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ABSTRACT 

The smart cities vision relies on the use of information and communication technologies to efficiently 
manage and maximize the utility of urban infrastructures and municipal services in order to improve the 
quality of life of its inhabitants. Many aspects of smart cities are dynamic data driven application systems 
(DDDAS) where data from sensors monitoring the system are used to drive computations that in turn can 
dynamically adapt and improve the monitoring process as the city evolves. Several leading DDDAS 
researchers offer their views concerning the DDDAS paradigm applied to realizing smart cities and outline 
research challenges that lie ahead. 

1 INTRODUCTION 

Many of society’s greatest challenges arise in its cities. It is widely recognized that the battle to achieve 
sustainable growth will be won or lost in urban regions. It is projected that by 2050 66% of the global 
population will reside in cities, compared to 54% today and 30% in 1950 (United Nations 2014). Global 
needs in infrastructure investment for land transport, telecommunications, electricity and water were 
estimated at $53 trillion from 2010 to 2030 (OECD 2011). In the U.S. the American Society of Civil 
Engineers gave the national infrastructure a grade of D+, and estimated $3.6 trillion will need to be invested 
by 2020 to address this problem (ASCE 2013). Resilience to natural and human-caused disasters continue 
to be an area of great concern; for example, the cost of disasters was estimated to be $55 billion in economic 
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loss in the U.S. in 2011, and resulted in approximately 600 deaths (National Academies 2012). Global 
warming will have severe impacts on coastal cities and is another area of increasing concern. 
 At the same time, cities are undergoing numerous revolutionary changes due to advances in information 
exchange and communication technologies (ICT). Smart electric power systems are emerging that exploit 
ICT to improve efficiency and reliability of the energy production and distribution network. However, these 
systems are vulnerable to cyber-attacks raising new concerns that must be addressed. The electrification of 
the vehicle fleet will have important impacts on the power grid by placing new loads on the system while 
the introduction of photovoltaics in homes will transform some consumers of electrical energy into 
producers. Smart cars, autonomous vehicles and new vehicle sharing services are already beginning to 
revolutionize transportation. The emergence of commercial drones has the potential to revolutionize the 
transport and delivery of goods. At the same time manufacturing  is undergoing its own revolution with 
new advances in data analytics, the Internet of Things, and additive manufacturing complementing 
increased exploitation of robotics. There are strong interdependencies among these infrastructures and 
changes in one infrastructure will inevitably impact others. It is clear that cities will be very different in the 
years ahead compared to the cities of today. 

Smart cities refers to the development and integration of ICT to effectively manage the major 
infrastructures and municipal services making up the city in order to improve efficiency and the quality of 
life of its inhabitants. The smart city vision relies on extensive use of sensors to monitor the city and 
information technologies to adapt activities and operations of the city to meet its objectives. Realization of 
the smart city vision requires solution of many technical challenges. 

Dynamic Data Driven Application Systems (DDDAS) is a paradigm that involves dynamically 
incorporating real-time data into computations in order to steer the measurement process of an application 
system (Darema 2004). It is immediately apparent that the DDDAS paradigm is directly applicable to 
realizing smart cities. For example, DDDAS provides an approach to address issues such as creating more 
efficient and reliable electric power grids and to mitigate traffic congestion. This paper brings together the 
views of several leading DDDAS researchers to discuss the applicability of this paradigm to create more 
resilient and sustainable cities. 

The remainder of this paper is organized as follows. First Celik and Damgacioglu discuss the 
exploitation of DDDAS in smart power grids and many of the research challenges that must be addressed. 
Jin then discusses a related and important area – the protection of energy distribution networks from 
cyberattacks. Son discusses approaches to apply DDDAS to food, energy, and water (FEW) systems as well 
as its application in transportation. Hunter continues and focuses this discussion on DDDAS applications 
in transportation. Finally Xu discusses methodological issues in DDDAS, especially in the context of smart 
manufacturing. 

2 SMART ENERGY FOR SMART CITIES (CELIK AND DAMGACIOGLU)  

In this section, we discuss the emerging role of DDDAS-based methodologies in control and management 
of energy infrastructures of future smart cities, and its associated research challenges. 

2.1 Smart Grid and Buildings in Smart Cities  

A smart city is a holistic network of integrated urban infrastructures, where the electric power system serves 
as a pillar infrastructure that many other infrastructures depend on. The fundamental role of an electrical 
energy system in a smart and sustainable city is to improve energy efficiency and reliability of the grid, and 
decrease emission and energy consumption while satisfying the needs of citizens. To accomplish that, 
electric power infrastructure needs a technology for timely information exchange and communication 
(ICT). Here, the concepts of smart grid  as a combination of the electrical power grid and ICT (Morvaj et 
al. 2015) and smart building as a way of  managing and controlling renewable energy sources, house 
appliances, and energy consumption using a wireless communication technology (Morvaj et al. 2015) must 
be seamlessly integrated into the smart city energy infrastructure.  
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Today’s energy infrastructure operates at one-way communication where demand points are passive, 
and utilities are the only main stakeholders that can control the whole system. With current communication 
technology, this system provides historical data for forecasting and decision making for utilities. However 
historical patterns are not enough for adapting a course of action to real-time changes in the demand in a 
timely manner and thus results in inefficiencies and even reliability problems in the power grid. In fact, 
20% of total capacity of electricity generation is used for only 5% of time in today’s infrastructure due peak 
demand (Lugaric et al. 2010). On the other hand, smart grid technologies promise bi-directional near- or 
real-time communication between the energy consumer and providers. Through this infrastructure, utilities 
can make use of smart houses’ micro renewable energy sources, batteries and demand side management 
capabilities to supply energy in peak demand periods, which is so-called virtual power plant. Therefore, 
this controllability and real time data promise improving reliability of the power grid and energy efficiency. 
However, due to computational resource scarcity, complicity of making decision, etc.,  an intelligent 
architectures are needed to be utilized to enhance the value of ICT.     

2.2 Yet Another Simulation Algorithm –or How is DDDAS Different? 

Based on the historical data obtained from traditional energy infrastructures, researchers developed several 
models for efficient energy supply while satisfying energy demand and preserving and considering emission 
(Veit et al. 2006; Morais et al. 2010; Omu, Choudhary, and Boies 2013). In most of these studies, the 
challenge is to deal with the uncertainty and nonlinearities in demand and generation. In coping with these 
issues, simulation is proven as a valuable tool for assessment, comparison and optimization of the complex 
energy systems as a decision support and analysis platform. However, the obtained solutions from the usage 
of historical data in developing of these simulation models, can be far from real optimal or even infeasible 
due to real time changes in demand and generation. To this end, smart energy infrastructures can 
dramatically improve the performance of simulation model by feeding the model with near- or real-time 
data. However, they come at the expense of new challenges related to processing of the big data, shorter 
decision window and steering measurements. Here, the revolutionary concept of DDDAS investigates new 
algorithms and instrumentation methods for the real-time data acquisition and timely control of complex 
smart energy infrastructures in smart cities via incorporation of dynamic data into adaptive simulations. 
Such an application of the DDDAS in smart grids promises more accurate information for monitoring and 
controlling purposes through obtaining real-time measurements from the smart buildings (including home 
appliances), power supply resources, and other sensors (for weather conditions, battery, and even electric 
vehicle). An overview of a generic DDDAS framework for smart grids is demonstrated in Figure 1. 

DDDAS performs timely monitoring, planning, and control of distributed operations at smart grids.  
This architecture allows us to mimic the system operations in the most accurate manner while enabling 
efficient usage of computational resources, access to the dynamically-changing data in the system, and 
superior enterprise integration in terms of communication and information synchronization. The 
components of system architecture and methodologies include real time data driven adaptive multi-agent 
simulation, smart algorithms for state estimation, fault detection and localization, model fidelity selection, 
demand side management decisions, pricing and operation planning. 

2.3 Research Challenges and Future Directions 

While DDDAS has been widely adopted in several problems such as supply chain systems (Celik et al. 
2007; Celik et al. 2010), controlling and operation planning of microgrids (Thanos et al. 2013; Thanos et 
al. 2015; Shi, Damgacioglu and Celik 2015), controlling aerospace vehicles (Alleire et al. 2013; Alleire et 
al. 2013) and etc., the DDDAS efforts on smart grids is still at its infancy. Many existing issues have not 
been fully addressed, while new research challenges keep emerging from smart grid applications. In this 
section, we discuss some of the research challenges related to DDDAS approaches in smart grid operation 
and control.  
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Figure 1: Overview of DDDAS application for operation planning and control of smart grids. 

 Self-configuring adaptive simulation. Since energy supply is more predictable and controllable than 
demand, predicting demand plays a vital role in operational planning and controlling the power grid. While 
aggregated demand forecasting or energy consumption of typical household appliances (Suganthi and 
Samuel 2012) are well-studied in the literature, forecasting of schedules of the hard hitters (e.g. dish 
washers, washing machines, vacuum cleaners) is not practical. Here, DDDAS addresses the issue by  
feeding real time data from smart meters into simulation model to adapt the model to the changes in the 
real system. However, the number of parameters, their associated inter-dependencies and the need for high 
frequency update for each parameter grows significantly at the operational level across these networks. 
Therefore, given the enormous amount of dynamically changing data that exists in the system, information 
needs to be updated wisely (and only when it is needed) in the model in order to prevent unnecessary usage 
of computing and networking resources. In such an architecture, the possibility communication failures and 
reliability of the information must also be taken into account. Therefore, adequate fault detection and 
localization mechanisms are needed to  be developed to avoid cascading events and to improve the quality 
of the solution.    

Multi agent modelling and multi objectivity. Power grids depend upon many interacting dynamic 
systems (referred to as systems of systems). Conflicting objectives of maximizing system reliability, quality 
of electricity flow (or minimizing number and extent of power outages), and compliance to governmental 
regulations as well as minimizing total cost, electricity prices, and environmental effects add further 
challenges to the optimal control of these systems. Through two way communication, each customer (smart 
building) has information about time varying prices and demand profile of the power grid and using this 
information, each customer may behave based on its own objective characteristics. For example, a customer 
may reschedule the utilization of the washing machine according to time varying prices. Therefore, in order 
to obtain a global optimum solution, each customer should be modeled as an agent in the simulation model.  

Modular modeling. In a simulation-based planning and control framework of large-scale systems, 
computational efficiency is necessary not to disrupt a dynamically changing system. However, this is not a 
trivial task since an accurate and complete representation of a real large-scale and complex system may end 
up being a remarkably detailed model, especially when it is aimed to support short-term decisions (e.g. 
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pricing, real-time operational planning, load shifting, direct load management in smart grids). Such a 
detailed simulation and finding the optimal decision require significant amounts of computational power 
and time. To this end, intelligent modeling techniques should be developed for efficiency in these 
simulations.  The simulation models of these complex systems  also need to be robust to handle integration 
of various technologies at a distributed setting, especially for those allowing dynamic data updates during 
the model execution, and prevent from crashes and system anomalies. 

3 AN ATTACK-RESILIENT FRAMEWORK FOR SECURING CRITICAL ENERGY 
INFRASTRUCTURE (JIN) 

Critical infrastructures like power grids are key components in smart cities and urban infrastructures. 
Modern energy systems are increasingly adopting Internet technology in their control systems to boost 
control efficiency, which unfortunately opens up a new frontier in cyber-security. Cyber incidents in the 
energy sector have significantly grown in both number and sophistication. For example, on December 23, 
2015, 225,000 customers in western Ukraine lost their electricity due to a synchronized and coordinated 
cyberattack (ICS-CERT 2015). These emerging scenarios demand that the problem of securing energy 
systems require immediate attention.  
 People typically explore security solutions in power systems by proceeding in one of two directions. 
One is to apply commercial off-the-shelf security products, such as firewall or antivirus software; the other 
is to exploit redundancy in power grid applications (e.g., bad data detection in the power system state 
estimation). However, neither direction alone can achieve effective attack-resilient solutions. Our goal is to 
take a DDDAS approach to develop an effective cyber-attack detection framework across both the 
communication network layer and the power application layer. To achieve the goal is challenging, because 
the power systems are (1) mission-critical, i.e., they must be continuously-available and the security 
policies and operational requirements must hold at every instant of time, and (2) time-critical, i.e., any new 
security designs must operate in real-time.  

The high-level design of the cross-layer attack detection framework is depicted in Figure 2. During the 
execution, the system takes dynamic input data from the network layer (e.g., topologies, forwarding tables) 
and the application layer (e.g., control events, state estimation results), and then detects and verifies the 
network and application behavior against security policies specified by the policy engine. Violations will 
indicate vulnerabilities and errors caused by cyber-attacks or misconfigurations. Below we present the 
essential components of the framework in the DDDAS paradigm and discuss the corresponding challenges.  

 

 
Figure 2: A Dynamic Data-Driven Cross-Layer Attack Detection Platform for Energy System Security. 

3.1 Efficient Data-Driven Models 

A key component is to design efficient models that precisely represent network-layer and application-layer 
behavior under dynamic system environment. We explore several models. For example, in the 
communication network layer, we develop an efficient graph-based networking model that uses the idea of 
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equivalence class (i.e., a set of packets that undergo the same forwarding behavior) to significantly reduce 
the search space to achieve real-time verification; in the power application layer, we develop a principal 
component analysis (PCA)-based model for attack detection in optimal power flow (OPF). During run time, 
the PCA-based model analyzes real power flows and monitors different OPF outputs to determine whether 
the dynamic input data, including network configuration, generator capacity, and system loads, have been 
compromised. 

One key feature is that the models are capable of accepting data at execution time (both real/synthesized 
data traces or real-time data) as system states evolve, and the input data drive the system to (1) select the 
appropriate models and the detection algorithms with different level of details, and (2) dynamically update 
the models, to steer the detection and verification process. For example, a system administrator plans to 
change the configuration of certain SELinux mandatory access control rules on a subset of end-hosts; if the 
primary concern is whether the desired end-to-end connectivity is preserved after the change, our system 
could avoid the invocation of complicated application models, and choose to perform a reachability test on 
a much simpler network model, with an optimized real-time verification algorithm.  

3.2 Uncertainty Incorporation 

It is critical to ensure security policy remains consistent as system states evolve in real time. However, the 
inevitable system uncertainty makes this objective very challenging. Uncertainty exists in multiple layers 
of the system, including uncertainty of message timing in the communication network layer, and uncertainty 
of measurement selection in a moving target defense (MTD)-based state estimation scheme in the power 
application layer. Therefore, no single point of the system is capable of controlling the exact timing and 
state of network/application events, ultimately leading to inconsistency between policy and actual desired 
behavior.  

To address this issue, we incorporate uncertainty into the models and control algorithms for verifying 
the consistency between policy and actual network/application behavior. We develop an uncertainty-aware 
network model centering on the idea of “symbolic graphs”, which represents the entire set of different 
possibilities of the network states in the manner that can be quickly analyzed (Zhou et al. 2015). We also 
explore ways to leverage the uncertainty-aware model to quickly perform accurate verification, including 
(1) algorithmic design to synthesize an update plan that (heuristically) minimizes transition latency, (2) 
tools to perform correct reasoning with out-of-date states, and (3) model optimization to enable real-time 
verification within latency bounds. 

3.3  Cross-layer Detection and Interfacing 

Cross-layer attack detection is useful, because carefully correlating measurements and outputs between the 
communication network layer and the power application layer can reveal attacks that are not seen by either 
layer and also enable early detection. For example, the redundant paths and traffic congestion information 
obtained from the communication network can be used to assist the selection of measurements and weights 
in state estimation attack detection, as well as the selection of elements and parameters in OPF attack 
detection. On the other hand, the compromised nodes and malicious application information derived from 
the power network can be used to ascertain the status of nodes and links for the communication network 
verification and to assist the selection the appropriate security policies.  
 The challenges lie in defining effective interfaces that enable decomposition of the system into 
measurement processes, administrative regions, and power application software layers that can be 
individually studied and verified; and in composing system-level metrics from metrics on multiple 
individual regions and heterogeneous types of devices and evidence. To respond to these challenges, we 
can leverage the recent advancement of model checking technology, such as NICE (Canini et al. 2012) with 
symbolic execution of event handlers, to perform a systematic joint exploration of an entire system to detect 
vulnerabilities and errors. This requires us to change NICE’s API and internal algorithms to achieve a more 
robust solution and integrate its checking process in the detection framework. 
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4 MULTI-SCALE SIMULATION OF ENERGY AND TRANSPORTATION (SON) 

Sustainable development of food, energy, and water (FEW) is vital for human well-being. An 
interdisciplinary team of systems and industrial engineers, plant scientist, bio-systems engineers, 
microbiologist, and economists at The University of Arizona has been working collaboratively under a 
system-based approach to develop a smart system that efficiently integrates microgrid-enabled energy, 
water, and food as an effective urban agriculture solution. One of the major research tasks led by the 
Systems and Industrial Engineering team is to design and develop a DDDAS-based, smart management 
system for the effective operation and management of the FEW system, while enhancing overall resilience 
and sustainability. The goal is to improve the use of water, energy, and labor resources, and the overall 
economic performance via real-time monitoring and control of a FEW system with distributed wireless 
sensors, data acquisition, and dynamic-simulation based decision support system. 

To accomplish a DDDAS-based, smart management system for the FEW system, effective modeling 
of individual components is crucial. Among them, an energy system is emphasized in this section. The 
Son’s group (a co-author) has extensive experiences in the modeling and management of photovoltaic (PV) 
generation, energy storage systems, and energy grids (Mazhari et al. 2011). For example, Figure 3 depicts 
a community-level simulator for a scenario involving distributed generators and grid, where the data was 
gathered from National Aeronautics and Space Administration (NASA), Energy Information 
Administration (EIA), National Renewable Energy Lab (NREL), Photovoltaic (PV) manufacturers, and 
utility companies. The demand is based on the energy consumption of individual households within the 
region considered. The user interface of the simulator allows the specification of various types and 
configurations of storage devices (battery, compressed air, super-capacitor), generators (PV, grid), and 
demand. Later, the Son’s group has extended this dynamic data driven, simulation-based optimization 
approach to various problems involving integrated energy systems, such as (1) an integrated renewable 
energy system with a Plug-in-Hybrid Electrical Vehicle and demand response program (Zhao et al. 2013), 
(2) a smart energy management platform for homes (Qin et al. 2016), (3) optimal sizing and location of PV 
panels in a campus environment (Kucuksari et al. 2014), and (4) policy evaluation of a PV system (Zhao et 
al. 2011). Currently, various simulators at multi-scale (e.g. household, substation, community) are being 
enhanced to enable dynamic data-driven, multi-scale real-time decision support capabilities. 

As another complementary effort for smart cities and urban infrastructures, a team of systems and 
industrial engineers and civil engineers at the University of Arizona has been developing various agent-
based simulation models for transportation systems. For example, Figure 4(a) depicts a snapshot of the 
Phoenix road network in DynusT (Chiu et al. 2010) integrated with the Extended Belief-Desire-Intention 
(E-BDI) human decision-modeling framework (Lee et al. 2010). DynusT is a Simulation-Based Dynamic 
Traffic Assignment (SBDTA) software which performs mesoscopic simulation and dynamic traffic 
assignment for large-scale, regional networks (Chiu et al. 2010). The E-BDI framework was developed 
extending the original belief, desire and intention (BDI) concept (Bratman 1987), which includes a range 
of decision factors such as (1) a Deliberator, (2) a Real-time Planner, and (3) a Decision Executor in the 
decision-making (intention) process (Lee et al. 2010). 

Figure 4(b) depicts the trajectories of diverted vehicles in the case of an accident in the considered 
Phoenix road network, where the concept of multi-scale modeling (a key feature enabling DDDAS) was 
applied. During the simulation execution, en-route planning of some agents (i.e. drivers) are performed by 
Time Dependent Shortest Path (TDSP) algorithm (aggregated scale), which generates the shortest route 
without considering inference and reasoning behaviors based on driver’s preference. On the other hand, 
other agents perform their en-route planning via the E-BDI module (detailed scale). Extensive experiments 
were conducted to understand the trade-off relationships between the modeling accuracy and the 
computational complexity. Currently, various simulators at multi-scale for the FEW system and the 
transportation system are being enhanced or further developed toward a smart management system of FEW 
and transportation nexus in cities. 
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Figure 3: Simulator for community-level energy generation and grid (Mazhari et al. 2011). 

 

  

Figure 4: (a) Snapshot of a Phoenix road network in DynusT; (b) Trajectories of diverted vehicles (Kim et 
al. 2014). 

5 TRANSPORTATION SYSTEM MANAGEMENT AND CONTROL (HUNTER) 

As seen in the energy and transportation discussion, transportation systems management and control 
functions have employed aspects of Smart City data driven concepts for some time.  Under the umbrella of 
Intelligent Transportation Systems (ITS) there are numerous examples of data-driven applications in 
transportation operations and control (Gibaud at al. 2011; Yang and Recher 2005; Fujimoto et al. 2007; 
Hunter et al. 2009; Skabardonis 1991; Bretherton et al. 1998).  One of the earliest applications of ICT 
concepts was the area of intersection signal control. Since the middle of the last century, traffic control at 
many intersections has been driven by real-time data (Klein 2006). Embedded vehicle detection on 
intersection approaches have allowed implementation of control algorithms with objectives such as 
minimizing user travel time, minimizing emissions and energy use, or maximizing vehicle throughput. 
These techniques, under the moniker of coordinated actuated or adaptive signal control, have sought to 
optimize individual intersections, corridors, and networks.  While more limited, freeway operations have 
seen similar efforts through the use of ramp metering technology. 
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However, the past several years have begun to see several developments that will significantly influence 
the trajectory of transportation operations and control in a smart cities environment.  These developments 
include the inclusion of the vehicle in active data collection and vehicle control through vehicle-to-vehicle 
(V2V) or vehicle-to-infrastructure (V2I) technology (Vehicle Infrastructure Integration 2016); changes in 
the form of data available, and a broad re-imagining of mobility itself. 

V2V and V2I – Historically, the detection of vehicles in the traffic system has been passive.  That is, 
vehicles were detected externally through the use inductive loops, video, radar, etc.  However, V2V and 
V2I, and more broadly any connected vehicle technology, is allowing the vehicle to self-identify in the 
system.  Where previously the vehicle had to travel through a detection zone to be recognized, it may now 
announce itself when it enters the system or corridor.  This creates significant new opportunities in 
scheduling arrivals at specific locations (e.g. intersections), providing user-specific trajectory guidance to 
minimize energy and emissions, real-time routing, etc.  The implementation of new control systems 
incorporating data enabled by vehicle connectivity is well matched to the capabilities of the DDDAS 
environment.  The need for simulation and analytic approaches, capable of utilizing real-time dynamic data 
streams, providing faster than real-time solutions, is critical to the utilization of these new vehicle initiated 
data. 
 Furthermore, connected vehicle technology offers the exciting opportunity for the vehicles to also be 
active participants in the development and implementation of control strategies.  For instance, Figure 5, 
shows a paradigm by (Suh et al. 2014) in which ad-hoc distributed simulations were implemented onboard 
the vehicles.  It was shown that the participation of vehicles in system traffic control strategies and system 
optimization could be undertaken without the need for extensive infrastructure-based detection systems or 
a centralized computational architecture.   
 

 
Figure 5: Ad Hoc Distributed Simulation for Transportation System Monitoring.  

Data Form – On-board vehicle technology is rapidly creating a fascinating shift in the source of data 
for transportation operations and control. Traditionally most operational data (roadways speed, flow, 
densities, etc.) were the domain of the public transportation agency.  Using agency operated detection 
devices in the roadway, performance was measured and the subsequent data streams were available for 
control applications. Today, vehicle’s now routinely collect their individual data through the use of smart 
phone apps or proprietary onboard devices. While embedded infrastructure-based detection tends to be 
aggregate and point based (e.g. a count of all vehicle crossing a point on the roadway) vehicle based data 
is provided over the entire trip but is limited to the vehicle itself. Thus, data sets gathered from connected 
vehicles tends to be a sparse relative to the overall vehicle fleet but rich in detail.  These vehicle trace data 
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are opening new opportunities for DDDAS based management and control, particularly approaches that are 
able to fuse the traditional point based detection with the trace data.   

Mobility – Smart cities and new technology are reimagining the very concept of mobility.  Today, the 
vast majority of trips in many cities are in personally owned vehicles with an occupancy of one.   The rapid 
increases in economical and easily accessed communication is creating a shift to on-demand shared 
mobility.  Uber and similar services are only the tip of this trend.  As driverless vehicles enter the vehicle 
fleet the concept of mobility through ownership will likely shift to mobility as a service.  The impact of 
such a transform is still largely unknown.  However, DDDAS will have a significant role in this 
transformation. As vehicle fleets become connected and shared, moving both people and goods, effective 
real-time management of vehicle services will be critical to efficient use of the vehicle fleet,  optimization 
for trip sharing, and distribution of demands across the roadway infrastructure.  

6 EFFICIENT MULTI-FIDELITY DECISION MAKING FOR DDDAS (XU) 

The fundamental objective of ubiquitous sensing and control is to understand, analyze, and optimize 
operational conditions of systems. Although the classical feedback control theories lay a solid foundation 
to enable meeting operating goals and constraints based on the assessed system states, the traditional control 
paradigm has limited applicability to the modern dynamic data driven application systems. The fundamental 
challenge is the efficiency of processing and computing of data to arrive at a timely and optimal decision, 
which is critical due to the unprecedented dynamic interactions of multiple entities’ multimodal and multi-
fidelity data collection activities, and the computing of systems’ operational conditions at different levels 
and scales. This close interaction offers tremendous potential to transform the ability to understand and 
control the operation of systems in the format of drastically improved real time situational awareness. But 
it also poses new and significant challenges on multiple fronts. A unique and critical challenge among them 
is the intelligent allocation of limited data acquisition and computing resources in order to make (near) real-
time decisions to optimize the execution of these systems.   

We consider a flexible manufacturing system as an illustration (Xu et al. 2016). There are two types of 
products and five work stations. Each product type has a processing sequence and needs to re-enter some 
work stations multiple times. Each station has multiple flexible machines. Inter-arrival and service time 
distributions are non-exponential. Figure 6 shows the flow of jobs through this manufacturing system. 
When more than one type of products are waiting for the same work station, product 1 has higher priority 
over product 2. The machine can perform serial batches with two products of the same type to save the 
setup time. The system operator needs to determine the number of machines at each work station with an 
objective to minimize the average cycle times. When the total number of machines in the system is 37 and 
the number of machines in each work station must be between 5 and 10, there are a total of 780 feasible 
solutions that the system operator needs to evaluate. 

The optimal allocation depends on the mix of products 1 and 2. When there is a change in the product 
mix, the system operator needs to re-compute an optimal machine allocation in real-time. The complex 
characteristics of the system (e.g., re-entrance, non-exponential service times) make simulation necessary 
to accurately determine the cycle times for products 1 and 2. However, a full-featured discrete-event 
simulation model may be too time-consuming for real-time decision making with 780 feasible solutions to 
evaluate.  

To alleviate this computational challenge, one promising paradigm is to leverage low-fidelity models 
that provide approximations to the cycle times for a given machine allocation decision. One such low-
fidelity model can be obtained by assuming that all inter-arrival and service times are exponentially 
distributed, neglecting all complicating characteristics such as batching and re-entrance, and thus the 
average cycle times can be computed using M/M/c equations. Obviously, computing these closed-form 
equations are orders of magnitude faster than running discrete-event simulations. In addition, this 
approximation model only requires knowing the mean processing times at each work station, while the 
discrete-event simulation model requires full distributional information. The simplification also inevitably 

1152



Fujimoto, Celik, Damgacioglu, Hunter, Jin, Son, and Xu 
 

leads to significant bias. Nevertheless, the low-fidelity model may provide useful information in 
determining the relative ordering of the feasible allocation decisions. We introduce a new concept known 
as ordinal transformation (OT) to make use of low-fidelity estimates to rank all feasible decisions and 
transform the original decision space into a new ordinal space. 

 
Figure 6: A flexible manufacturing system with two products.   

In Figure 7(a), we plot cycle times estimated by high-fidelity discrete-event simulations. Because this 
is a 5-dimensional problem, we cannot display the results in the original 5-dimensional space. Instead, we 
indexed solutions based on their positions in the original space and then placed them on one axis using the 
indices. This represents one possible way to partition the original solution space. We then show in Figure 
7(b) both the low- fidelity (the blue curve above) and the high-fidelity (the red curve below) simulation 
estimates of all 780 solutions after OT. The horizontal axis gives the rank of a solution as determined by 
the low-fidelity model. The left side represents solutions that are ranked to be better.    

 

           
Figure 7: Cycle times in (a) the original decision space; and (b) the transformed decision space. 

Despite the large bias in low-fidelity results, the relative order among solutions was highly reliable as 
seen by the monotonic trend in the high-fidelity model result in Figure 7(b). It is also obvious that we can 
partition solutions in Figure 7(b) into three groups. Solutions within the left and the middle groups have 
quite similar performance and thus these two groups have small group variances. While the right group 
shows substantial variability, it is less a problem because this group is clearly much worse than the other 
two groups. So one can safely sample within the left and middle groups to search for the optimal solution. 
In comparison, the partition in Figure 7(a) would only lead to groups with high group variances and very 
small group distances. Therefore,  a sampling strategy would have to keep sampling from all groups.  
 For this particular example, the low-fidelity model results agree very well with the high-fidelity results 
in terms of ordinal ranking and thus the partitioning of the decisions after OT turns out to be a very good 

OT 

Cycle Tim
e 
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one. Based on this partitioning, one may be tempted to conclude that the middle and right groups can be 
thrown away and sampling should only focus on the left group. In general, we would not know a priori 
whether the partition based on the low-fidelity model is good or not. Therefore, it is important to design an 
optimal sampling (OS) strategy that focuses on more promising groups and at the same time also sample 
other groups to avoid being misled by the unknown bias in the low-fidelity model. In our preliminary 
experiments with this machine allocation problem as well as other test functions, we illustrate that this 
novel multi-fidelity scheme  based on OT and OS leads to significant improvement in computational 
efficiency and thus provides a very promising real-time decision making framework for DDDAS.  

7 CONCLUDING REMARKS 

Smart cities offer an approach to addressing many of the most important challenges facing society today. 
The DDDAS paradigm is clearly applicable to realizing smart cities, and offers new technologies to address 
issues such as effective management of city resources such as energy distribution and cybersecurity, water 
management, food production and distribution, transportation, and manufacturing. 
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