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ABSTRACT 

Dynamic Data-Driven Application Systems (DDDAS) implemented on mobile devices must conserve 

energy to maximize battery life. For example, applications for online traffic prediction require use of real-

time  data streams that drive distributed simulations. These systems involve embedding computations in 

mobile computing platforms that establish the state of the system being monitored and collectively predict 

future system states. Understanding where energy consumption takes place in such systems is vital to 

optimize its use. Results of an empirical investigation are described that measure energy consumption of 

aspects such as data streaming, data aggregation, and traffic simulation computations using different 

modeling approaches to assess their contribution to overall energy consumption.  

1 INTRODUCTIONS 

Energy consumption is an on-going concern in mobile and embedded computing systems powered by the 

device’s battery. With the growing use of real-time data for traffic prediction applications one must 

understand tradeoffs between energy consumption for communications and computations under certain 

performance and accuracy constraints in order to  ensure effective operation. For example, question might 

concern the approach used to model the system and the amount and frequency with which data should be 

collected to drive the simulation computations. This information is necessary to develop power and 

energy aware techniques to optimize energy use.  

Dynamic Data Driven Application Systems (DDDAS) allow simulations to incorporate real-time or 

online data in order to drive the simulation system to produce predictions that can be used to aid  

measurements or optimize system operation (Darema 2004). DDDAS applications may be embedded 

within the physical system being monitored or optimized in order to utilize real-time data near the source 

of the data. For example, embedded traffic simulations may be part of a sensor network where real-time 

traffic data is used as input to drive transportation simulations.  Monitoring ecological development, 

forest fires, and tracking multiple targets in an ad hoc sensor network are examples where a DDDAS 

system might be embedded within the physical system (Rodríguez et. al. 2009; Schizas and Maroulas 

2015).  In situations where battery-powered mobile devices are used as the DDDAS platform energy 

consumption by DDDAS computations and communications is an important issue.  

Ad-hoc distributed simulation systems have been proposed for applications such as data-driven 

distributed traffic network simulations (Fujimoto et. al. 2007).  These distributed simulations may be 

implemented in sensor networks where sensor data is communicated to distributed simulation processes 

within close physical proximity. In a transportation application each simulation is responsible for using 

the sensor data to make future state predictions about a portion of the traffic network and exchange 

current and predicted state information with other simulations. These simulations collectively predict the 

future state of the traffic network as a whole. Individual simulations may be in close proximity of the 
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sensors, resulting in the distributed simulation being embedded within mobile devices. Alternatively, 

there one may execute a simulation in a smart phone to predict future delays. Utilizing distributed 

simulations in this way alleviates the cost of deploying and maintaining a centralized system. Our interest 

lies within the class of DDDAS that use distributed traffic simulations embedded in mobile devices. 

This paper examines the energy consumed by data-driven simulations in predicting future states of a 

transportation network. The system utilizes sensor data specifying traffic flow on various road segments 

as input and makes future state predictions of an arterial traffic network.  The future state predictions may 

then be distributed to other simulations, e.g., using the ad-hoc distributed simulation approach in order to 

enable state predictions of the entire network. A model characterizing energy utilized by the system is 

proposed that separates energy consumption in such a system for simulation computations and 

communications. 

The organization of the paper is as follows: First we provide a brief overview of existing work in ad 

hoc distributed simulation systems, energy profilers, data driven traffic simulations, and energy 

consumption in cloud computing.  In section 3 we present an architecture for an ad hoc distributed 

simulation system and describes a model that captures the different energy consuming components.  

Section 4 details the computational elements of the ad hoc distributed simulation, describes the embedded 

traffic simulations used here, and presents results of experiments measuring energy consumption for the 

simulations.  Section 6 details the communication elements of the ad hoc distributed simulation and 

presents the results of energy consumption experiments.   

2 RELATED WORK 

Ad-hoc distributed simulations were proposed in (Fujimoto et. al. 2007) and their application to queuing 

networks and transportation systems are described in (Huang et. al., 2010; Henclewood et. al., 2010). 

There has not been work examining the energy consumption of ad hoc distributed simulations to date. 

Sudusinghe created a model that is intended for Data driven Embedded Signal Processing Systems where 

energy constraints are taken into account based on different application modes (Sudusinghe et. al. 2014). 

Recent work has been conducted in the area of power consumption of data distribution management 

services defined in High Level Architecture that is utilized by distributed systems (Neal et. al. 2014). 

Work evaluating the power consumption of disseminating state information in a distributed virtual 

environment that focuses on trade-offs between state consistency and power consumption has been 

conducted in the area of distributed computing (Shi et. al. 2003).  Studies focusing particularly on energy 

of distributed systems  include (Fujimoto & Biswas 2015). 

Energy profilers are often utilized in order to measure energy consumption of mobile systems.  Trepn 

is an example of a software tool that was developed by Qualcomm to measure power of Android systems.  

Recent work on profiling distributed simulations has been conducted (Biswas & Fujimoto 2016). Power 

Tutor is a software application that was developed to aid the design and selection of power efficient 

software for embedded systems (Zhang et. al 2010). The application informs users of power consumption 

to aid application design and use.  WattsOn, like PowerTutor is a software application that allows 

developers to estimate the energy consumption of applications during development (Mittal 2012).  

Utlizing techniques such as the energy foot print of mobile hardware systems, fine grained system trace 

calling, and self constructive approaches where mobile systems automatically generate their energy model 

without any external assistance through a smart battery interface  have been conducted to gain an 

understanding of how energy is disipatied in mobile devices (Dongarra et. al. 2012; Pathak et. al. 2011).  

Data driven traffic simulators utlize acquiredacquire traffic data generally from a sensor network 

located within the environment of the area of study. There has been ample development in the area of data 

driven traffic simulations, Zhang surveys the different type of data driven intelligents systems for traffic 

networks that are currently implemented and used.  The findings from Zhang’s work include work in the 

area of vision intelligent systems, where vision based systems are used to detect, track, and recognize 

traffic related objects and vehicle detection. Multisource driven intelligents systems utilize loop detectors, 
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lasar radar, and GPS data to drive there systems. Learning driven intellegent systems utlize online 

learning, data fusion, rule extraction, ADP (Adaptive Dynamic Programming) based learning control, and 

ITS (Intelligent Transportation System) oriented learning to drive their transportation systems (Zhang et. 

al. 2001).  

The emerging use of cloud computing and mobile systems have made energy consumption in such 

systems an involving area of research. Cloud computing allows systems to offload work that would 

otherwise be performed locally on the device.  Mobile systems often have a limited amount of resources 

such as data storage available to them. Utlizing the cloud instead allows data to be leveraged onto the 

cloud rather than consuming the limited storage on the mobile device.  However, transfering data to the 

cloud requires energy, another scare resource in mobile devices. Researchers are exploring how to reduce 

and make best use of energy in such systems. Miettinen and Nurminen explore the critical factors that 

affect energy consumption of mobile clients in cloud computing. They analyzed the energy trade offs 

between local computation on the mobile device and wireless communication of mobile clients 

communicating information to the cloud.   Their experiments revealed that bulk data transfers is a good 

technique to use in order to save energy  when communicating with the cloud and computation off 

loading can improve performace and energy savings in some cases but not all. When designing 

applications to use computation off loading developers must be careful not to introduce long latencies into 

the system that could cause decreases in performance and increases in energy consumption (Mitten & 

Nurminen 2010). Shu created a system called eTime that leverages energy used in data transmission 

between the cloud and mobile device.  The system can achieve between a 20 – 30% overall energy saving 

on trace – driven simulations and real world implementations (Shu 2013).  Lee and Zomaya discovered 

that by energy consumption can be reduced in mobile systems by leverging under utilized resources 

involved in cloud computing (Lee & Zomaya 2012).  

3 DATA-DRIVEN SIMULATION ARCHITECTURE  

Ad hoc distributed simulation is defined as a set of  simultaneously executing, autonomous simulations 

connected through a wireless network. Each simulation is responsible for modeling a portion of the 

overall system determined locally by the simulator itself. Each simulator communicates state predictions 

to other simulations to model the system  as a whole.  

 Each simulation is a logical process (LP) in conventional distributed simulation terminology and is 

executed on a mobile device.  The mobile devices are connected through a wireless network.  Each device 

is responsible for connecting to a sensor or sensors within the environment in which it operates in order to 

obtain local traffic state information. Each sensor collects data information such as (speed, acceleration, 

direction) concerning vehicles that pass through its sensor range. Each sensor communicates this 

information to nearby mobile devices and the data is then used directly or is aggregated to be used as 

input for the embedded simulations within the mobile device. Predicted simulator states, e.g., future flow 

rates on various links may be then transmitted to other simulators. Here, we focus on one simulator of an 

ad hoc distributed simulation.  We consider the energy used by the simulator and that of communications 

used to drive the simulation and to communicate results produced by the simulator that are distributed to 

other simulations in the ad hoc distributed simulation. 

 The proposed energy model represents the different components of a DDDAS ad-hoc distributed 

simulation.  This model separates the energy consumption of the total system into three major 

components: data communication, data aggregation, and the embedded traffic simulations.  The model 

illustrates each major component in such a system that effects the energy consumption . The system 

depicted in Figure 1 collects data from sensors spread across the area under study, sends data that was 

either unaggregated or aggregated at the sensor to the mobile device and uses the data sent in order to 

drive the embedded simulations on the device to simulate an updated state of the traffic network.  
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   Figure 1: Aggregate at sensor architecture.    

   

Energy for data communication in the mobile device includes receiving data from the sensor network 

and sending predicted state information to other simulations (LPs). There are several options to 

transmitting date from the sensor network to the LP. Assuming data is sampled at some given rate, one 

could simply send each data update directly to the LP. Alternatively, the data samples could be collected 

in the sensor and periodically a collected set of measurements could be sent as a single message. Still 

another option is to aggregate the data within the sensor, and transmit an aggregated value, e.g., an 

average flow rate or the parameters for a probability distribution to the LP. Each of these options will 

result in different amounts of energy consumption in the system and will impact the results computed by 

the distributed simulation. For example, aggregating data within the sensor and sending the aggregated 

results will likely reduce energy consumption to transmit the data, but at the cost of providing less 

detailed information to the simulation and introducing delays before the online data can be incorporated 

into the simulation predictions. 

The embedded data-driven simulations are responsible for making future state predictions of the 

traffic network.  The amount of energy required by simulations may be significant, and requires 

exploration. The energy consumed by the simulation includes energy required by the CPU as well as 

energy used in the memory system and transmitting instructions and data between the two. These depend 

on the specific modeling approach that is used. Here, we focus on the energy used by transportation 

models using two widely used abstractions. As discussed momentarily, a model based on cellular 

automata is evaluated as well as a second based on queuing network abstractions implemented as a 

discrete event simulation. 

4 ENERGY CONSUMPTION: SIMULATION 

4.1 Embedded Traffic Simulations 

The cellular automata and queuing network models were configured to simulate the traffic of the arterial 

road network along Peachtree St. located in midtown Atlanta, GA (see Figure 2). This area was selected 

because of the availability of data. Specifically, traffic data from the NGSIM data set was utilized as the 

input to develop our simulation models (FHWA 2007).  The data was collected on November 8, 2006 

during a fifteen-minute time frame from 4:00 PM to 4:15PM. The area includes five intersections, four 

that are signalized and six road segments. The data set consists of data pertaining to individual vehicle 

trajectories with time and location stamps, from which the link travel times of individual vehicles could 

be calculated.  Figure 3 reflects a visual representation of the NGSIM data set area. In this study, link 

travel time refers to the time from when a vehicle enters the arterial link to the time when the vehicle 

passes the stop-bar at the end of the link. Intersection travel time is excluded).  
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Figure 2: NGSIM study area. 

 

Both simulation models use the same input parameters and assumptions that were used as the basis 

for all simulations used in this study.  Both models were developed in C and implemented as an Android 

native application. The output of each model is the average travel time for vehicles that are traversing the 

section of Peachtree St. described earlier. The model was validated by comparing the average travel times 

produced by the model to those observed in the NGSIM data set. 

It was assumed that there were no pedestrians or emergency vehicles. Further the simulation exclude 

u-turns, aggressive driver behavior, adverse weather conditions, road construction, and vehicle accidents.  

Due to the data limitations these aspects were not included in the models.  The inter arrival time of 

vehicles entering the simulated area were assumed to be independent and identically distributed following 

an exponential distribution. We assume that the destination zones of our model have unlimited capacity so 

that once a vehicle reaches its destination it departs from the system instantaneously. 

The input parameters of each model include the historical traffic data collected from the NGSIM data 

set. Signal timings for each traffic light and probability of vehicle turns for each origin and destination 

zone were derived from the dataset. The parameters that were varied outside of the given parameters 

include the traffic intensity and the simulation time.  

 To simplify our model we assumed that all vehicles were of the same length. We also assumed that all 

vehicles are identical, and travel with the same acceleration and maximum velocity parameters and had 

instantaneous deceleration. We assumed that the safe distance between vehicles is uniform for all 

vehicles.  

4.2 Cellular Automata Model  

The cellular automata simulation models the system on a relatively low level that allows the users to 

understand the interactive behavior of objects within the system.  In the realm of vehicle traffic systems 

cellular automata model the micro level dynamics of traffic flow behavior. Individual vehicle behavior 

can be modeled in such a system. Nagel and Schreckenberg created a well-known cellular automata 

single-lane model that divides the road into cell segments. Each cell has a state that is considered 

occupied if a vehicle is there or empty if there is not.  The state of the cells change on every iteration 

based on the neighboring cells surrounding it (Nagel and Schreckenberg 1992). Esser and Schreckenberg 

implemented an urban traffic network based on Nagal’s original model (Esser and Schreckenberg 1997). 

Statistics such as throughput, travel time and individual vehicle speed and location are computed in the 

model.  Cellular automata models derive macro level traffic flow behavior from micro level dynamics.  
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Our cellular automata model was implemented in C using the two-lane cellular automata modeling 

approach. The two lane model approach was proposed and implemented by Rickert and Nagel (Rickert et 

al. 1996). The model consists of the following modules: cells, vehicles, and road segments.   The 

simulation environment includes a two-dimensional array of 69 X 89 cells, each cell was set to the size of 

7.5 meters and can own up to one vehicle at a time. A cell can be in one of five states at any time:  empty, 

normal, source, sink, or a traffic light. A normal cell is one that is a part of a road segment. A source cell 

represents a location where vehicles enter the system. A sink cell represents the location within the model 

where vehicles leave the system. A traffic light cell represents a cell where a traffic light is located. 

Vehicles are stopped based on the state of the traffic light and assigned a turn probability if applicable. An 

empty cell represents a cell that is currently not occupied by a vehicle. Each cell has a row and column 

location, street id for the street on which they are currently located, the direction in which they are 

traveling, and an array of turn probabilities for a vehicle that occupy that cell. Each vehicle has an id, 

vehicle arrival time, departure time, total time in the system, arrival street, and  departure street. The 

vehicles velocity corresponds to the number of cells the vehicle can proceed forward. 

The overall system executes in a time-stepped manner. The tick time pertains to the overall 

simulation time in seconds.  For each time step vehicles are added to the simulation system and traffic 

lights are updated.  Each road segment of cells pertaining to the vehicle lanes are evaluated in a s shaped 

pattern checking vehicles against the flow of traffic.  Each road segment begins its evaluation at the end 

of the road allowing vehicles closest to exiting the road segment the ability to move first. This then allows 

the vehicles behind it to have the ability to move forward since once they evaluate the cell before them it 

is considered empty. Vehicles that have the possibility to move forward to the next traffic cell  are moved 

to the next available cell.  A vehicle has the ability to move if the next forwarding cell is empty, if the 

forwarding cell is a cell pertaining to an intersection the vehicle has the probability to turn.  These 

probabilities are pre-computed and hard coded into the simulation from a input file based on the data from 

the NGSIM data set.  A vehicle moves forward a set number of cells based on the vehicle’s current 

velocity. As long as the vehicle’s velocity is below the maximum velocity for all vehicles the vehicle   

accelerates v  + acceleration steps ahead in the system as long as room permits for that number of cells for 

the vehicle to proceed, if the vehicle is not able to proceed v = v+ acceleration steps ahead it proceeds to 

move as many cells as it can towards the value v that is available.  If a vehicle reaches a cell that contains 

a traffic light, a vehicle is now in an intersection and the vehicle is assigned a turn probability which is 

preset at initialization of the traffic network based on the data from the NGSIM data set.  If a vehicle is 

assigned to turn their direction property is changed and they now proceed in that direction.   Intersection 

traffic light states are updated each time step, the state of the light changes based on the length of the 

phase of each state as determined based on the information provided from the NGSIM dataset. This 

sequence continues until the simulation cycle is completed.  

4.3 Queuing Model  

In the queuing model simulation traffic lanes are represented using queues that hold vehicles occupying 

the lane.  The model is event driven. Events with smaller timestamps are processed first and continued 

until all events have been processed or the simulation has completed. 

The discrete event queuing model was also implemented in C. The model consists of the following 

modules: simulation engine, simulation application, event, vehicle, intersection, section, priority queue, 

and linked-list and implements a standard event-oriented execution paradigm. The model is driven by the 

simulation engine which holds the main loop that continuously executes until no events remain or the set 

simulation end time has been reached. The priority queue is implemented using a binary heap. The 

simulation application module is responsible for initialization of system variables that start the simulation 

and calculating output values such as the average travel time.  The simulation application is responsible 

for processing the callback functions and event handlers implement event processing routines. The event 

handlers include global arrival and departure events and events for each intersection that handle vehicle 
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events which include: arrival, entering, crossing, and departing.  Traffic light events are also a part of 

intersection events. These events are responsible for switching the state of the traffic light when called.  

Events are created using the event module which creates an event object. Each object has the attributes of 

an event type including the timestamp and callback function.  Vehicles are created using the vehicle 

module. Each vehicle created has a set origin, destination, id, lane id, and velocity. Section modules 

represent road lanes between traffic intersections.  Each section module object maintains values to 

attribute to the number of vehicles occupied in each section and a flag indicating congestion.  Intersection 

modules hold attributes corresponding to a road network intersection. Each lane of the intersection is 

represented using a queue into which vehicles are placed once they enter each intersection. The 

intersection module is also responsible for handling traffic light signal changes where signal lights states 

are based on phase lengths. If a vehicle is within an intersection during a green light phase, vehicle events 

are scheduled to proceed the vehicle forward to the next street section of the system.  

4.4 Experiments 

The embedded simulations represent  the main computational portion of the DDDAS system.  Each 

model is responsible for modeling the vehicle throughput of  the arterial network. The cellular automata 

model must update the position of each vehicle every time step in the simulation. The queuing model is 

event driven and does not need to process state updates of each vehicle so frequently. However, a priority 

queue is needed to hold the set of pending events, and a significant amount of energy must be expended 

inserting and removing events.  

Experiments were completed to measure the energy consumption as vehicle arrival rate (Figure 4) 

and simulation size (Figure 5) are varied. Energy was measured using the Trepn profiler app installed on 

an Android  LG Nexus 5x cellular phone. It is seen that the cellular automata model consumes more 

energy than the queuing model in these experiments.  The cellular automata model must access each 

vehicle within the road segments each loop iteration causing the need for more computation operations to 

be performed resulting in larger energy consumption.   

. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3: Energy as traffic load varies.    Figure 4: Energy as simulations size varies. 

 

These results quantify the energy cost of using a more detailed model. Figure 3 indicates that 

increasing the inter arrival rate of vehicles in the system results in an increase in energy consumption due 

to the increased number of vehicles in the system.  Energy consumption in the cellular automata model is 

impacted to a larger degree than the queueing model as the arrival rate increases. A larger arrival rate 

results in more vehicles residing in the system. As the cellular automata model must update the state of 

every vehicle in the system every time step and make updates according to its neighboring cells an 

increase in arrival rate should reflect an increase in energy.  Whereas the queuing model must only 

1125



Neal, Fujimoto, and Hunter 

 

process events for vehicles at the front of  each queue that have been scheduled at each iteration this 

impact of additional vehicles on energy usage will be less.  

Figure 4 shows the results of increasing simulation size. In the cellular automata simulation the 

number of cells increases in proportion to network size. Our results show the original network size based 

on the configuration of the area under study and simulations of areas a factor of four and six times as 

large. For these experiments the network was replicated by the set input parameters to increase the 

number of cells in the cellular automata model, and to increase the number of queues and events in the 

queuing discrete event model.  All instances of this experiment use an arrival rate of 1 vehicle every 5 

seconds. 

5 ENERGY CONSUMPTION: COMMUNICATION  

The data streaming and data aggregation models were written as a Java Android application.  This 

application mimics communications of data between sensors and the distributed simulations through a 

wireless network.   

5.1 Data Streaming 

A data streaming application was created that is composed of  a TCP server socket that communicates to 

TCP clients sockets over the wireless network.  The server socket creates a thread that controls the 

execution of communication between the server socket and client socket.  The server thread is responsible 

for establishing a connection with the client socket through a given port. Once the connection is 

established a thread is created to either send or receive data. 

 The receive thread is responsible for receiving data through the port in which a connection has been 

established.  The received thread establishes an input stream in order to accept data streams sent from the 

client.  The thread continuously accepts data until it is interrupted which occurs if a connection is lost.  

 The send thread is responsible for sending data through the port in which the connection has been 

established.  Like the receive thread the sending thread establishes a connection from the client in order to 

begin sending data.  The thread continuously sends data until the connection with the client has ended. 

5.2 Data Aggregation 

Data aggregation is the process of gathering data into summary form.  For the purpose of this work data 

aggregation was used in order to aggregate traffic information in order to drive the embedded traffic 

simulations.  The data aggregation process was set to aggregate information on the client side, which is 

the sensor in this case.   

Aggregating data on the client  side assumes that the client is a part of the sensor network.  The client 

collects traffic information and as the information is collected aggregates the collected values.  The 

aggregated values involve summarizing the number of vehicles and the arrival rates of vehicles. These 

summarized values are then sent to the DDDAS application over the wireless network. The DDDAS 

application has the option of receiving the values in a set interval fashion.  This option alleviates the need 

to receive continuous data until the sensor has gained enough information to aggregate or the level of 

traffic is not heavy enough for the change in summary values to occur.  

5.3 Experiments 

A set of experiments were implemented to evaluate energy consumption. The experimental setup is 

intended to mirror a DDDAS embedded traffic simulation system where the execution process includes 

the system receiving real-time sensor data that is aggregated and used as input in the embedded traffic 

simulations. The simulations produce future state predictions that are sent to other simulations making up 

the ad-hoc distributed simulation. All energy consumption measurements were evaluated utilizing direct 

measurements from the Trepn profiler app installed on an Android  LG Nexus 5x cellular phone.  The 

1126



Neal, Fujimoto, and Hunter 

 

profiler was utilized with the Delta settings enabled, which allows the application to collect power data of 

the entire system during a baseline interval.  The average power value is then determined and subtracted 

from power values determined for the running application in order to give an accurate power 

measurement of the application.  

 Data streaming experiments were conducted utilizing the Android phone as the server with the 

DDDAS application installed on the mobile device.  All communication occurred through a WLAN 

network. A laptop was utilized to represent a sensor in the sensor network and communicated collected 

sensor data to the mobile device.  The experiments show how energy consumption varies with message 

sizes.  The results show measurements when sending and receiving data continuously, and sending data at 

different payloads between the mobile device and the laptop (sensor).   

 

Figure 5: Data streaming energy consumption.         Figure 6: Payload energy consumption. 

 

 Figure 5 shows the results of receiving and sending data messages from the sensor and mobile device.  

The results show that receiving data streams on the mobile device requires significantly less energy than 

sending data from the mobile device.  Both figures show that in the case of sending and receiving data the 

energy consumption increases with message size, as one would expect.  When receiving data messages 

energy consumption similarly increase with message size.  The sending energy consumption shows a 

steady but more significant increase.  

 Figure 6 shows the results from an experiment sending 100,000,000 bytes of data using messages of 

different sizes. As the message size increases the number of messages that need to be send decreases in 

proportion, and although the power need to transmit larger messages increases the overall transmission 

time is smaller resulting in less energy consumption.  This illustrates that energy can be conserved by 

collecting data samples in the DDDAS system and sending them as a larger message rather then 

immediately sending each sample as it is collected. The drawback of this approach is an increased delay 

to transmit each individual sample. The same experiment was implemented and energy measured on the 

receiving side of the mobile device. Similar results were obtained. 

6 DISCUSSION 

DDDAS systems in mobile environments require energy for both communication of data and simulation 

computations.  Figure 7 and Figure 8 show the average power consumption (energy per unit time) drawn 

from sending and receiving data continuously and the power drawn by both simulation models under 

different arrival rate inputs. Our experiments show that energy consumption for communication 

dominates energy consumption of the overall system for this traffic network configuration.  

Communication energy can be reduced by sending data with larger message payload sizes.  
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  Figure 7: Data Streaming Power .             Figure 8: Embedded Simulations Power. 

 

 This data indicates that the power consumption of receiving data in the mobile device and executing 

the embedded simulations is modest relative to that for sending data. Of course, simulating a larger area 

will result in more energy consumption. Figure 8 shows the average power drawn by the simulation as the 

network size is increased by a specified factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Embedded Simulation Power based on Size. 

 

Figure 9 shows how power consumption increases with the size of the network. This increase is more 

significant in the cellular automata model compared to the queuing model, as discussed earlier.  In 

relation to the overall DDDAS system Figure 9 shows that compared to original network size the power 

increase in comparison to receiving data is almost twice as large as the network reaches 6 times its 

original size.  

7 CONCLUSION  

The presented work reflects a proposed architecture for embedded distributed simulation systems that are 

embedded in mobile platforms that are energy constrained. A DDDAS application system for predicting 

vehicle traffic flow was created and implemented in order to understand the energy consumption 

components of such a system.  The major components were divided into computation and 

communication.   

 The computation components of such a system were defined to be the embedded traffic simulations 

that are responsible for making future state predictions of the traffic network. We compared the widely 

used cellular automata simulation model and a queuing network simulation. Our experiments show that 
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when energy is the focus the cellular automata model consumes more energy.  The CA model’s energy 

consumption increases more rapidly as model size and traffic density increase.   

 The communication components of the system involved communication between the distributed 

simulation systems embedded on the mobile device and a sensor or sensors within the traffic network. 

Our experiments show that communication consumes a significant amount of energy.  Sending messages 

from the mobile device holding the distributed simulation consumes far more energy than receiving 

messages.  Greater energy efficiency is obtained by packing multiple data samples into a single message 

rather than sending multiple messages, but at the cost of increased delay to receive sampled data. Further, 

we observed that for these experiments the energy to send data greatly exceeds that required for the 

simulation computation and receiving messages, though this result depends on the size of the modeled 

network and the traffic load.  

Our work illustrates the energy trends one might encounter under different communication and 

embedded simulation models used in a DDDAS system designed for predicting traffic network states that 

are driven by real time data streams.  
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