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ABSTRACT

Ubiquitous data from a variety of sources such as smart phones, vehicles equipped with GPS receivers and
fixed sensors makes it an exciting time for the implementation of several Advanced Traffic Information and
Management Systems (ATMS). Leveraging this data for current traffic state estimation along with short
term predictions of traffic flow can have far reaching implications for the next generation of Intelligent
Transportation Services (ITS). In this paper, we present our proof-of-concept of such a data driven traffic
simulation for the short term prediction and control of traffic flow by simulating a real world expressway
through dynamic ramp-metering.

1 INTRODUCTION

A dynamic data driven adaptive simulation (DDDAS) incorporates real-time data from the physical system
to initialize or steer the simulation system. Symbiotic Simulation, introduced in (Fujimoto et al. 2002) is
a special class of DDDAS involving a mutually beneficial relationship between the physical system and
simulation systems. The physical system provides continuous inputs to steer the simulation which in turn
gives recommendations to the former.

In this paper, we present a symbiotic traffic simulation platform which receives continuous inputs from
the physical system, i.e., the road network to initialize predictive faster than real time simulations. Based
on the results of the predictive simulations, a recommendation is sent back to control the road network
for optimizing traffic flow. The physical system is emulated using a high-fidelity agent based microscopic
traffic simulation incorporating acceleration and lane change models. The prediction & control system
which receives traffic state inputs from the physical system uses a macroscopic traffic flow model to employ
a simulation based optimization strategy. The recommendations of this predictive & control system are
given back to the physical system (microscopic simulation) and evaluated for efficacy. Towards this end,
the contributions of this paper are as follows
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e Develop a framework for symbiotic traffic simulation with the physical system providing continuous
inputs to the predictive & control system while getting back recommendations to optimize traffic
flow.

e Employ the predictive simulations for evaluating several control actions before sending the best
recommendation to the physical system. The control action chosen for this proof of concept paper
is ramp-metering.

o Evaluate the efficacy of the recommendations given by the predictive & control system (in the
physical system) on employing ramp-metering by simulating a real world expressway.

2 RELATED WORK

The challenges of incorporating real-time data streams to steer executing simulations have been discussed
in Darema (2004). Dynamic data driven simulations have found applications in several domains. An
emergency detection and response system by Schoenharl et al. (2006) has been developed by processing
call data records in real-time for identifying anomalies and emergencies. Plans for further actions when
emergencies are detected are determined by agent based simulations. Celik et al. (2013) have employed
multi-agent data driven simulations for reliable and efficient dispatching of electricity under distributed
generation for smart grids. Simulation based short-term forecasting using real-time data streams has found
applications in modeling and tracking wildfires by Douglas et al. (2006) and ocean state observation and
forecasting by Patrikalakis et al. (2004).

The motivation for a city-scale symbiotic traffic-simulation can be found in Aydt et al. (2012). The paper
discusses a scenario where hundreds of white-box and gray-box agents provide real-time measurements
regarding their geo-location and speed (both white and gray-box agents) and origin-destination (white-box
agents only). Considering the burgeoning potential for the availability of traffic data from floating cars and
other fixed sensors, it is evident that this real-time data will be beneficial for various ITS based services
such as dynamic ramp-metering which is discussed in this paper.

Considering the inherent uncertainty in traffic systems, we employ Symbiotic Adaptive Multisimulation
(SAMS) as a symbiotic simulation technique (Mitchell and Yilmaz 2008) for traffic flow optimization.
SAMS involves using an ensemble of predictive models for an accurate representation of the physical
system due to the absence of single authoritarian model. SAMS in the context of this paper, leverages a
metaheuristic based optimization strategy to evolve the predictive models in response to changes in the
physical system. This feature helps determine the appropriate control action for optimizing the physical
system.

3 SYMBIOTIC TRAFFIC SIMULATION FRAMEWORK

In this section, we describe the symbiotic traffic simulation framework by giving an overview of the physical
and the predictive & control systems.

3.1 Overview

For a reasonable representation of the physical world, we employ an agent-based microscopic traffic
simulation. The agent-based simulations were employed owing to the enormous amount of resources
required to implement the recommendations of the predictive simulation on a real world road network.
The floating car data (FCD) provided by the microscopic simulation was used to initialize the state of
the predictive Cell Transmission Model (CTM) (Daganzo 1994) based macroscopic simulation. Figure 1
illustrates the symbiotic relationship between the physical and the prediction & control system.

The predictive component works hand in hand with the optimization module to give recommendations
to the physical system to optimize traffic flow after evaluating several candidate solutions. In this paper
we optimize the traffic flow of a real world expressway (Section 4.2) by employing ramp-metering as the
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Figure 1: Symbiotic traffic simulation system.

control action. The near optimal ramp-metering strategy is determined by the optimization module through
simulated annealing (Section 4).

The primary reason for employing a macroscopic simulation for the predictive component, is computa-
tional efficiency. A gradient-based optimization strategy involves assessing the fitness of several candidate
solutions in parallel. The fitness of a solution is given at the end of a stochastic predictive traffic simulation
over a predetermined time horizon. The above argument motivates us to go in for a cell based macroscopic
model despite the relative lack of accuracy in comparison to the microscopic models. The execution time
of a CTM based algorithm is proportional to the number of cells simulated thus making it an ideal model
for a prediction & control system.

A microscopic traffic model involves simulating hundreds of thousands of agents and updating their
speeds and positions every time-step. Further, modeling lane changes involves acquiring locks (in the context
of parallel programming) on multiple lanes making a large scale microscopic simulation computationally
expensive (See (Aydt, Xu, Lees, and Knoll 2013)). In the subsequent sections we show that our calibrated
first-order traffic simulation can model the evolution of traffic state with minimal error (in comparison to
the high fidelity microscopic models) provided it is well calibrated and initialized with a reasonably good
estimate of the current traffic state in the physical system.

3.2 Physical System

The agent based traffic simulation representing the physical system is based on the SEMSim platform (Zehe
et al. 2015, Aydt et al. 2013). SEMSim is a high fidelity agent-based microscopic simulation. It uses
the Intelligent Driver Model (IDM) (Treiber and Kesting 2010) and MOBIL (Kesting et al. 2015) as the
acceleration and lane change models respectively. IDM is an accident free model which ensures that a
vehicle attains the desired velocity at free flow and maintains the safe bumper to bumper distance to the
leading vehicle. It also ensures that the acceleration is an increasing function of the speed and distance to
the leading vehicle and a decreasing function of its speed. MOBIL, the lane change model ensures that the
resultant accelerations and decelerations for a vehicle and its followers in the old and new lanes does not
exceed a safe threshold. A lane change is done only if a vehicle gains speed without violating the safety
and inconvenience (to the old and new followers) criteria.

The simulation takes as input a road network detailing the lanes constituting the roads to be simulated.
Road segments that don’t have a preceding road segment are considered sources and those without a
subsequent segment are sinks. The traffic thus flows from the sources to the sinks. The route taken by
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each agent is determined based on turn ratios (ranging between 0.0 and 1.0) specified at each off-ramp
expressway intersection. Parameters such as average vehicle length, the acceleration and deceleration terms
of IDM are modeled as distributions to take into account heterogeneous driving behaviors and vehicle
classes respectively. Note that SEMSim and the term physical system shall be used interchangeably over
the rest of this paper.

3.3 Prediction System Model

The predictive, faster than real time macroscopic simulation is based on the stochastic variant of the Cell
transmission model (Boel and Mihaylova 2006) and METANET (Kotsialos et al. 2002). The cell network,
C is comprised of n cells. At each time instant, t = k.74, k = 0,1,....K (Where K is the time horizon) the
state of all cells are updated. The discrete event time step is denoted by Tiy,.

The state of a cell ¢; € C at each time step k.T, is determined by the concept of sending S;(k) and
receiving potentials R;(k). S;(k) and R;(k) represent the number of vehicles cell ¢; can send and receive
at time-step k. The mean and standard deviation of speed for a cell ¢; are denoted by v;(k) and v{’(k)
respectively. The number of vehicles in a cell ¢; at time-step k is given by N;(k). While N/"* (k) represents
the maximum number of vehicles that can be accommodated in cell ¢; given an average speed of v;(k).
NI"*(k) is given by

l,-.?L,-
Toap-vi(k) + Leyy

where L, ¢y, the effective vehicle length represents the sum of mean vehicle length and minimum gap. Ty,
represents the safe time gap. The length of cell ¢; is denoted by /; which is a variable and subject to the
constraint /; < V(§ X Tetm. Vé is the constant free-flow speed for the cell. This constraint ensures that no
vehicle can enter and exit a cell within one time-step. The number of lanes in cell ¢; corresponding to the
associated road-link is denoted by A;. Other constants in this predictive simulation are the terms k, and
¢. The constants k and & adapt the speed of the vehicles after an on-ramp expressway merge while last
term ¢ adapts the speed of cell where a lane drop occurs. V2% denotes the minimum speed of cell a when
it is completely congested. V2 thus models the fact that some vehicles exit a bottleneck with a minimum
speed. Finally A,, is a parameter of the fundamental diagram representing the speed density relationship
(See (Kotsialos et al. 2002)). Refer to Sunderrajan et al. (2016a) for greater details on the algorithm and

equations governing the model of the predictive simulation.

Ny (k) =

ey

Direction of flow of traffic along the
main expressway

\

% Source Cell ‘ ‘ Merging Cell Ordinary Cell

\:’ Sink Cell ’ ‘ Diverging Cell

Figure 2: An illustrative cell network.
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The cells constituting the cell network C are classified into five different types as shown in Figure 2.
Note that this is an illustrative network and not the real world expressway (see Section 4.2) simulated for
the experiments. The Merging cells are associated with the parameter merge priority p € [0.0,1.0] which
controls the proportion of vehicles that moves to the next cell in a given time-step. Correspondingly (7,
and [y, are the merge priorities of the on-ramp and expressway cells respectively. The Source and Sink
cells are not physically related to any of the road links. The source and sink cells are effectively ghost
cells, the former injects agents into the simulation while the agents exit the simulation through the latter. A
Diverging cell is associated with the turn ratios 7 ranging between 0.0 and 1.0 representing the proportion
of vehicles exiting the expressway through off ramp and those continuing to traverse along the expressway.
Cells C3 and Cg are considered predecessors of cell C4 while cells Cjo and C; are considered successors
of cell Cg.

3.4 Optimization Module

Algorithm 1 Simulated Annealing using predictive system for computing the fitness function.
Input:

t < temperature.

maxiter Maximum number of iterations.

S < the initial candidate solution.

K the simulation time horizon for determining the total number of vehicles N;q;-

Result: Best the best solution over maxiter.

1: Best < S

2: iter <0

3: repeat

4: R < Mutate(Copy(S))

r < random number chosen from 0 to 1

if fitness(R) < fitness(S) or r < exp(L imess(s);f imess(R)) then
SR

Decrease ¢

if fitness(S) < fitness(Best) then

10: Best < §

11: iter < iter+1

12: until iter < maxiter

13: return Best

R e A

We implemented a simulated annealing (Weise 2009) approach (Algorithm 1) for the optimization
module to determine the best control strategy for the case study described in Section 4. The simulated
annealing algorithm seeks to identify the best control-action by minimizing the value returned by the
function fitness(S) (S represents the candidate solution) running the CTM based predictive simulation over
a time horizon K. Specifically, the fitness function returns the value N, (Equation 2) which is the total
number of vehicles in the system over K (Papageorgiou et al. 2003).

k=K
Niotar =T. Y N(k) )
k=0

The algorithm explores different candidate solutions over maxiter iterations by tweaking the current candidate
solution through the Gaussian mutation operator Mutate(S). The operator probabilistically adds a random
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Gaussian noise of zero mean and standard deviation of 1.0 to each element of the vector S while ensuring
the constraints (if any) are not violated. The best solution Best, is returned the end of all iterations.

Simulated annealing is a variant of the hill climbing algorithm where the original candidate solution
S is replaced with the mutated child R if fitness(R) < fitness(S). S is replaced with R (even if R is a
worse solution) with a probability p(7,R,S) = exp(f ime‘“(s);f imm(R)) where ¢ > 0. The tunable temperature
parameter ¢ is initially set to a high value ensuring that the algorithm is explorative (resembling a random
walk in the space) at the beginning. It eventually becomes more exploitative by doing a hill-climbing as ¢
is decremented. Note that p(r,R,S) is higher if the fitness difference R and S is small and vice versa.

4 CASE STUDY
4.1 Ramp-Metering

Ramp-metering is a traffic control mechanism implemented in several cities across the world to reduce the
congestion on expressways (Bogenberger and May 1999). Ramp meters are traffic signals placed at the
intersection of on-ramps and expressways. Ramp meters regulate the flow of vehicles along the ramps so
as to minimize the turbulence caused due to merging vehicles disrupting the mainline flow. Care must be
taken to ensure that the queue of the vehicles waiting along the on-ramps does not spill into the preceding
urban street network.

Ramp-metering strategies are classified into two types, fixed-time and reactive (Papageorgiou et al.
2003). The fixed time strategy is based on historical data pertaining to flow rates along the on-ramps and
the expressway at different times of the day. The main drawback of the fixed time strategy is that their
settings are based on historic rather than real time data. It does not take into account the varying nature of
traffic demand and the occurrence of events such as accidents and road blocks which could cause massive
congestions.

Reactive ramp-metering strategies aim to optimize the flow of traffic based on real-time measurements.
Reactive ramp-metering is classified into two types Local Ramp-Metering and Multivariable Regulator
Strategies (Papageorgiou et al. 2003). The former makes use of measurements in the vicinity of an
on-ramp to regulate the flow on the ramp. The control strategy applied for an on-ramp is independent of
the measurements and controls applied in other on-ramps in the vicinity. While the latter makes use of the
system wide measurements to simultaneously regulate traffic flow along all on-ramps. A review on several
implemented and proposed ramp-metering strategies can be found in (Bogenberger and May 1999).

In this paper we employ simulated annealing described in Section 3.4 to develop a system wide ramp-
metering strategy of a real world expressway by regulating the flow on all on-ramps simultaneously. The
system-wide ramp controller designed for this paper determines the maximum allowable gueue-threshold
¢ (Equation 3) for a ramp r € R?"  before turning the phase of the signal to green from red. Where

ramps

R mps 1s the set of controllable on-ramps in the system.

N, (k)

< th
Npas() = O ®

Where N, (k) and N/ (k) is the number and the maximum number of vehicles on the on-ramp r at time
step k. N"*(k) at time-step k is determined from Equation 1. Concretely the task is to find the ideal value
of ¢'* for all on-ramps so as to minimize N,,;. Note that ¢/ € [0.0,1.0].

4.2 The Simulated Physical Environment

The physical system for this paper is a 13 km stretch of P.I.LE (Pan Island Expressway) in central Singapore
(including all on and off ramps) along with the agents simulated using SEMSim. The details of the
probability distributions and other parameters governing IDM and MOBIL for all agents in SEMSim are
discussed in Sunderrajan et al. (2016b). The on-ramps and the first P.I.E link are sources, while all off
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ramps and the last link on P.LE are sinks. Vehicles are generated at each source as a Poisson process with &
representing the mean number of vehicles generated at each source link s. The turn ratios for all off-ramps
are kept constant at 0.25. This implies that 25% of all vehicles exit at a given off ramp while the remaining
75% of the vehicles continue to travel on the main expressway. The number of lanes in the simulated stretch
of the expressway varies between 3 and 6. All of the 11 on-ramps present in the simulated stretch of P.ILE
are assumed to be controllable and regulate the flow of vehicles into the expressway. Refer Sunderrajan
et al. (2016b) for more details on the locations of all on/off ramps along the simulated stretch of P.ILE.

4.3 Traffic Scenario

Table 1: Mean inter-arrival times at all source links/cells.

DISTANCE (m) RAMP TYPE ¢ (sec) DISTANCE (m) RAMP TYPE ¢ (sec)

0.0 First PLE link 1.0 7025.15 On-Ramp 2.0
583.98 On-Ramp 2.0 7658.4 On-Ramp 2.0
2489.87 On-Ramp 3.6 8554.28 On-Ramp 3.6
4071.9 On-Ramp 3.6 9591.84 On-Ramp 3.6
5531.18 On-Ramp 3.6 11286.2 On-Ramp 3.6
5965.29 On-Ramp 3.6 11637.04 On-Ramp 3.6

The traffic state of the expressway at the end of a time horizon is determined by the inter-arrival time &
for all source links and cells. The stretch of the expressway simulated consisting of 11 on-ramps and along
with the first expressway link has 12 source links/cells. Table 1 lists the mean inter-arrival times for all
source links/cells. Notice that the flow of vehicles into the expressway along all on-ramps are significantly
less (1000 vehicles/hour) except for the ones at 583 m, 7025 m and 7658 m. The system thus needs to
find an optimal ramp metering strategy which balances the flow along all on-ramps so as to minimize the
surge of vehicles along the three ramps with relatively higher inflow of vehicles.

5 RESULTS
5.1 Calibration of Predictive Simulation

To ensure that the state predicted by the macroscopic simulation accurately represents the state of the
physical system, the model parameters have to be calibrated. We need to identify (and tune) the parameters
which will have significant impact in terms of bridging the difference in the state of the physical system
and that of the predictive simulation at the end of a given time horizon.

Towards this end we simulated SEMSim representing the physical system over a time horizon K = 2000
seconds. The mean inter-arrival times of all source links & were kept constant during the time period of
the simulation. There are no vehicles in the simulation at time-step k = 0. Nf*™(K) denotes the number
of vehicles in each cell of the mainline expressway (corresponding to the cell-network associated with the
predictive system) is computed at the end of the microscopic agent-based simulation.

The initial state and the mean inter-arrival times of vehicles for all source cells & are same as that
of SEMSim for the predictive simulation. The turn ratios at the off-ramp (T%,ZP) and expressway (Tep)
intersections are also the same as that of the physical system. The time-step 7, for the predictive simulation
is kept constant at 4.0 seconds. To identify and then tune the parameters which bridge the difference between
the predictive simulation and the physical system, we attempt to minimize the least square error given

=Ny )
by \/ _le(Nfe’"”’"(K) —Nf"™(K))?. Where Nf""(K) denotes the number of vehicles in each cell of the
=

mainline expressway computed at the end of the predictive simulation time horizon K. The least square
error thus represents the difference between the number of vehicles for all expressway cells (numbering
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Nexp) at K. We ran the predictive simulation 1600 times to the return the least square error for each of these
runs to generate 1600 data points. The parameters of the CTM based predictive simulation were varied

based on the range column of the Table 2.

Table 2: The predictive simulation parameters.

Simulation Description Range Calibrated
parameter Value
Merge priority for on ramp
Hramp merging cells 0,1,0.6] 0.22
Merge priority for express way

Hexp merging cells. 0-8,0.1] 095

Toap Safe time gap for vehicles (s) [1.2,1.5] 1.25
our Minimum speed in a cell (m/s) [2.0,6.0] 2.5 m/s

0 On ramp merge term [0.02,0.6] 0.27

Am Model term of fundamental diagram  [1.0,4.0] 2.34

() Lane drop term [1.8,3.6] 2.7

K On ramp merge term [0.1,2.0] 0.45

The polynomial regression with an R? Statistic (a measure of model fit indicating the percentage of
variance explained by the model) of 0.817 is shown in Equation 4. This model clearly shows that the two
dominant terms are Ty, and py,,. Based on the results of the calibration, the CTM based predictive
simulation was initialized with the parameters shown in Table 2. The values of A,,, ¢,k and § are chosen
based on the calibration experiments by Kotsialos et al. (2002). Note that V2 is set to 0.0 for the on-ramps
since the vehicles come to a complete standstill when the signal is red.

LSE = Bo — B1-Myamp + B2-Tgap + ﬁ3'ngap + Ba-Teap-ram @

5.2 Efficacy of Ramp Metering

In this section, we quantify the efficacy of using ramp-metering in the physical system (SEMSim) based
on the recommendations given by the predictive & control system. As discussed in Section 4.1, we need
to find the optimal value of ¢ € (0.0,0.8) for each of the 11 on-ramps for the environment simulated.
Note that the maximum value of the queue-threshold ¢" _is set to 0.8. The controller sets the phase to

max
green when ¢ exceeds ¢/, serving as the first constraint. The other constraints are

1. The minimum phase time for both the red and green phases are 12 seconds.
2. The signal at an on-ramp can be continuously red only for a maximum of 120 seconds. After a
120 second red phase, there is a mandatory green phase for 24 seconds.

The first of the above constraints ensures the phases of traffic lights do not change rapidly. This gives
adequate reaction times for drivers to slow down and accelerate at an intersection. The second constraint
ensures that none of the vehicles wait at an on-ramp for an inordinately long time thus preventing the
starvation of an on-ramp r even if the ¢"* is not exceeded.

The fitness function fitness(S) from Algorithm 1 has been modified to compute the mean of the total
number of vehicles N, for a ramp-metering configuration S over a time horizon of K = 1800 seconds
using the CTM based predictive simulation (See Equation 5).

1S .
Nioat = 2 3 Nigwar + @ ) 4" (5)
i=1 reR
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Note that the mean value of N, is computed by averaging over 5 different runs of CTM for a single
queue-threshold configuration to account for model stochasticity. Note that the term run of the predictive
simulation refers to the execution of the simulation over the time horizon K. The penalty factor o penalizes
the imposition of queuing control at an on ramp r. o prevents the algorithm from increasing the ¢! for
minimal (and usually erroneous) benefits in optimizing traffic flow. The penalty factor ¢ thus reduces the
variance in the results obtained for the queue-threshold configuration. It is set to 400.0 after running and
evaluating several trials of the simulated annealing algorithm. Note that term frial refers to the simulated
annealing algorithm running over maxiter iterations.

The best ramp-meter configuration (determined using the predictive simulation) is now given as a
recommendation to SEMSim which returns the corresponding N, over the same time horizon of 1800
seconds. Note that the constraints pertaining to phase timings are implemented in SEMSim as well. In
the next section, we determine the percentage improvement (in terms of N,,;) over the no ramp metering
case when the recommendation of the predictive system is fed back to the physical system.

1300000.00
1290000.00 ‘-‘

1280000.00 .“

1270000.00 TR \ 1) e—=Trial 1

L e=Trial 2
1260000.00

Trial 3

Ntotal

1250000.00 Trial 4

1240000.00 Trial 5

1230000.00

H O H OV H O H VYO d OO oY O
A AN NMmMO YT ITODNOORNNO®RRN D

101

Iteration

Figure 3: Decrease in N, predictive simulated annealing algorithm.

Figure 3 plots N,y (for the best queue-threshold configuration obtained thus far) as a function of
iteration count for five different trials of the simulated annealing algorithm running the CTM based predictive
simulation. It can be seen that the improvement in N, converges by 40 iterations in all the trials.

A data driven adaptive simulation and prediction framework for traffic systems should work under
reasonable time constraints for predicting short term evolution of state and giving back recommendations
to optimize traffic flow. The simulations employed by the predictive system should thus be reasonably fast.
The computational time for the CTM based simulation (used for determining N;,,;) over a time horizon
of 1800 seconds is around 75 milliseconds. The CTM simulation was coded in Java SE 7 and measured
in a 2.5 GHz Intel i5 system running on Windows 7. The entire run of the simulated annealing algorithm
over 100 iterations took around 42 seconds to complete, thus satisfying the soft real time constraints for
a symbiotic traffic simulation. The prediction & control system can give a recommendation much earlier
(at the end of 40 iterations) to the physical system before searching for and further fine tuning the ramp
control strategy in the background.

Figure 4 shows the percentage improvement of N, over the no ramp-metering case (corresponding
to the trials in Figure 3) when the recommendations of the prediction & control system (in terms of the
best solution obtained thus far) are fed back into SEMSim. Assuming that the optimization module was
invoked at time 7 and its execution over iter iterations takes AT seconds, the recommendations should
be given to SEMSim at 7 4+ AT and evaluated until 7'+ K — AT to return N,,,. For our experiments, we
ignored AT since it is small (42 seconds) and we do not expect the traffic conditions to change drastically
over AT given the constant inter-arrival times at all source links/cells.

Improvements in the range of around 17% and beyond is observed at the end of 40 iterations in all of
the five observed trials. To validate our approach further, we gave a bad recommendation to the physical
system where ¢'" was set to qf,’fax for all » € R. The erroneous recommendation resulted in N, (for
the physical system) increasing by 43% indicating worsening of traffic flow. The results in this section
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Figure 4: Percentage improvement in N, when recommendations are given to SEMSim.

illustrates the potential of symbiotic traffic simulation as an effective tool for traffic flow optimization
through dynamic ramp-metering as a case study.

6 CONCLUSIONS AND FUTURE WORK

In this work we have established that data driven predictive simulations can be beneficial towards optimizing
traffic flow. The prediction and optimization system should receive fairly accurate and continuous information
on the current traffic state. This information is used for initialization, calibration and steering of the predictive
simulations. Accurate current state estimation in turn increases the accuracy of the short term predictions
(of evolution of traffic flow) thereby increasing the efficacy of the suggested control measures. Data from
traditional fixed sensors can be augmented with FCD from smart phones and vehicle fleets such as taxis
and public buses for enhanced traffic state reconstruction. The simulation model and optimization strategy
used in the prediction & control system can be varied depending upon accuracy, efficacy and computational
time constraints.

Symbiotic traffic simulations also offer exciting opportunities to implement and optimize several
techniques for traffic flow optimization (other than ramp-metering discussed in this paper) such as adaptive
speed limits and dynamic routing. Mobile applications and in car navigation systems provide a great
means to disperse information to the traffic participants while the control system receives user anonymized
data about vehicle speed, location and even origin-destination flows. This form of a symbiotic simulation
based traffic prediction and optimization framework directed towards dispersing and receiving updates from
individual drivers will be the focus of our future research.
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