software, we model it at three abstraction levels (i.e., random, distributed, and 

probabilistic). Network software can be found in various NoC components such as processing elements 

(cache coherence algorithms), switches (routing/flow control) and links (error checking and 

retransmission). We use the same hardware resolution levels for network software due to its closeness to 

hardware.  

 For the model of the link provided in Section 4.1, we do not consider the link as only a wire which 

transfers electric charge; instead, based on the resolution the link is modeled at it may contain 

complementary logic from upstream and downstream nodes for retransmission, error checking, channel 

reconfiguration, error counter, and fail-stop.  
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4.1 Multiresolution Link HW/Network SW Models 

Figure 4 depicts a low-resolution model of the link with the data (packets) that it can handle. A piece of 

network software exists for the Fail-stop module which is in charge of disabling the channel if need be. 

The network software inside the Fail-stop module is simple since the model is at the capacity level. For 

testing purposes, the role of this module might be to use a distribution function to inject errors. This way 

the system can be tested under erroneous conditions. The Fail-stop module communicates with the 

hardware at the channel entry point. That is where the software signal interacts with the hardware 

component and disables the transmission operation. 

 

Figure 4: Low-resolution link model with the type of data it communicates. 

 The Fail-stop consists of a hardware logic which is governed by a network software. However, there 

are components in NoC that are purely hardware, such as buffers. For the low-resolution model of the 

link, channel is pure hardware while the Fail-safe module is both hardware and network software. The 

network software will be modeled as the behavior of the hardware component. The hardware component 

is defined by specifying the state space and input/output ports. The rest of the specification (how inputs 

are handled, how outputs are generated, how the state changes, etc.) is the network software which 

specifies how the hardware behaves. At each of the resolution levels (described below) the hardware and 

software components of the link are extended. 

𝑆 = {𝐴𝑐𝑖𝑡𝑣𝑒, 𝐼𝑑𝑙𝑒}⏞        
𝑃ℎ𝑎𝑠𝑒

× 𝜎⏞
𝑠𝑖𝑔𝑚𝑎

× {0,1}16⏞    
𝑃ℎ𝑖𝑡

 
(1) 

𝐴 = {𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑃ℎ𝑖𝑡} (2) 

𝛿𝑒𝑥𝑡(𝐼𝑑𝑙𝑒, 𝜎, 𝑃ℎ𝑖𝑡, 𝑒, (𝑖𝑛, 𝑥)) = (𝐴𝑐𝑡𝑖𝑣𝑒, 𝛿𝑡, 𝑥) (3) 

𝛿𝑖𝑛𝑡(𝐴𝑐𝑡𝑖𝑣𝑒, 𝜎, 𝑃ℎ𝑖𝑡) = (𝐼𝑑𝑙𝑒,∞, ∅) (4) 

𝜆(𝐴𝑐𝑡𝑖𝑣𝑒, 𝜎, 𝑃ℎ𝑖𝑡) = (𝑜𝑢𝑡, 𝑃ℎ𝑖𝑡) (5) 

𝜓(𝐴𝑐𝑡𝑖𝑣𝑒, 𝜎, 𝑃ℎ𝑖𝑡) = {𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑃ℎ𝑖𝑡} (6) 

𝐼𝑛𝑃𝑜𝑟𝑡𝑠 = {𝑖𝑛}, 𝑂𝑢𝑡𝑃𝑜𝑟𝑡𝑠 = {𝑜𝑢𝑡} (7) 

𝑃𝑝 = 1 − (1 − 𝑃𝑒)
𝑁 (8) 

Fail-stop Signal = {
0 (𝑒𝑛𝑎𝑏𝑙𝑒)     𝑃𝑝 < 10

−12 

1 (𝑑𝑖𝑠𝑎𝑏𝑙𝑒)    𝑃𝑝 ≥ 10
−12  (9) 

 
 

 As a showcase of a simplified capacity-level model of the link, we modeled the channel using ALRT-

DEVS (Sarjoughian and Gholami 2015) in equations 1-7. The model is defined to have a state set (𝑆), 

input/output ports, external transition (𝛿𝑒𝑥𝑡), internal transition (𝛿𝑖𝑛𝑡), and output functions (𝜆), actions set 

(𝐴), and activity mapping (𝜓). As for the network software operating on the Fail-stop module, we used 

the concept of BER (bit error rate) (Proakis and Salehi 2007). The software disables the channel if the 

actual frequency of channel malfunction (bit error) is greater than the packet error ratio (PER) which is 

characterized by 𝑃𝑝. The Fail-stop module can be developed within a DEVS model and thus simplify its 

composition with the channel model.   

 The link model is modeled at higher resolution in Figure 5 (left) by increasing its details in the object 

and process resolution dimensions. The hardware is extended by flit buffer and additional logic for 

retransmission and error checking. The network software is also extended with error checking algorithm 

and retransmission decision making module. The retransmission logic, upon receiving an error signal 

from Error Checking Module, reconfigures the MUX to pass the buffer data through and enables the 

buffer to transmit the previously stored data. This way, the data sent in the previous cycle and rejected by 

the error checking module is retransmitted.  In addition to the extensions made to hardware and software, 

the data which is communicated is changed to flit which is the breakdown of a packet into 8 chunks of 

smaller data. The higher resolution for the packet and flit structures are shown in Figure 5 (bottom).  

 Finally, in Figure 5 (right), we have modeled the link at higher resolution. The hardware is extended 

with additional necessary modules for wires, error counter module, and channel reconfiguration module. 
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Consequently, the network software is also extended for channel reconfiguration management. The Fail-

stop module works based on an error counter module. If the number of errors for the channel becomes 

greater than acceptable, the channel reconfiguration module orders the fail-stop module to block the 

channel. In bit reconfiguration scenario, the channel is reconfigured to change the data wires due to bit 

errors in one of them (Dally and Towles 2004). Thus, the channel is reconfigured to use less or a different 

set of wires for data communication. In high-resolution, the communication unit of data is still the flit.  
 

 

Figure 5: Link models at the Flit and hardware abstraction levels.  

4.2 SW/HW NoC Models 

In this section, we devise co-design of NoC in three parts: 1) hardware, 2) network software, and 3) 

application software. The reader must keep in mind that modeling application software is considered as 

future work. This helps in describing our approach to NoC multi-resolution co-design modeling.  

 At early stages of design, the model of the hardware (and consequently the network software) are low 

resolution. For the link model, this is shown in Figure 4 where the link consists of a channel and a simple 

piece of software in charge of fail-stop module. This is only modeling the link, however, once applied to 

the switch and network interface components, together they provide us with the capacity-level model of 

NoC. The model of NoC at this level incorporates the most detailed application software (probabilistic 

model) on Capacity-level NoC. The reason for this choice is that at early stages of design, the designers 

need to verify whether their high-level sketches of the hardware and network software are capable of 

handling the load imposed by the application software. Therefore, the most accurate model of the 

software is applied and the results analyzed in case changes in the design are necessary.  

Furthermore, for the flit-level model of NoC (for which the link is depicted in Figure 5-left), the mid-

resolution software (distributed tasks) are used. At this stage, the designer focuses more on the hardware 

(such as buffers and virtual channels) and network software (such as routing flow control). In order to test 

the design, they require a model of the software with a wide variety of communication patters. For this, 

the distributed model is most suitable since it can be configured to imitate a large variety of software 

applications with various end-to-end communication requirements. This enables designers to verify their 

design using various scenarios which can be easily produced by the distributed model of the software 

such as real-time/quality of service constraints and bandwidth requirements. The reason that probabilistic 

model is inappropriate for this level is reconfiguration inflexibility. The probabilistic model is devised to 

present a specific (or at least a limited number of) software applications. However, at this stage, 

configurability and flexibility of software for producing various sorts of traffic and scenarios is desirable.  
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Finally, at hardware level (presented in Figure 5-right), the circuit is designed at highest resolution. 

Here, the focus is on testing individual components (pure hardware and network software) to ensure 

correct behavior under various scenarios. For example, the model of the link in Figure 5-right, can be 

tested under severe electromagnetic interference to verify retransmission and error checking modules. For 

this form of testing/simulation, one does not need an actual software to test the component. The only 

thing needed is random flits (which their data is entirely random) travelling through the channel under 

electromagnetic interference. Therefore, the hardware-level NoC model uses the random model of 

application software as the most appropriate one for verification purposes.  

5 CONCLUSION 

In this paper we described a method for NoC modeling using Multi-Resolution Modeling and co-design 

in order to help tackle some of the challenges facing Network-on-Chip system design. In this method, 

NoC hardware and software can be designed in various levels of resolution and later simulated for 

verification purposes. We described the role of multi-resolution modeling in SW/HW co-design. We 

observed the domain-specific NoC abstraction levels can be succinctly defined in terms of the domain-

neutral I/O System and I/O Coupled System hierarchy levels. We used the proposed framework to 

develop models for the NoC Link component and described how various resolutions of hardware and 

software can be coupled for simulation. In the MRM Co-Design framework, we observed that the existing 

NoC abstractions need to be extended to handle application software and network software to support 

multiple levels of resolution. Later all these can be used for verification purposes. Future research 

includes devising a specific NoC application software in various resolutions and couple it with our 

existing models of NoC system in different resolutions. This can be extended to synthesizing the 

hardware model on a FPGA and running the application software on it. 
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