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ABSTRACT

We develop a green simulation procedure that reuses simulation outputs of the current experiment to
improve the computational efficiency of future experiments. We consider practical situations where idle
computational resource is available after delivering a simulation answer within given time limit. When used
correctly, such idle resource can be valuable simulation investment that can benefit future experiments. In
repeated simulations when the same simulation model is run with different inputs at different times, our
green simulation procedure repeatedly invests idle computations into databases, which are then used to
improve the accuracy of future experiments. Our numerical results show that, as more and more outputs
are reused, our proposed estimator has improving accuracy within fixed time limit.

1 INTRODUCTION

In many practical applications, simulations experiments are run repeatedly with different inputs to support
routine tasks. For example, in finance and insurance, derivative pricing and risk management decisions
may require periodically running the same simulation model under different market conditions and business
environments. Feng and Staum (2015) and Feng and Staum (2016) first introduced the green simulation
paradigm, which reuses simulation outputs to improve computation efficiency of repeated experiments. It
is argued that green simulation entails a new perspective on management of simulation experiments and
turns the computational cost and expense into investment that provides future benefits. In this article, we
develop a new green simulation procedure. Similar to Feng and Staum (2016), the green estimator proposed
in this article can achieve arbitrary accuracy as more and more simulation investment is made. The rate
of convergence is also studied.

When simulation is used as a decision support tool for routine tasks, its usage often follows a cyclic
pattern: Firstly, the current state of the system, such as market price of a stock, is observed and used as the
input for the simulation model. Based on the observed input a time-constrained simulation experiment is run
so that an answer is delivered within the given time limit, e.g. half a working day. The cycle usually stops
here in many cases, as an answer has been delivered for the current task. We observe that the computational
resource remains available until the next experiment begins. So we propose adding a simulation investment
step in the cycle so that such idle resource can be invested to improve the computational efficiency of future
experiments. The split of available computations into simulation experiment and simulation investment
fits the framework of database Monte Carlo (Borogovac and Vakili 2008). One important component in
our green simulation procedure is the recent method of database Monte Carlo for simulation on demand
(Rosenbaum and Staum 2015). This method is developed upon database Monte Carlo with control variate
(Borogovac and Vakili 2008), which constructs databases of simulation outputs and then use them as quasi-
control variates to improve the accuracy of subsequent experiments. Database Monte Carlo for simulation
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on demand views the database construction as an one-time computational investment that benefits all future
estimation tasks. After the database construction, all subsequent simulation experiments can deliver answers
quickly, where the accuracy of the answers is limited by the quality of the given databases. As oppose
to one-time database construction in Borogovac and Vakili (2008) and Rosenbaum and Staum (2015), our
procedure repeatedly make simulation investments into databases to improve the quality of the databases
over time. Consequently, in addition to the quick delivery of simulation answers, the accuracy of our
proposed estimator improves over time.

The efficiency of our green simulation procedure depends on how well we can allocate the idle resources.
A simulation resource allocation problem is considered to maximize the variance reduction of our green
estimator. This allocation problem is similar to those studied in security pricing by simulating stochastic
differential equations, such as Duffie and Glynn (1995) and Boyle, Broadie, and Glasserman (1997), among
others. The solution of this allocation problem leads to a dynamic allocation policy of the idle computational
resources in repeated experiments. The optimal objective value also suggests a possible rate of convergence
of our green estimator. Results in our numerical example show that our green estimator has improving
accuracy over time within a fixed time limit in each experiment.

2 MATHEMATICAL FRAMEWORK

This section specifies a mathematical framework for developing a green simulation procedure in the
remainder of this article. We first describe simulation output as a function of inputs using the concept
of random fields then present a setting of repeated experiments where the same simulation model is run
repeatedly with changing inputs.

Let X ⊆ R
s be the set of all possible inputs, or the input space, for a simulation model of interest.

Given an input x ∈X , or a point in the input space, a simulation experiment is run and the simulation output
is regarded as a random variable: denote it F(x). In this article we consider the simulation output F as a
random field (Staum 2009). Specifically, the simulation output is a measurable function F : X ×Ω �→ R,
where Ω is a probability space with probability measure P on it. The mean function μ : X �→ R, which
is also known as the response surface, is defined by

μ(x) = E[F(x)] =
∫

Ω
F(x,ω)dP(ω), ∀x ∈ X . (1)

The covariance function σ : X ×X �→R and the correlation function ρ : X ×X �→ [−1,1] of the random
field are given by

σ(x,x′) :=
∫

Ω
F(x,ω)F(x′,ω)dP−μ(x)μ(x′) (2)

and

ρ(x,x′) :=
σ(x,x′)√

σ2
x σ2

x′

, where σ2
x = σ(x,x). (3)

As is standard in analyzing Monte Carlo simulations, we assume that σ2
x < ∞ for all x ∈ X so that all

simulation outputs have finite variance.
Given a point x ∈ X , the goal is to estimate μ(x) by a simulation experiment. In some cases, such

as rare event simulations, one may estimate μ(x) by running the simulation model at a different point
x′. To avoid ambiguity, we refer to the point at which μ is estimated, say x, as the prediction point and
the point at which the simulation model is run as the design point, whether or not these points coincide.
As discussed later, in repeated experiments, the same simulation model may be run at different times,
each with different design points and prediction points. A useful feature of the random field description
is the probabilistic dependence between the simulation outputs F(x) and F(x′) when the simulation is
run at different points x,x′ ∈ X . Such dependence represents the effect of common random numbers in
simulating the same model at different points. Control variates is a popular variance reduction technique
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that improves simulation efficiency by leveraging dependency between random variables. Database Monte
Carlo (Borogovac and Vakili 2008) extends control variates to more general settings when the control
variate’s mean is replaced by its estimate. Database Monte Carlo for Simulation on Demand (Rosenbaum
and Staum 2015) articulates the order of implementation of Database Monte Carlo so that an accurate
answer can be delivered quickly. We provide a brief review of these methods in Section 3.

We now present a setting of repeated experiment where the same simulation model is run with different
prediction points at different times. Suppose that one experiment is run at time n, n = 1,2, · · · ; the goal of
this nth experiment is to estimate μ(Xn), where Xn be the nth prediction point. We treat {Xn : n = 1,2, · · ·}
as a discrete time stochastic process taking values in the input space X . We assume that Xn is observable
at time n, but was not observable earlier. Moreover, the prediction points can only be observed but the
user of the simulation model cannot control their dynamics.

We now introduce terminologies and notations for databases in repeated experiment setting. As alluded
before, in the nth experiment the simulation model may be run at a design point that is different from the
nth prediction point. In particular we may run simulation at a design point x̃ and store the outputs in one
experiment then reuse these outputs to improve efficiency of future experiments. The storage of such outputs
is called the database and the point x̃ is called the database point; for convenience we refer to a database
by its database point. Let {X̃k : k = 1,2, · · ·} be a database sequence taking values in the input space X .
This sequence may be deterministic (e.g., low discrepancy sequence) or stochastic (e.g., a discrete time
stochastic process). In later discussions it is desirable to run simulation at the same database at different
times so we shall describe how the database sequence is visited. Let s(k) : N �→N be a visit schedule such
that X̃s(n) is the database point at which the nth experiment is run. The visit schedule may be a deterministic

function of time k ∈ N (e.g., s(k) = �√k
) or be chosen at each time n according to some policy as in
Section 3.2. For simplicity we assume that s(1) = 1 thus the first experiment is run at the first database
in the sequence and that s(n)≤ max{s(k) : k < n}+1 so the visit schedule does not “skip” any database
in the sequence X̃n; it can “revisit” any database that has been visited before. The database sequence
{X̃k : k = 1,2, · · ·} and the design schedule s(k) are both modeling choices by the user. Consequently, in
contrast to prediction points, user can choose the database point X̃s(n) for the nth experiment. For example

if one choose X̃n = Xn and s(n) = 1 for n = 1,2, · · · then all experiments are run at the first prediction point
X1. One contribution of this article is providing insights to choosing good database sequence {X̃k} and
visit schedule s(k) that improves computation efficiency for repeated experiments.

3 GREEN SIMULATION FOR DATABASE MONTE CARLO

In this section we develop a green simulation procedure that reuses simulation outputs to improve compu-
tational efficiency in repeated experiments. In each experiment, the proposed procedure not only delivers
accurate answers quickly but also invest simulation efforts to improve the efficiency of future experiments.
As more simulation investments are made, the answer delivered can be arbitrarily accurate.

We first review Database Monte Carlo for Simulation on Demand and related methods. Given a
prediction point x ∈ X , the Standard Monte Carlo (SMC) estimator for μ(x) is given by

μ̂SMC
r (x) =

1

r

r

∑
j=1

F( j)(x) (4)

where the outputs F(1)(x), · · · ,F(r)(x) are r independent replications of the simulation model run at point
x. The SMC estimator is often used in practice for its simplicity and theoretical justifications such as
the Law of Large Numbers and the Central Limit Theorem. The SMC estimator has variance σ2

x /r but
may be reduced by various variance reduction techniques that take advantages of certain properties of the
simulation model. For example, control variate (CV) is a variance reduction technique that takes advantages
of correlation between random variables. For simplicity of exposition we consider only single CV. Suppose
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the F(x′) is chosen as a CV for F(x), a classical CV estimator of μ(x) has the form

μ̂CV
r (x;x′) = μ̂SMC

r (x)−β
[
μ̂SMC

r (x′)−μ(x′)
]

(5)

where:

• The simulation is run for r independent replications: those in μ̂SMC
r (x) are dependent with those

μ̂SMC
r (x′) since they are simulated using common random numbers.

• The CV coefficient β is usually chosen to minimize the variance of μ̂CV
r (x;x′). The optimal

coefficient is β ∗ = Cov[F(x),F(x′)]/Var[F(x′)], provided that the required population quantities
are available. The resulting estimator has zero bias and minimized variance (1− (ρ(x,x′))2)σ2

x /r,
i.e., variance reduction of 1/(1− (ρ(x,x′))2).

The classical CV (5) assumes that the CV expectation μ(x′) is known, which may not be true in all applications.
When μ(x′) is not known, studies show that F(x′) can still be used as a quasi-CV (Emsermann and Simon
2002) or CV with estimated mean (Pasupathy, Schmeiser, Taaffe, and Wang 2012) by replacing μ(x′) with
its estimate. Database Monte Carlo with control variate (DBCV) is one such method that replaces μ(x′)
with μ̂SMC

R (x′) for some large R. Mathematically, a DBCV estimator of μ(x) has the form

μ̂DBCV
r,R (x;x′) = μ̂SMC

r (x)−β
[
μ̂SMC

r (x′)− μ̂SMC
R (x′)

]
. (6)

We see that R independent replications of F(x′) is required for estimating μ̂SMC
R (x′) in (6). These R

replications constitute a database at x′. DBCV is effective when R  r, which is assumed in subsequent
discussions. In practice the database stores the SMC estimate μ̂SMC

R (x′) instead of the individual replications,
nevertheless we say that the database has size R. Due to the use of quasi-CV, the variance-minimizing
coefficient β and the resulting minimum variance are different from those of classical CV. Readers are
encouraged to find details in Emsermann and Simon (2002), Borogovac and Vakili (2008), and Pasupathy,
Schmeiser, Taaffe, and Wang (2012), among others. In this article we consider an approximate variance
of μ̂DBCV

r (x;x′) for simplicity in later analysis. Let β = β (x;x′) be the optimal CV coefficient when F(x′)
is used as a classical CV for F(x), then

Var[μ̂DBCV
r,R (x;x′)] = Var[μ̂CV

r (x;x′)]+β 2
Var[μ̂SMC

R (x′)] (7a)

=

(
1− (ρ(x,x′))2

)
r

σ2
x +

β 2

R
σ2

x′ (7b)

≈
[

1

R
+

(
1− (ρ(x,x′))2

)
r

]
σ2

x (7c)

where the approximation follows if F(x) and F(x′) are similar so that σ2
x′ ≈ σ2

x and β ≈ 1. Despite being
an approximation,(7) showcase a main feature of the minimum variance of DBCV estimator (see Equation
(6) in (Rosenbaum and Staum 2015)): it converges to zero as the database’s size R grows to infinity and
the magnitude of the correlation ρ(x,x′) converges to 1.

At the first glance, the DBCV estimator (6) may be computationally expensive because it requires
running R+ 2r replications of the simulation model. Database Monte Carlo for Simulation on Demand
(DBSD) is an attractive procedure that uses the DBCV estimator to deliver accurate answers quickly by
separating the construction of the database from the estimation of expected simulation output. A basic
version of DBSD can be summarized in the following two steps:

1. Before the prediction point x is observed, choose a database point x′ and run r+R replications at
x′(construction of a database).

2. After the prediction point x is observed, run r replications at x and deliver μ̂DBMC(x) in (6) as an
estimate for μ(x) (estimation of μ(x)).
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In the above procedure, it takes only r replications between observing x and deliver an estimate of μ(x).
Database construction is done prior to observing the prediction point and hence is not considered part of
the estimation task. Moreover, database construction can potentially improve the efficiency of many future
experiments and hence is one form of simulation investment. The computation patterns in the above DBSD
procedure is applicable in many practical settings: usually there is a time limit (e.g., during working hours)
between observing the input of a simulation and delivering an answer via simulation, but computational
resources may be available after an answer is delivered (e.g., after working hours), when one can make
simulation investments that can benefit future experiments.

3.1 Basic Green Database Monte Carlo with Control Variate

In the original proposal of DBSD, database construction is a one-time investment, i.e., the locations and
sizes of databases remain unchanged once constructed. Consequently the DBCV estimator is conditionally
biased given constructed databases and the variance reduction it provides is limited by the quality of the
available databases. In the context of repeated experiment, we propose a green simulation procedure in
which simulation investments are made repeatedly: new databases maybe constructed and existing databases
may grow in size over time. At each time n, we suppose that the simulation model can run a total of r+R
replications: an answer must be delivered after r replications while the remaining R more replications, the
simulation investment, can be run before next experiment begins. For clarity, we consider two types of
simulation investment: augmentation, which adds more replications to an existing database and initiation,
which runs simulation at a new database point and constructs a new database. We propose the following
Green Database Monte Carlo (GreenDB) procedure for the nth experiment:

1. Suppose at the beginning of time n there are kn databases {X̃1, · · · X̃kn} with sizes R1+ r, · · · ,Rkn + r;
all these databases have r replications that were run using common random numbers.

2. After prediction point Xn is revealed, choose one database, say X̃k̃n
, as a quasi-CV.

3. Run r replications at Xn using the same common random numbers as those in the databases.
4. Deliver

μ̂GreenDB
r

(
Xn; X̃k̃n

)
= μ̂DBCV

r,Rk∗n

(
Xn; X̃k̃n

)
(8)

as an estimate of μ(Xn), where βn is chosen to minimize the variance of μ̂GreenDB
r

(
Xn; X̃k̃n

)
. Estimation

of βn is discussed in Section 3.2.
5. After delivering the answer, run R replications at X̃s(n) based on the database sequence {X̃n} and

visit schedule s(n). This maybe an augmentation to an existing database if s(n) ∈ {1, · · · ,kn} or
initiation of a new database at X̃s(n) otherwise.

Similar to DBSD, GreenDB delivers accurate answers quickly after a prediction point is revealed. In
contrast to the one-time investment in DBSD, GreenDB makes simulation investment repeatedly in repeated
experiments. As more investments are made, either existing databases grow in size or more databases are
constructed, or both. As a result, GreenDB is superior than DBSD in repeated experiments.

3.2 Designing Practical Green Database Monte Carlo Procedures

Under some conditions, a well-designed GreenDB procedure can produce converging estimators similar
to those in Feng and Staum (2015), which can achieve arbitrary accuracy as more and more simulation
investment is made. We will supply more details to the above basic GreenDB procedure and consider
designing an efficient procedure. In particular, we will specify: Construction of the initial database;

Selection of quasi-CV among existing databases; Estimation of the CV coefficient β̂ . Lastly we consider
a simulation investment allocation problem whose solution provides useful insights in choosing database
sequence {X̃k} and visit schedule s(k).
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For the first database, consider the first experiment with prediction point X1, when there is no preexisting
database. Since an answer is required within r replications of the simulation model, without any other
variance technique (e.g. importance sampling) one should simply run r replications at X1 and estimate
μ(X1) by μ̂SMC

r (X1). Given a database sequence {X̃k} and visit schedule s(k), the remaining R replications
of simulation investment should be run at X̃s(1) = X̃1. When a database is first initiated, its size is R. Note
that r of these R replications should serve as common random numbers for estimations at future prediction
points. The database initiated at time 1 may be a quasi-CV for future experiments. However, as discussed
later, a new database may not always be candidate as quasi-CV immediately after initiation.

While selection of quasi-CV among existing databases and estimation of β̂ are not our focuses, we
review some theoretical criteria and practical suggestions for these tasks. Theoretically, in classical CV one
should select a database X̃k̃n

such that |ρ(Xn, X̃k̃n
)| is maximized to achieve maximum variance reduction.

However, in general the correlation function ρ(x,x′) for a given simulation model may be prohibitively
complicated, if possible at all, to optimize. In many practical applications, outputs of the same simulation
model are highly correlated when run at similar inputs. Then, as a common practical alternative, one may
choose the “nearest neighbor” database of the prediction point

X̃k̃n
= argmin

X̃k∈{X̃1,··· ,X̃kn}
{‖X̃k −Xn‖2}. (9)

For example, the above rule is used in the numerical examples of Rosenbaum and Staum (2015).

Estimation of β̂ in DBCV has been studied by Pasupathy, Schmeiser, Taaffe, and Wang (2012)
that accounts for the use of estimated mean and Avramidis and Wilson (1993) that eliminates the bias,
among others. We did not consider applying those techniques to GreenDB in this article, it remains for

future research. As suggested by Rosenbaum and Staum (2015), we estimate β̂ by linear regression of
F(1)(Xn), · · · ,F(r)(Xn) on F(1)(X̃k̃n

), · · · ,F(r)(X̃k̃n
).

The database sequence {X̃k} and the visit schedule s(k) are the two key factors in designing an
efficient GreenDB procedure. In particular, we are interested in developing GreenDB estimator such that
Var[μ̂GreenDB

r
(
Xn; X̃k̃n

)
]→ 0 as n → ∞. We will consider some requirements for {X̃k} and s(k) so that the

above convergence is fast. Assume that ρ(x,x′)→ 1 as ‖x− x′‖2 → 0 for all x,x′ ∈ X . Based on (7) we
have Var[μ̂GreenDB

r
(
Xn; X̃k̃n

)
]→ 0 as n → ∞ if

(c1) ‖Xn − X̃k̃n
‖2 → 0 as n → ∞, and

(c2) Rk∗n → ∞ as n → ∞.

Define the nth dispersion (Niederreiter 1992) of the database sequence {X̃k} by

dn := sup
x∈X

min
1≤k≤n

‖x− X̃k‖.

Then we have ‖Xn − X̃k̃n
‖2 ≤ dn for all n = 1,2, · · · . Therefore a sufficient condition for (c1) is dn → 0 as

n→∞, which implies that the database sequence is space-filling and more and more databases are initiated as
time progresses. Based on studies Quasi-Monte Carlo (QMC), we propose using low-discrepancy sequence
in X for {X̃n : n = 1,2, · · ·}. Since a fixed simulation investment of R replications is made to database
construction in each experiment. The condition (c2) requires that s(k) revisits all databases infinitely many
times as time progresses. We now solve a simulation investment allocation problem whose optimal solution
leads to a visit schedule that satisfies the above requirements and fast convergence of the resulting GreenDB
estimator. Let Cn = nR be the total simulation investment budget for database construction by the end of
the nth experiment. For simplicity, we assume that the user can decide the number of databases kn and
all databases have the same size Rn such that kn ·Rn = Cn. In future research, we may investigate more
sophisticated resource allocation schemes such that databases have different sizes in different regions of
the input space. The goal is to find an optimal allocation so as to maximize variance reduction in (7). Then
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a visit schedule s(k) can be formulated using a dynamic policy that approximately matches the optimal
solution k∗n and R∗

n at each time n.
Assume that 1−(ρ(x,x′))2 ≤ c1‖x−x′‖α

2 for some c1,α ∈R+ for all x,x′ ∈X . It follows from Nieder-
reiter (1992) that the dispersion of some s-dimensional low-discrepancy sequence (Solbol and Halton

sequences, for example) is bounded by dn ≤ c2k−1/s
n for some c2 ∈R+. Then we have 1− (ρ(Xn, X̃k∗n))

2 ≤
c1‖x− x′‖α

2 ≤ dn ≤ cN−α/s
n where c = c1 · cα

2 . Consequently the simulation investment allocation problem
is given by

min
kn,Rn∈R+

1
Rn

+ c
r k−α/s

n

s.t. Rnkn =Cn

(10)

Substituting Rn = Cn/kn = (nR)/kn into the objective then we may minimize the scaler-valued function

f (kn) =
kn

(nR) +
c
r k−α/s

n . Clearly f is a convex function therefore its minimizer is given by

d f (kn)

dkn
= 0 ⇒ k∗n = (nR)

s
α+s

(c ·α
r · s

) s
α+s

, R∗
n = (nR)

α
α+s

( r · s
c ·α

) s
α+s

. (11)

The optimal solution (11) shows that:

1. For any α,c1,c2,s > 0 and for any r,R > 0, k∗n → ∞ and R∗
n → ∞ as n → ∞. In other words, as

more simulations are done and more simulation investments are made, both the number and the
size of databases increase indefinitely. As shown in the previous discussions, these are sufficient
conditions for Var[μ̂GreenDB

r
(
Xn; X̃k̃n

)
]→ 0 as n → ∞. In other words, the GreenDB estimator can

be arbitrarily accurate as more and more simulation investment is made.
2. For large n and fixed r,R,c1, and c2, the k∗n decreases with α and R∗

n increases with α . This suggest
that for larger α one should construct less databases that are sparser but with larger size. This is
because for larger α the prediction point and the chosen quasi-CV may be further apart but still
achieve a particular correlation level, which is bound by the dispersion of the database sequence
in the allocation problem. Note that α measures the correlation of simulation outputs associated
with two similar inputs: the larger the α the higher the correlation.

3. The optimal objective, and hence the variance reduction, is of order O(n−α/(α+s)). This suggests that,

if sup{σ2
x : x ∈ X }< ∞, then the variance of our green estimator converges at rate O(n−α/(α+s)).

Exact implementation of optimal solution (11) suggests that, in the (n+1)th repeated experiment, invest
(R∗

n+1 −Rn∗) replications in the k∗n existing databases and R∗
n+1 replications in k∗n+1 − k∗n new databases,

which raises practical difficulties: The optimal solution may not be integral; More importantly investing
in multiple databases in each experiment may not be desirable. Instead, we suggest the following dynamic
policy for the visit schedule Let {X̃1, · · · , X̃kn} be the existing databases time n and let R1 + r, · · · ,Rkn + r
be their sizes. The design schedule s(n) at time n satisfies:

1. If kn < k∗n where k∗n is the optimal solution in (11), then s(n) = kn +1 so a new database is initiated
with size R.

2. Otherwise, if kn ≥ k∗n, then s(n) = min{k : Rk = min{Rk′ : k′ = 1, · · · ,kn}} so one existing database
with minimum size is augmented (break ties in order of initiations).

According to the above policy, simulation investment is made to one database in each experiment, which
simplifies the implementation of the GreenDB procedure. By keep adding investment into the database
with the minimum size, the above policy aims to balance the size in all existing database. One drawback of
the above policy is that any newly initiated database has size R and only increments by at most R in each
subsequent experiment. When n is large, new database may be significantly smaller than other existing
databases, which results in much worse variance reduction. As a remedy, we suggest that a database
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can only be a candidate for quasi-CV if its size is no more than R less than that of the first database.
This additional safeguard ensures improving quality of the quasi-CV and fast convergence of the resulting
GreenDB estimator. We will examine the practical performance of the GreenDB procedure by numerical
examples in Section 4.

4 Illustration

To illustrate the essences of our procedure, we consider a repeated experiment that estimates the probability
of a random variable exceeds a given threshold, where the random variable in question changes in each
experiment. The simulation model in this experiment is simple so that the mean and covariance function
of the corresponding random field can be derived analytically, which enables us to closely examine the
practical performance of the proposed GreenDB procedure.

Let X = [xmin,xmax]⊂R be the input space and ω ∼ Unif(0,1) be the underlying source of randomness
for a given simulation model F . For given input x ∈ X and realization ω , the simulation output is given
by F(x,ω) = 111{x ·ω > γ} where 111 is the indicator function and γ ∈ R.

Clearly this is a 1-dimensional problem and therefore s = 1. For any x,x′ ∈ [xmin,xmax], the mean
function for the above simulation model is given by

μ(x) = Pr
(

U >
γ
x

)
= 1− γ

x
, ∀x ∈ [xmin,xmax]

and the covariance function is given by

σ(x,x′) = E[F(x) ·F(x′)]−E[F(x)] ·E[F(x′)]
= P

(
U > γ

min{x,x′}
)
−P

(
U > γ

x

) ·P(
U > γ

x′
)

=
(

1− γ
min{x,x′}

)
− (

1− γ
x

) · (1− γ
x′
)

=
(

min{x,x′}−γ
min{x,x′}

)
·
(

γ
max{x,x′}

)
.

Then one can show that for any x,x′ ∈ [xmin,xmax]

(ρ(x,x′))2 = σ(x,x′)√
σ2

x σ2
x′
=

(
min{x,x′}−γ

min{x,x′}
)2

·
(

γ
max{x,x′}

)2

(
min{x,x′}−γ

min{x,x′}
)
·
(

γ
min{x,x′}

)
·
(

max{x,x′}−γ
max{x,x′}

)
·
(

γ
max{x,x′}

)
= min{x,x′}−γ

max{x,x′}−γ = 1− max{x,x′}−min{x,x′}
max{x,x′}−γ

so 1− (ρ(x,x′))2 ≤ c1|x− x′|α for c1 = (xmin − γ)−1 and α = 1. The database sequence is chosen as
X̃n = xmin +(xmax −xmin)hn for all n = 1,2, · · · where h1,h2, · · · is the Halton sequence. This means the nth
dispersion of the database sequence is bounded by dn ≤ 2(xmax−xmin)/n; so c2 = 2(xmax−xmin). Moreover,
the optimal control variate coefficient is given by

β ∗ =
σ(x,x′)

σ2
x′

=

{
x′·(x−γ)
x·(x′−γ) if x′ ≥ x

x′
x if x′ < x

Note that for general simulation models the mean and covariance functions are too complicated to be
derived analytically, so the parameters c1, c2, α , and β need to be estimated. This remains for future
research.

Given prediction point Xn at time n, the goal of the nth simulation experiment is to estimate

μ(Xn) = E[F(Xn)] = Pr(Xn ·ω > γ), where ω ∼ Unif(0,1). (12)
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For simplicity, the prediction points are Xn ∼ Unif(xmin,xmax), which forms a trivial stationary stochastic
process with stationary distribution Xn ∼ Unif(xmin,xmax). We suppose that r = 200 and R = 1000 to emulate
practical situations (4 hours to perform estimation task and 20 hours for simulation investment). General
features of the GreenDB procedure, as discussed below, remains the same for wide range of parameters
0 < γ < xmin < xmax < ∞. For illustration purpose we choose xmin = 10, xmax = 12, and γ = 8 and so
k∗n =

√
10n.

To investigate the effectiveness of the GreenDB procedure, we performed a sequence of 1,000 ex-
periments, each with r = 200 replications for estimation and R = 1000 for simulation investment. Using
the same sample path {Xn : n = 1,2, · · · ,1000}, we evaluated two estimators for μ(Xn): μSMC

r (Xn) and
μGreenDB

r (Xn; X̃k̃n
). To accurately estimate the unconditional variance, we performed such a sequence of

experiments 10,000 times. These 10,000 macro-replications of the sequence of experiments have inde-
pendent sample paths and simulation output. The estimated variance of an estimator μ̂(Xn) of μ(Xn) was

∑10,000
i=1 (μ̂(i)(X (i)

n )−μ(X (i)
n ))/10,000, where μ̂(X (i)

n ) is the value of the estimator in the nth experiment on
the ith macro-replication. Due to using 10,000 macro-replications, the standard errors of these estimated
variances are less than 0.01% of the corresponding estimated variances (error bars are too narrow to show
clearly in the figure).

100 101 102 103
10-5

10-4

10-3

SMC

GreenDB

Slope = −

α

α+ s

Figure 1: Log-log plot of estimated variances for Standard Monte Carlo and Green Simulation estimators

for random prediction points Xn.

Figure 1 is a log-log plot of the variances of two estimators for each experiment n = 1,2 · · · ,1,000. The
horizontal solid blue line is the variance of SMC estimator with r replications, and the dotted green line is
the variance of our GreenDB estimator. The SMC variance forms a horizontal line because all experiments
are identical the simulation model is the same and all prediction points have the same distribution. We
first compare the dotted green line against the horizontal line to examine the effectiveness of our green
simulation procedure. For the first experiment (n = 1), there is no database constructed from a previous
experiment, so the GreenDB coincides with the SMC estimator. For all later experiments (n ≥ 2), when
databases are available, the GreenDB variance is less than that for the SMC variance. It is clear that the
variance of the GreenDB estimator decreases over time while the SMC estimators’ variance remain the
same. In the 1,000th experiment, the GreenDB estimator’s variance is about 50 times smaller than the
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SMC estimator’s variance, or equivalently a variance reduction of 50. This high accuracy for the GreenDB
is achieved with the same estimation time as that for the SMC estimator, which showcases the advantage
of our green simulation procedure.

A black solid line with slope − α
α+s and the same intercept as the solid blue line is plotted in Figure 1

for reference. This slope is expressed in log-log scale, which indicates a convergence rate of O(n−α/(α+s))
for the variance of an estimator that has such slope in the figure. This is the convergence rate of the optimal
objective for the simulation investment allocation problem (10). By comparing the right part of the green
line (say n ≥ 100) with the black line, it seems the GreenDB variance converges at rate O(n−α/(α+s)). We
elaborate this point in the next paragraph.

A red star in Figure 1 splits the dotted green line into two segments that are visually different: the
left segment forms a curve and the left segment forms a line. On one hand, the left segment is the warm
up period in our procedure where the number and size of the databases constructed by our procedure are
significantly different from the optimal solution (11). In addition, in this warm up period there are few
databases so the prediction point and its closest database could be significantly different, rendering (7)
an unreliable approximation. In this case the actual variance reduction is hard to predict by the optimal
objective of (10). On the other hand, after warming up the right segment forms a straight line whose slope
is close to the predicted value of −α/(α + s), when comparing to the solid black line.
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