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ABSTRACT

We present ConVenus, a system that performs rapid congestion verification of network updates in software-
defined networks. ConVenus is a lightweight middleware between the SDN controller and network devices,
and is capable to intercept flow updates from the controller and verify whether the amount of traffic in
any links and switches exceeds the desired capacity. To enable online verification, ConVenus dynamically
identifies the minimum set of flows and switches that are affected by each flow update, and creates a compact
network model. ConVenus uses a four-phase simulation algorithm to quickly compute the throughput of
every flow in the network model and report network congestion. The experimental results demonstrate that
ConVenus manages to verify 90% of the updates in a network consisting of over 500 hosts and 80 switches
within 5 milliseconds.

1 INTRODUCTION

The growing and rapid adoption of software-defined networking (SDN) architectures enables fast innova-
tion of modern network applications. On one hand, the logically-centralized control and direct network
programmability offered by SDN simplifies the network application design. On the other hand, SDN
allows multiple users and applications (potentially complex and error-prone and unaware of each other)
to concurrently operate the same physical network. It is critical to verify that the network preserves the
desired behaviors, such as congestion-freedom, by eliminating the conflicting or incorrect rules from the
application layer.

Researchers investigate techniques to analyze the network configurations or the static snapshots of the
network state to discover bugs and errors, but those approaches do not scale well due to the exponentially
grown problem space, and thus they typically operate offline. Online verification tools are also explored to
check dynamic snapshots with the focus on the network-layer connectivity (Khurshid, Zou, Zhou, Caesar,
and Godfrey 2013, Zhou, Jin, Croft, Caesar, and Godfrey 2015), but not on the network congestion,
which could lead to network performance degradation and system security breaches. In this paper, our
goal is to efficiently perform network congestion verification in the context of SDN as the network state
evolves in real time. We present ConVenus, a system for Congestion Verification of Network Updates
in Software-defined Networks. ConVenus sits between the SDN controller and the network layer, and it
intercepts each update from the controller and verifies whether the congestion-free property still holds
before applying the update to the network. ConVenus can raise alarms immediately, or even block the
updates that violate the congestion-freedom invariant.

The core design of ConVenus is based on the dynamic data-driven application system (DDDAS)
paradigm (Darema 2004) that involves dynamically incorporating real-time data (e.g., flow updates and
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network states) into computations (in particular, flow rate estimation through a novel efficient four-phase
simulation algorithm) in order to steer the verification process in an SDN-based application system. To
address the challenges of real-time verification, ConVenus is designed to be stateful and incremental to speed
up the verification process. It maintains a compact network model with the flow states, and dynamically
refines the model as the network state evolves, by extracting the minimum set of network elements affected
by the new flow update, including flows and switches. The efficient problem space reduction enables
ConVenus to achieve high verification speed. We develop a prototype system of ConVenus and perform
extensive evaluation on a campus network topology with 80 switches and 500+ hosts. The experimental
results show that 90% of the update verification take less than 5 ms to complete with 10 ms as the upper
bound.

The remainder of the paper is organized as follows. Section 2 introduces the background of SDN with
the related work on network verification and traffic engineering. Section 3 overviews the architecture of
ConVenus. Section 4 presents the network modeling and the simulation algorithm for congestion verification.
Section 5 describes the generation of minimum affected network model to speed up the verification. Section
6 performs evaluation of ConVenus, and Section 7 concludes the paper with future work.

2 BACKGROUND AND RELATED WORK

SDN is an emerging computer network architecture. It decouples the control and forwarding functions in the
traditional network devices and centralizes the control logic in the SDN controller(s) (ONF 2016). The new
architecture enables direct programmability and global visibility of the network. Users can develop complex
network applications using high-level languages that are compiled by the controller into a set of low-level
instructions for the hardware devices. While SDN is a trending technology to enable rapid innovation in
computer networks, there are still numerous challenges that the research community must address. One key
challenge is how to efficiently verify and debug network applications, because SDN-based networks are still
complex distributed systems. To address the issue, researchers statically analyze snapshots of the network
state to detect system faults (Cadar, Dunbar, and Engler 2008, Mai, Khurshid, Agarwal, Caesar, Godfrey,
and King 2011, Kazemian, Varghese, and McKeown 2012). However, those approaches operate offline, and
thus find bugs only after they occur. Online verification tools are also developed (Kazemian, Chang, Zeng,
Varghese, McKeown, and Whyte 2013, Khurshid, Zou, Zhou, Caesar, and Godfrey 2013, Zhou, Jin, Croft,
Caesar, and Godfrey 2015) to check dynamic snapshots, but they focus on reachability-based invariants,
such as loop-freedom, not about network congestion. To handle congestion-free updates, zUpdate uses an
optimization programming model (Liu, Wu, Zhang, Yuan, Wattenhofer, and Maltz 2013) and Dionysus uses
dynamic scheduling atop a consistency-preserving dependency graph (Jin, Liu, Gandhi, Kandula, Mahajan,
Zhang, Rexford, and Wattenhofer 2014). The difference between those works and ConVenus are that (1)
ConVenus has much faster verification speed and is designed for online congestion verification, and (2)
we do not consider the transient changes in network updates, which we plan to explore in the future. In
addition, the global visibility and uniform southbound interfaces offered by SDN also enable efficient traffic
engineering to prevent congestion. Existing works focus on flow management, fault tolerance, topology
update, and traffic analysis/characterization (Agarwal, Kodialam, and Lakshman 2013). Those mechanisms
reside at the application layer and it is possible to generate conflicting low-level switch rules among different
applications. ConVenus takes a different approach by residing below the application layer to intercept the
network flow updates from the SDN controller for congestion verification.

3 SYSTEM OVERVIEW

We develop a verification system, ConVenus, to preserve the congestion-free property of the network.
ConVenus is a shim layer that resides between the SDN controller and the network layer as shown in Figure
1. ConVenus intercepts the updates issued by the SDN controller, dynamically updates the network model,
efficiently computes the new flow rates assume the new update is installed in the network, and performs

1132



Liu, Jin, Lee, and Moon

congestion verification, i.e., whether each flow has the desired throughput and whether the aggregated flow
rate at every network device exceeds the link bandwidth. Updates that pass the congestion verification are
applied to the data plane, otherwise, ConVenus reports the congestion issues to the network operators with
the set of affected flows and estimated new flow rates.

SDN Controller

Affected Flow 
Identification

Minimum Affected Network 
Graph Generation

Flow Rate Computation & 
Congestion Verification

Network 
Devices

ConVenus

Flow updates

No congestion: Apply the 
updates to the network

Congestion: Diagnosis report 
with the set of affected flows 
and estimated flow rates

Figure 1: ConVenus sits between the SDN controller and network devices to intercept and verify every
flow update to preserve the congestion-free property.

ConVenus models the network devices as a set of connected output ports. We model each flow as a
directed path from an ingress switch to an egress switch. We assume the ingress rates of the flows are
known before verifying the updates. The flow input rates can be derived from application specification
or acquired from the statistics collected at of the OpenFlow switch flow entries specified in (ONF 2014).
ConVenus consists of three key components to perform the congestion verification upon receiving an update
from the SDN controller.
• Affected Flow Identification. We determine the smallest set of flows, whose rate will be potentially

affected by the update.
• Minimum Affected Network Graph Generation. We create a network graph consisting of the affected

flows and ports identified in the previous module. Congestion may only occur in this subnetwork.
The size of the subnetwork is often significantly reduced compared with the entire network, and
thus greatly improve the verification speed. This is particularly useful for online verification. Our
algorithm to identify the minimum affected network graph works under the assumption the current
network is congestion-free before applying the new updates.

• Flow Rate Computation and Congestion Verification. We develop a four-phase simulation algorithm
to quickly compute the rate of each flow (including the rates at all the intermediate ports along the
flow path) in the minimum affected network graph generated by the previous module. The detailed
flow rates are then used to determine whether the update will cause congestion and if so, at which
portion of the network and by how much.

In this paper, we focus on the congestion-free property, but the design of ConVenus intends to provide
a generic framework for verifying other invariants. For example, it is straightforward to incorporate the
reachability-based invariants described in VeriFlow (Khurshid, Zou, Zhou, Caesar, and Godfrey 2013) into
ConVenus. We plan to explore other security policy and network invariants in the future work.

4 NETWORK FLOW SIMULATION AND MODELING FOR CONGESTION VERIFICATION

This section presents the network flow model in ConVenus and the simulation algorithm for fast flow rate
computation of the entire network upon receiving a controller update. The estimated flow rates are then
compared with the desired bandwidth requirements to determine whether congestion would occur if the
update is applied to the network. We describe the modeling assumptions, the problem formulation, and
the four-phase simulation algorithm for fast flow rate computation.
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4.1 Modeling Assumptions

Scheduling Policy. When multiple flows are aggregated at a switch port, the scheduling policy determines
the bandwidth allocation to each flow. In theory, all the existing scheduling policy in traditional switches
can be realized in SDN switches too. In practice, First-Come-First-Serve (FCFS) scheduling policy is
commonly used. In ConVenus, we assume that multiple flows aggregated in a port are scheduled according
to the FCFS scheduling policy. Our model is designed to be easily extended to other scheduling policies
by changing the bandwidth allocation rules. For instance, the rules for Fair Queuing scheduling policy
were investigated in a prior work (Jin and Nicol 2010).
Buffering Strategy. In ConVenus, we assume every switch adopts the output buffering strategy, although
other buffering strategies can be easily incorporated into our algorithms described in Section 4.3. According
to the OpenFlow specification (ONF 2014), each output port is assigned with one or more output queues.
The action of forwarding a packet is required to specify which port to send the packet to, but it is optional
to specify the specific queue.
Ingress Flow Rate. In ConVenus, we assume the ingress rates of all the existing flows in the network
are known. The rates can be derived from the application specification and/or be estimated from the flow
statistics stored in the SDN switches. How to obtain the precise flow ingress rates is not a focus of this
paper, and we leave the development of a flow rate monitor (e.g., continuous interception of OpenFlow
statistic messages from switches to controller) to compute ingress flow rates as our future work.

4.2 Problem Formulation and Notations

All the notations used in remainder of this paper are summarized in Table 1.
Table 1: Notations.

Symbol Explanation Symbol Explanation
Q Set of all ports in the network µq Bandwidth of port q

Qingress Set of ingress ports in the network λ in
f ,q Input rate of flow f at port q

Qegress Set of egress ports in the network λ out
f ,q Output rate of flow f at port q

Q f Ordered Set of ports in f ’s path Λin
q Aggregated input rate at port q

A f Affected flow set in respect to flow f Λout
q Aggregated output rate at port q

N f Minimum affected network in respect to flow f R f Ordered Set of the rates of f at q ∈ Q f
λ f ,q Flow rate of f at port q, including both input and output rate

S(λ f ,q) State of a flow f at a port q; {settled,bounded,unsettled}

The data plane is modeled as a collection of switches connected by unidirectional links. The sending
endpoint of a link is attached to a switch’s output port. There is an output buffer associated with each
output port. Essentially, we can model a network N as a set of output ports Q and a set of flows F . Each
output port q ∈ Q resides either on an end-host or a switch. Each flow f ∈ F is represented as a tuple
< Q f , R f >, where Q f is an ordered set of ports (q1,q2, ...,q|Q f |), which is the path that the flow passes
through, i.e., q1 is the output port of the first switch in the flow that connects to the source, q|Q f | is the
output port of the last switch in the flow that connects to the sink, and the remaining ports are on the
intermediate switches along the communication path. Note that any adjacent ports (qi,q j) in the sequence
must be connected. R f is an ordered set of input and output rates of f passing through the same sequence
of ports, q ∈ Q f .

We denote the bandwidth of an output port q as µq, and the input and output rate of a flow f that
passes through q as λ in

f ,q and λ out
f ,q . Fq denotes the set of flows passing through q. The aggregated input

rate at port q is denoted by Λin
q , which equals to the summation of the input rates of all the flows that pass

through q, i.e., Λin
q = ∑ f∈Fq λ in

f ,q. We have the following two definitions of congestion.

Definition 1 A port q is congested if and only if µq < Λin
q .
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Definition 2 A network is congested if and only if at least one port is congested.
Given the bandwidth of every port and the ingress rate of every flow, our first objective is to determine

whether the network has congestion. Our second objective is to discover, for each flow, the input rate and
the output rate at each port along its path (i.e., λ in

f ,q and λ out
f ,q for every f and q). Note that the output rate

of a flow leaving the current port is equal to the input rate of the flow entering the next port, and the egress
rate of the flow is equal to the flow output rate leaving the last switch along the path.

4.3 Simulation Algorithm of Flow Rate Computation

A key component of ConVenus is the module for quickly computing the flow rate changes of all the affected
flows due to the new network update from the controller. The results are used to identify (1) whether the
new update will cause network congestion, (2) the set of switch ports that the congestion occur, and (3) the
input and output rate of the congested flows along the communication paths. We developed a four-phase
simulation algorithm to achieve fast flow rate computation in ConVenus as motivated by several prior works
(Nicol and Yan 2006, Jin and Nicol 2010). The four phases include: (1) flow rate update, (2) reduced
dependency graph generation, (3) flow rate computation using fixed-point iteration, and (4) residue flow
rate computation, as shown in Figure 3. To illustrate the algorithm, we first present the basic rules for the
flow rate computation with FCFS scheduling policy, and then the circular dependence among the affected
flows, and finally the step-by-step description of each phase in the simulation algorithm.

4.3.1 Flow Rate Computation under the FCFS Scheduling Policy

We define the following rules for calculating the output rates of all the flows aggregated at a particular
switch port, given the corresponding input rates and the bandwidth information.

λ
out
f ,q =

{
λ in

f ,q, if Λin
q ≤ µq

λ in
f ,q×

µq
Λin

q
, otherwise

(1)

If the aggregated rate is less than or equal to the port’s bandwidth, every flow’s output rate is the same
as the input rate; If the aggregated rate is greater than the bandwidth (i.e., the port is congested), the flow
output rate is proportional to its arrival rate under the FCFS scheduling policy.

4.3.2 Circular Dependence Among Affected Flows

The objective of the simulation algorithm is to find the input and output rates of all flows at all the ports
along the path. The basic idea is to propagate and update the flow rate values along the path (i.e., a sequence
of ports) for every flow based on the Equation 1. We are necessarily left with circular dependences among
some flow variables. Let us illustrate the circular dependence with a simple example shown in Figure 2.
Assume both q1 and q2 are congested, we have the following equations for flow f1 and f2:

λ
out
f 1,q1 = λ

in
f 1,q1×

λ in
f 1,q1

λ in
f 1,q1 +λ in

f 2,q1

λ
out
f 2,q2 = λ

in
f 2,q2×

λ in
f 2,q2

λ in
f 1,q2 +λ in

f 2,q2

(2)

Since λ in
f 2,q1 = λ out

f 2,q2 and λ in
f 1,q2 = λ out

f 1,q1, we find that λ out
f 1,q1 and λ out

f 2,q2 essentially depend on each other.
Such circular dependence relationship can be extended to multiple flows with multiple ports involved.
We address this issue by identifying all the flow variables that are involved in each circular dependence,
constructing a dependency graph, and applying fixed-point iteration to solve the equations to derive the
output flow rates, and the details are presented in the next section.
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q1

q2

f1

f2

f1

f1

f2
f2

Figure 2: An example of circular dependence between two flows.

4.3.3 Simulation Algorithm for Network Flow Rate Computation

Given a set of flow input rates, the objective of the algorithm is to efficiently compute the output flow
rates at the destination hosts as well as the traffic loads at all the intermediate switches along the flow
paths, in order to detect the network congestion. Each flow is in one of the three state: settled, bounded or
unsettled. A settled flow has a finalized flow rate; a bounded flow has a known upper bound on its flow
rate; an unsettled flow is neither bounded or settled. Figure 3 illustrates the procedures of the flow rate
computation algorithm, which consists of four phases.
• Phase-I propagates the flow rate and state from ingress points throughout the network. The goal is

to settle flows and resolve as many ports as possible. We calculate the flow rate and state of all
the output flows of a port based on Equation 1 under the FCFS scheduling policy, and then pass
the rate and state of the output flow to the next switch’s input along the flow path. In the case of
no circular dependence among the involved ports and flows, all the flow rates are settled, and the
output results are used to check and determine the flow-level congestion in the network. In the case
of circular dependencies among some flow variables, Phase-I will assign an upper bound of the
rate to those flows. If the input flow is settled, the upper bound is derived by ignoring all bounded
input flows. If the input flow is bounded, the upper bound is derived by ignoring all other bounded
input flows and treat it as settled with the rate set to the bounded rate. The remaining three phases
mainly focus on addressing the circular dependencies to compute the flow rates.

• Phase-II identifies all the flow variables whose values are circularly dependent, and constructs one
or more (directed) dependency graphs. The vertex set is composed of all output ports containing
unsettled and bounded flows. The directed edges are the flows involved in the circular dependence.

• Phase-III formulates a set of non-linear equations for the flows in each dependency graph, as
illustrated in Equation 2. We use the fixed-point iteration method to solve those equations. Note
that the initial values are the bounded values calculated in Phase-I.

• Phase-IV substitutes the solutions into the system and continues to compute and update the rates of
the remaining unsettled flows that are affected by those flows in the circular dependency graph(s).

Start

Phase-I: flow rate 
computation

All S(ḑf,q) = 
settled? 

Yes

Phase-II: identify 
dependency graph

No

Phase IV: residue flow 
rate computation

Phase-III: fixed-point 
iteration

Input: ḑin
f,q 

for
q ∈ Qingress

ḑf,qfor 
q ∈ Q, 
f ∈ F 

End

Figure 3: Flow Chart of the Four-phase Simulation Algorithm for Network Flow Rate Computation.

5 SPEEDING UP CONGESTION VERIFICATION

It is critical to perform congestion verification at high speed, because delaying the updates can damage the
network state consistency and harm the real-time application requirements such as fast failover. To speed
up the process, we investigate ways to reduce the problem space by identifying the minimum set of flows
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and ports that are affected by the flow update, and performing the verification describe in Section 4 only on
the network model consisting of those elements. This approach also reduces the possibility to have circular
dependence, which further increases the speed by skipping phase II to IV in the simulation algorithm. Based
on the assumption that the existing network is congestion-free, we derive a set of theorems to generate
the minimum affected network for different types of flow update, including flow removal, flow addition,
and flow modification. An ongoing work is to develop an efficient graph search algorithm to speed up the
verification in other scenarios that the congestion-free network assumption does not hold, e.g., one can
tolerate short-term network congestion in order to achieve quick update installation.

5.1 Flow Removal

We claim that removing a flow from a congestion-free network neither causes any congestion nor changes
the flow rate of any other flows in the network.
Theorem 1 Given a congestion-free port, removing an input flow (or reducing its rate) neither makes the
port congested nor changes the output rates of other flows sharing the same port.

Proof. Equation 1 indicates λ out
f ,q = λ in

f ,q for every flow f at a congestion-free port q (i.e., Λin
q ≤ µq). A

flow removal or a flow rate reduction decreases Λin
q , and thus cannot cause congestion, and the rate of

every other flow remains unchanged as λ in
f ,q .

A congestion-free network contains no congested ports according to Definition 2. Therefore, it is safe
to forward any flow removal updates to the data plane and doing that will not change the rates of any
existing flows in the network.

5.2 Flow Insertion

We first introduce the concepts of affected flow set and minimum affected network, and then describe the
algorithm to construct them, and finally present a set of theorems to prove the correctness of the algorithm.
Definition 3 Given a newly inserted flow f ∗, the affected flow set A f ∗ is the set of all the flows (including
f ∗) in the network whose rates may be changed due to the insertion.

Definition 4 Given a newly inserted flow f ∗, the minimum affected network N f ∗ is the network consisting
of all the possible congested ports and the affected flow set due to the insertion.

Algorithm 1 illustrates how ConVenus generates A f ∗ and N f ∗ . Figure 4 presents an example of the
input and output used in Algorithm 1.

1

2

3

5

4 1

3

5

4

f2

f1 f1

f2

6 7

9

8

10 11

7 8

9

Network N and flow f2  to be inserted Minimum affected network Nf2 in respect to f2

Figure 4: A simple example for Algorithm 1: Consider a network N with one existing flow f1 =<
(1,6,7,10,11,8,4),R f1 > and one new flow f2 =< (3,9,7,8,5),R f2 >. The minimum affected network
N f2 contains f2 and the modified f1 =< (1,7,8,4),R f1 >, and the port set {3, 9, 7, 8, 5, 1, 4}.

Theorem 2 Inserting a flow into a port q makes the output rates of all the existing flows passing through
q either decrease or remain the same.
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Algorithm 1: Generation of the affected flow set and the minimum affected network

Input : A network N, and a flow f ∗ to be inserted
Output: Affected flow set A f ∗ and minimum affected

network N f ∗

1 Add f ∗ into A f ∗

2 for each flow f in N do
3 if Q f ∩Q f ∗ 6=∅ then
4 add f into A f ∗

5 end
6 end
7 Add all ports q ∈ Q f ∗ into N f ∗ ’s port set

8 for each flow f in A f ∗ do
9 for each port q ∈ Q f do

10 if q /∈ Q f ∗ then
11 /* include the ingress and egress ports of an

affected flow */
12 if q = q1 or q = q|Q f | then
13 add q into N f ∗ ’s port set
14 else
15 /* Removing the unaffected ports in

flow f */
16 remove q from Q f
17 remove λ f ,q from R f
18 end
19 end
20 end
21 end
22 Add all flow f ∈ A f ∗ into N f ∗ ’s flow set
23 return A f ∗ ,N f ∗

Proof. There are three possible situations based on equation (1). Note that a new flow insertion to q
increases Λin

q .
• If q is congestion-free before and after the flow insertion, then all the existing flows’ output rates

remain unchanged, i.e., λ out
f ,q = λ in

f ,q.
• If q is congestion-free before the flow insertion and congested after the flow insertion, then all the

existing flows’ output rates decrease, because λ in
f ,q×

µq
Λin

q
< λ in

f ,q.
• If q is congested before and after the flow insertion, then all the existing flows’ output rates decrease,

because Λin
q is increased.

Theorem 3 When a flow f ∗ is inserted into a congestion-free network, the possibly congested ports are
q ∈ Q f ∗ .

Proof. We prove by contradiction. We assume that, after inserting f ∗, there exists a congested port
q̂ /∈ Q f , i.e., µq̂ < Λin

q̂ . Therefore, at least one flow f̂ ( f̂ 6= f ∗ because of the definition of Q f ∗) passing
through q̂ increases the input rate. If f̂ does not share any ports with f ∗, or f̂ passes through q̂ before sharing
any ports with f ∗, then f̂ ’s rate remains the same. If f̂ and f ∗ share ports before passing through q̂, according
to Theorem 3, f̂ ’s rate remains the unchanged or decreases. Either way, we have a contradiction.

Theorem 3 is a key step to prove the correctness of Algorithm 1. Theorem 3 shows that the generated
N f ∗ contains all the congested ports, since we add all q ∈ Q f ∗ . Equation 1 indicates that passing through
a congestion-free port does not change the flow rate. This justifies our claim that A f ∗ contains the exact
set of the affected flows and those flows can only change the rates at the ports in N f ∗ .

5.3 Flow Modification

For a flow modification update, i.e., changing route of an existing flow in the network, ConVenus simply
treats the update as a set of flow removal and insertion updates (typically, a removal operation followed
by an insertion operation). Since we do not consider the transient network congestion during the updates,
the two operations are identical.
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6 EVALUATION

6.1 Experiment Setup

To evaluate the performance of ConVenus, we design network scenarios based on the campus network
model, which is a key baseline network model originally designed for benchmarking parallel network
simulation (Nicol 2009). The entire topology is an abstraction of a ring of simplified campus networks
as shown in the left portion of Figure 5. Each simplified campus network consists of a ring of access
switches, each of which has a number of hosts directly connected to it, as shown in the right portion of
Figure 5. Communication across different campus networks must pass through the ring of the exchange
switches connected by their own gateways.

... ...

Access switch

Host

...

...

Gateway

Exchange switch

Campus network
...

Figure 5: An example of campus network topology.

In this work, we constructed a network topology consisting of a ring of eight campus networks, which
requires eight gateway and eight exchange switches. Within a campus network, every access switch connects
to eight hosts. Each switch is modeled as one port in ConVenus. Therefore, the network has 80 ports and
512 hosts in total. We set the link bandwidth to be 10 Mbps between the hosts and the access switches, 100
Mbps between the access switches themselves as well as between the access switches and the gateways,
and 1 Gbps between the gateways and exchanges switches as well as between the exchange switches
themselves. To generate a flow insertion update, the SDN controller randomly selected two different hosts
in the network, one as the source and the other as the destination of the flow. The flow update contains state
variables including a unique identifier, an ingress rate of 10 Mbps, and a shortest path between the two
hosts. To generate a flow deletion, the controller randomly selected an existing flow in the network using the
flow identifier. While the random flow selection is a reasonable assumption, we plan to deploy ConVenus
on a physical SDN network in order to perform high fidelity evaluation. Each experiment consisted of two
stages. During stage 1, initially there was no flow in the network, and we issued random flow insertion
updates (one update at a time) until 250 flows were successfully inserted in the network. We configured
ConVenus not to apply the flow update to the network if the update did not pass the congestion verification.
During stage 2, with 250 flows in the network, we randomly generated 400 flow updates (50% are flow
insertions and 50% are flow deletions), and passed them to ConVenus. We repeated 10 times for each set
of experiments, and the results are discussed in the next section.

6.2 Experimental Results and Analysis

We first count the number of times that ConVenus reported congestion during the verification. Among
those updates causing congestion, we also count the number of times that circular dependence occurred.
The results are recorded in Table 2. We observe that in stage 1, around 174 flow insertions that would
lead to network congestion were detected before we successfully inserted 250 congestion-free flows into
the network. Among those congestion cases, more than one-third of them resulted in circular dependence,
which required further processing using Phase-II through Phase-IV of our simulation algorithm described
in Section 4.3. In stage 2, there were much less congestion cases (41 on average) and circular dependence
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cases (3.5 on average). This is because the flow deletion updates did not cause any ports in the network
to be congested as described in Section 5.1. We further plot the number of congested flows and ports for
every flow updates in one trial for stage 1 and stage 2 in Figure 6a and 6b. In worst-case scenario, 4 ports
are congested in total. The number is small because congestion can only occur on those ports along the
path of the newly inserted flow.
Table 2: Congestion verification: # of flow updates resulting in network congestion and circular dependence.
Nc is the # of network congestion occurrence and Nd is the # of circular dependence occurrence.

Stage 1 Stage 2
Nc Nd Nc Nd

Average 174.8 67.5 41.0 3.5
Standard Deviation 52.8 23.8 7.9 2.2
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(a) Stage 1: Flow insertion updates.
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(b) Stage 2: Flow insertion and deletion updates.

Figure 6: Number of congested flows and ports for each flow update.

We next evaluate the verification speed ofConVenus. We record the execution time to perform congestion
verification of each flow update for all the 10 experiments. We also record the total time and break down
into the time for (1) generating the minimum affected network graph and (2) executing the simulation
algorithm for flow computation and congestion verification. Figure 7a and Figure 7b plot the cumulative
distribution functions (CDFs) of the verification time in stage 1 and stage 2.
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(a) Stage 1: Flow insertion updates.
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(b) Stage 2: Flow insertion and deletion updates.

Figure 7: Cumulative distribution function of the update verification time, which consists of: (1) time to
generate the graph to model the minimum affected network and (2) time to run the 4-phase simulation
algorithm.
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The verification speed is high. Around 80% of the verification takes less than 5 ms in stage 1, and
around 90% of the verification takes less than 5 ms in stage 2. We did not observe the long-tail behavior
in the CDFs, and the verification time is bounded by 10 ms (the maximum time is 9.3 ms in stage 1 and
8.5 ms in stage 2). The evaluation results indicate that ConVenus is a suitable online verification tool for
many network scenarios within such a delay bound. We also observe that 95.6% of the minimum affected
network graph generation time is less than 2 ms in both stages, and most time was spent on executing the
simulation algorithm. Therefore, we further break down the time spent in each of the four phases in the
simulation. We observe that in both stages, the phase-I (i.e., flow rate computation) takes the majority of
time (92.7% in stage 1 and 96.9% in stage 2). It is because (1) if no congestion is detected, the simulation
stops at phase-I, (2) even if congestion occurs, but no circular dependence is generated, simulation does
not have to run through phase II to IV; and (3) even if a circular dependence is generated, the graph size
is bounded by the number of congested ports, which is small as shown in Figure 6.

7 CONCLUSION AND FUTURE WORK

We present ConVenus, a dynamic verification system to preserve the congestion-free property before
applying the flow updates to an SDN-based network. We develop a dynamic data-driven network model
and a simulation algorithm to perform the congestion verification. We also develop an optimization algorithm
to reduce the problem size in order to achieve high-speed online verification. Our future work includes
acquiring dynamic network flow rates at run time from the application layer and inject them into ConVenus
to steer the verification process. We will also generalize ConVenus as a platform for verifying other network
invariants and security policies. In addition, we will investigate consistency-enforcement algorithms to
handle transient network faults caused by the network temporal uncertainty.
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