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ABSTRACT 

With the trend towards energy efficient buildings that diminish fossil fuel usage and carbon emissions, 

achieving high energy performance became a necessity. Allowing occupants to be actively involved 

during the design and operation phases of buildings is vital in fulfilling this goal without jeopardizing 

occupant satisfaction. Although different occupant behavior types were considered in prior research 

efforts, recent tools did not however examine simultaneously visual, thermal and acoustic comfort levels. 

This paper presents work targeted at efficiently studying occupant multi-comfort level using agent-based 

modeling with the ultimate aim of reducing energy consumption within academic buildings. The 

proposed model was capable of testing different parameters and variables affecting occupant behavior. 

Several scenarios were examined and statistical results demonstrated that the presence of different 

occupant behavior types is deemed necessary for a more realistic overall model, and the absence of 

windows results in an acoustic satisfaction with a decrease in (HVAC) use. 

1 INTRODUCTION 

With the expected increase in global population by 39% in 2035 (Dixit e. al., 2010), relying on new 

renewable resources of energy such as solar energy, wind energy, wave energy among many others has 

become imperative. Besides opting for alternative energy resources, current use of energy should be 

optimized. Recently, attention has been placed on energy efficient buildings (Yang et al., 2014). As a 

matter of fact, increasing energy use efficiency is one of the key approaches for energy consumption and 

carbon emissions reduction as part of the climate change mitigating efforts. According to Yang et al. 

(Yang et. al, 2014), reductions in energy expenses and decrease in the environmental pollution may be 

achieved by reducing the consumption of energy in buildings. People spend more than 90% of their time 

indoors (Virote and Neves-Silva, 2012), and as such around 40% of the global energy is consumed by 

buildings (Pout et al., 2002). Therefore, efficient energy use should be adopted especially that it is 

anticipated that the energy consumption in buildings is expected to increase by 19% in the upcoming 

years (Energy Information Administration, 2010). 

Although several types of buildings exist, targeting the commercial type, in particular academic 

buildings, is of paramount importance, as the occupants seldom have the incentive to reduce their energy 

consumption (Gul and Patidar, 2015). They usually focus on completing their job tasks rather than saving 

on energy (Andrews et al., 2013). Additionally, it was stated that the energy consumed in commercial 

buildings during non-working hours is typically more than half of the total energy consumed (Masoso and 
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Grobler, 2010) as typical occupant behavior includes keeping the HVAC, electronic devices, appliances 

and lights on even when not needed or upon exiting the space.  

Therefore, getting occupants actively involved during the design and operation phases of buildings is 

vital in achieving high energy performance without jeopardizing occupant satisfaction or comfort level. 

However, recent tools did not examine simultaneously, while considering different occupant behavior 

types, visual, thermal and acoustic comfort levels. The objective of the paper is thereby to design a 

comprehensive agent based framework aiming at studying occupant multi-comfort level in academic 

buildings. 

  

2 LITERATURE REVIEW 

Measured energy consumption in buildings has demonstrated large discrepancies with the original 

estimates. Among various factors contributing to the discrepancies, occupant behavior is a driving factor. 

Researchers have observed that occupant behavior has a great influence on energy consumption at the 

operation phase (Azar and Menassa, 2012). Studies found that 54% of the energy in a building is wasted 

during non-working hours and 38% during working hours due to appliances being typically placed on 

standby mode (Kavulya and Becerik-Gerber, 2012). Other previous work (Kwak et al., 2013) found that 

occupants consumed more energy when occupying large size rooms due to a higher HVAC and light 

power usage. In this case, energy efficient efforts were channeled toward creating efficient meeting 

schedules and reallocating occupants in the right rooms (Kwak et al., 2013). Accordingly, with occupants 

adopting energy conscious behaviors, energy consumption can be greatly reduced (Azar and Menassa, 

2012). However, typical occupant adaptive behavior includes how an occupant adapts to changing 

environment conditions and sets comfort criteria. Therefore, researchers worked on enhancing occupant 

satisfaction level and improving indoor environment qualities through capturing their comfort levels 

using mobile cellphone applications (Jazizadeh et al., 2014). Occupants within the area studied were 

asked to specify their satisfaction level toward the room temperature, air flow and light intensity. Based 

on this input data, the buildings’ indoor conditions were adjusted to increase the comfort levels of the 

majority of occupants.  

However, around 35% of the occupants are still not satisfied with the indoor environment qualities 

and the percentages of energy wasted are relatively still high (Asmar et al., 2014). As such, several new 

developed approaches and frameworks modeled occupant behavior and its effect on energy consumption, 

often using agent-based modeling (Railsback and Grimm, 2011). This simulation paradigm is a powerful 

technique mimicing real life systems by looking into its constituent units and testing what-if scenarios 

(Andrews et al., 2013). These units are called agents whereby every agent, a member of a group of 

decision making individuals within this environment, has its own properties that trigger replicating certain 

real-life acts (Bonabeau, 2002). Therefore, ABM (1) creates virtual agents that have the ability to interact 

with each other and their environment and accordingly make autonomous decisions, and (2) allows the 

examination of how collective system patterns develop from the adaptive behaviors of individual agents 

(Langevin et al., 2014).  

Many researchers had a great interest in the commercial sector especially that occupants of these 

buildings do not usually have the incentive to save energy. For instance, Andrews et al. (Andrews et al., 

2013) implemented a framework as an agent-based model of daily office occupant lighting use in order to 

test how well buildings are likely to perform given realistic occupants. This, in turn, helps measuring the 

usability of designs prior to the construction phase and thereby assessing whether design improvement is 

needed. Azar and Menassa (Azar and Menassa, 2012) developed an agent-based model to simulate 

occupant behavior and their impact on energy use in commercial buildings. More specifically, 

interactions between different office occupant agents having different energy behaviors were modeled 

vis-a-vis the energy use of the whole building. Lee and Malkawi (Lee and Malkawi, 2014) presented a 

new simulation methodology using agent-based modeling to simulate multiple occupant behaviors in a 
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commercial building and explore how they might adapt to changing thermal conditions in a way to reach 

thermal comfort or optimize energy savings.  

Although the field of energy and buildings is evolving rapidly, existing approaches in the literature 

exhibit some limitations that should be overcome in order to achieve a reliable model capable of better 

mimicking real-life situations. Acoustic comfort of occupants was not considered. Only thermal and 

visual satisfaction levels were taken into consideration. When thermal and visual comfort levels were 

considered in previous research efforts, their simultaneous interaction was omitted. In other words, it was 

assumed that the behavior adopted to increase visual satisfaction is independent from that to increase 

thermal satisfaction. On the contrary, the state of certain variables in the system might affect more than 

one comfort level. The state of the shades, for example, can affect both thermal and visual comfort. 

Different occupant behaviors (i.e. green, neutral, non-green) within a multi-comfort scenario were not 

considered. Occupants might either have green, neutral or non-green behavior.  

To address the aforementioned limitations, this paper aims at developing a comprehensive agent-

based framework targeted at studying occupant multi-comfort level in buildings with the ultimate goal of 

optimizing energy use in academic buildings in particular.  

 

3 RESEARCH METHODOLOGY 

The methodology adopted in this study is divided into two main tasks: (1) Abstraction of the agent-based 

model designed for studying occupant multi-comfort level in academic buildings, and (2) Implementation 

of the conceptual model using AnyLogic . 

3.1 Agent-based Conceptual Model  

Figure 1 presents the agent-based framework whereby occupants were the only agents considered. It is 

worth mentioning, that the area incorporated in the model is represented as an office space and occupant 

multi-comfort levels are only studied for the duration of the summer season’s daytime hours. In this case, 

the occupant’s adaptive comfort behavior is influenced by conditions related to both the system and 

themselves. These sets of conditions consist of (1) parameters that are defined at the start of the 

simulation and kept fixed throughout the simulation process and (2) variables that can change during the 

process according to rules and definitions (Borshchev and Filippov, 2004). Figure 2 depicts the 

aforementioned system and occupant parameters and variables. 

In the first part of the framework (Figure 1), occupants within the space observe the space conditions 

to identify the internal and external factors (Component 1). Internal factors include Clothing (Clo) and 

Metabolic equivalent (Met) values which were considered because they both affect the occupant’s 

thermal comfort (Component 2). Clo values define what the occupant is wearing (Indraganti et al., 2015) 

and a Met value is a physiological measure expressing the energy cost of physical activities (Rhee et al., 

2015). In addition to Clo and Met values, thermal, visual and acoustic preferences of occupants are 

specified according to pre-defined ranges for different behavior types. On the other hand, conditions 

should be set for the system variables considered as external factors. This includes regulating door, 

window, shades, and lights statuses. In general, these variables are considered as binary with open/closed 

or on/off options. Additionally, conditions are set for the HVAC level and range from off, low, medium to 

high.  
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Figure 1: Proposed Framework. 
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Figure 2: Model Parameters and Variables. 

 

 Based on the internal and external factors observed, occupants analyze the situation by calculating the 

satisfaction variables. Table 1 mainly displays the direct effect of each factor on the different comfort 

levels (Component 3) using the “ √ ” symbol. 

Table 1: Impact of Internal and External Factors on Comfort Levels. 

Factors 
Thermal 

Comfort 

Visual 

Comfort 

Acoustic 

Comfort 

In
te

rn
a
l 

Thermal Preference √ --- --- 

Visual Preference --- √ --- 

Acoustic Preference --- --- √ 

Clo Value √ --- --- 

Met Value √ √ √ 

E
x
te

rn
a
l 

Space floor Level --- --- √ 

Space Orientation √ --- √ 

Temperature √ --- --- 

Humidity √ --- --- 

Air Flow √ --- --- 

Time √ √ √ 

HVAC System √ --- √ 

Door √ --- √ 

Window √ √ √ 

Shades √ √ --- 

Lights --- √ --- 
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 Based on the computed satisfaction variables, the occupant satisfaction state is updated (Component 

4). According to the last recorded dissatisfied state, the occupant is then offered a set of possible 

behaviors that can enhance his/her satisfaction level. Given the agent-based modeling inherent nature, 

occupants interact with each other and decide upon certain behaviors, thereby updating the probability of 

certain comfort levels being reached within the studied space (Component 5). The occupants then act 

according to the decision taken, which in turn updates the system factors’ conditions (Component 6). For 

instance, the HVAC level might increase or decrease, lights might be turned on, shades might be closed, 

etc. Finally, the behavior adopted is evaluated and interpreted to check whether occupant satisfaction or 

comfort was achieved. At this stage, it is important to assess the effect of the adopted behavior on comfort 

levels to ensure desirable results (Component 7). 

3.2 Agent-Based Model Implementation 

In this section, the proposed agent-based framework was implemented using the multi-paradigm 

modeling tool, Anylogic (Borshchev and Filippov, 2004). Within Anylogic, all agents and common 

variables are usually defined in the Main window as shown in Figure 3. Three different occupant groups, 

i.e. green (gOccupant), neutral (occupant) and non-green (nOccupant), were created to cater for different 

behaviors. The three pools of agents shared the same space and variables (i.e. window, shades, lights, 

HVAC and crowd). As aforementioned, the first three variables were considered binary. On the other 

hand, the HVAC had four different levels, namely off, low, medium and high. Similarly, the crowd or 

outside noise, had three different levels; low, medium and high. 

 

 

Figure 3: ABM Model Agents and Variables. 

 

 Variables specific to each agent were added on the Agent window. Figure 3 displays as well a number 

of datasets created to store variables’ data at each iteration. These were then exported to MS Excel for 

further analysis. Most importantly, connections shown on the Main window above have the purpose of 

linking agents together to allow their interaction within the same environment. A last item is an event that 

was added to stop the simulation model after completing a pre-specified number of iterations.  

Figure 4 illustrates a multi-comfort agent statechart that is applicable to all agents (i.e. gOccupants, 

occupants, nOccupants) but with different behavioral properties. In this case, a satisfied state and four 

dissatisfied states were defined. More specifically, at the dissatisfied side of the statechart, many options 

exist. The occupant was considered to be dissatisfied visually, acoustically, or thermally. Moreover, the 

dissatisfied thermally state was subdivided into dissatisfied thermally hot and dissatisfied thermally cold. 

In addition, two variables, thermal and acoustic preferences, were added at the agent layer to specify 

desired levels for occupants in the space, and an event, “Evaluate”, was added to evaluate the occupant 

dissatisfaction. Based on given conditions, the “Evaluate” event evaluates the current situation and 

determines the dissatisfaction state of the occupant. The event then sends a message (i.e. visual, hot, cold, 

or acoustic) to move the occupant from the satisfied state to the dissatisfiedVisually, 
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dissatisfiedThermHot, dissatisfiedThermCold, or dissatisfiedAcoust respectively. More specifically, the 

event checks dissatisfaction in the order of visual, thermal hot, thermal cold, and acoustic satisfaction. 

As shown in Table 2, if the occupant is a green occupant, it was assumed there is a 75% chance of 

opening the shades and 25% chance of turning the lights on. On the other side, when the HVAC level of 

the space was less than the HVAC preference of the occupant, the “Evaluate” event sent a message to the 

system that allowed the occupant to move to the dissatisfied thermally hot state, thereby left with either 

increasing the HVAC level or closing the shades if open. On the contrary, when the HVAC level of the 

space was greater than the desired one of the occupant, the “Evaluate” event sent a message to the system 

allowing the occupant to move to the dissatisfied thermally cold state. Hence, for a non-green occupant, 

for example, there is a 25% chance of decreasing the HVAC system level and a 75% chance of opening 

the window if closed. Besides visual and thermal comfort levels, the acoustic one was examined as well. 

When the outside noise level was higher than the preference level of the occupant, an dissatisfied 

acoustically state was reached, and for all occupant types, there was an equal chance of closing the 

window or bearing the outside noise. 

4 RESULTS AND STATISTICAL ANALYSIS 

Upon running the simulation model for 10,000 iterations, the graphs shown in Figure 5 were generated. 

With a log of 10,000 iterations, a relatively high power of statistical tests can be possibly reached. The 

charts plotted the state of each variable in the model versus time. For illustration, at a certain time in 

space, the charts depict  that when shades are closed, lights are on. Besides, when the HVAC level is high, 

the window is closed. 

 

 

Figure 4: Multi-Comfort Agent Statechart. 
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Table 2: Probabilities of Behavior. 

State Behavior 

Probability of behavior 

Green 

Occupant 

Neutral 

Occupant 

Non-green 

Occupant 

Dissatisfied 

Visually 

Turning lights on 0.25 0.5 0.75 

Opening shades 0.75 0.5 0.25 

Dissatisfied 

Thermally 

Hot 

Increasing HVAC 

Level 
0.25 0.5 0.75 

Closing the shades 0.75 0.5 0.25 

Dissatisfied 

Thermally 

Cold 

Decreasing HVAC 

Level 
0.75 0.5 0.25 

Opening window 0.25 0.5 0.75 

Dissatisfied 

Acoustically 

Closing the window 0.5 0.5 0.5 

Bear the outside noise 0.5 0.5 0.5 

 

 In order to analyze the results, RStudio was used (Gandrud,2013). It is an integrated development 

environment (IDE) for the R programming language that is used for statistical computing and graphics. 

More specifically, the probability of occurrence of each state was computed and stored in a new vector. In 

the case of HVAC for example, the probability of having an off level was calculated by counting the 

number of zero digits presented in each vector. In order to check whether the trend of the data follows a 

normal distribution, the Shapiro-Wilk test was carried out (Razali and Wah, 2011). 

 

 

Figure 5: System Variables Output Graphs. 

  

The null-hypothesis of this statistical test is that the data is normally distributed. Thus, if the p-value 

is less than the chosen confidence level (e.g. 0.05), then the null hypothesis is rejected and there is 

evidence that the data tested is not from a normally distributed set. On the contrary, if the p-value is 

greater than the chosen confidence level, then the null hypothesis that the data came from a normally 
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distributed set cannot be rejected. After failing to reject normality, F-test is used to check whether two 

datasets compared against each other have equal variances (Shapiro and Wilk, 1965). Similarly, if the p-

value generated is greater than the confidence level used (0.05), then the test fails to reject the null 

hypothesis. Both normality and equal variances tests should be checked when applying the T-test since 

this latter can only be applied to normal sets of data and it should be indicated whether the data has equal 

variance or not. The T-test (Figure 9) was used to test the hypothesis under question (Gardner and 

Altman,1986). Similar to other tests, the p-value generated is compared to the assumed confidence level. 

One last step include calculating the power of the T-test applied. This power is a good representation of 

the capability of the test applied in rejecting the null hypothesis when it is false (Bridge and Sawilowsky, 

1999).  

In the following subsections, the aforementioned statistical analysis is applied on two different 

scenarios: (1) Single Behavior vs. Multiple Occupant Behavior and (2) Control Model vs. No Window 

Model, and tests’ results serve as a proof-of-concept for the agent-based model. 

4.1 Scenario I: Single Behavior vs. Multiple Behavior 

In order to check the effect of having different types of occupant behavior within the same space, a single 

behavior model was tested against a multiple behavior model. In the first model, six neutral occupants 

were considered. On the other hand, two occupants from each type were considered in the second model. 

The statistical results are displayed in Table 3. 

 

Table 3: Scenario I Statistical Details. 

 
 

Through rejecting H0, this scenario showed that when considering multiple behaviors of occupants, 

the emergent effect of these behaviors on the system was totally different than that of the single behavior. 

Therefore, it is important to consider multiple occupant behaviors to have a somewhat realistic model. 

4.2 Scenario II: Control Model vs. No Window Model 

In order to check the effect of the window on occupant behavior, the window variable was removed from 

the control model. The control model is assumed to be the multiple behavior model having all the 

properties discussed in Section 3. 
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Table 4: Scenario II Statistical Details. 

 
 

 When the window was removed, occupants had to always switch lights on in order to be satisfied 

visually. Moreover, occupants were always satisfied acoustically since there was no source of outside 

noise. However, the difference in the results of HVAC use were statistically analyzed and displayed in 

Table 4. This proved that when no window is available, the use of off and medium level increase where 

that of low and high levels decreased. This shows that when the window was removed, occupants did not 

have the option to open the shades. Therefore, they were not affected by the sun heat and did not have to 

increase the level of HVAC. 

 

5 CONCLUSIONS AND FUTURE WORK 

Energy consumption in academic buildings is a complex issue due to a wide variety of uses and energy 

services and therefore the energy demand of individual buildings need to be well understood. Researchers 

worked thereby on developing several tools that are capable of optimizing energy consumed in buildings . 

These tools were either developed to assess several design alternatives or incorporated occupant behavior 

to better comprehend its effect on energy use. However, they lack the ability to imitate a real world 

environment where different types of occupants target ultimate satisfaction and comfort on so many levels 

(i.e visual, thermal, and acoustic). As such, a new agent-based framework was proposed and designed in 

this paper to overcome the aforementioned limitations and study occupant multi-comfort level for 

building energy optimization. The model flexibility allowed testing different scenarios. For instance, the 

effect of having different occupant types within the space, no window or two light switches was studied 

and tested. In this case, results showed that (1) the presence of different occupant behavior types is 

deemed necessary for a more realistic overall model , (2) the absence of windows results in an acoustic 

satisfaction with an increase in HVAC off and medium level uses, and high lighting usage, and (3) the 

overall light usage decreases when two light switches instead of one are introduced. 

 Future research is needed to cover environmental conditions (temperature, humidity, etc.), other 

indoor environment quality (IEQ) factors such as air quality, representative times of the day, and different 

categories of occupants. Additional work is needed as well to implement a cost function and assess the 

overall cost of the emergent effect of occupant behavior on the system.  
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