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ABSTRACT 

Given data in a matrix X in which rows represent vectors and columns comprise a mix of discrete and 

continuous variables, the method presented in this paper can be used to generate random vectors whose 

elements display the same marginal distributions and correlations as the variables in X. The data is represented 

as a bipartite graph consisting of object nodes (representing vectors) and attribute value nodes. Random walk 

can be used to estimate the distribution of a target variable conditioned on the remaining variables, allowing 

a random value to be drawn for that variable. This leads to the use of Gibbs sampling to generate entire 

vectors. Unlike conventional methods, the proposed method requires neither the joint distribution nor the 

correlations to be specified, learned, or modeled explicitly in any way. Application to the Australian Credit 

dataset demonstrates the feasibility of the approach in generating random vectors on challenging real-world 

datasets. 

1 INTRODUCTION 

Often the need arises to generate correlated multivariate vectors which include both continuous and discrete 

variables. For example, simulation studies monitoring the quality of some product or service would 

typically deal with a number of quantities with correlated continuous and discrete characteristics. The 

problem addressed in this paper can be expressed as follows:  given the data in some matrix X, where rows 

represent vectors and columns comprise a mixture of discrete and continuous variables, how can we 

generate random vectors which are distributed just like the vectors in X, where by “just like” we mean that 

the generated vectors should have the same marginal distributions as those in X, and display the same 

correlations as the data in X. 

Various methods have been proposed for random vector generation. Many of these assume that the full 
joint distribution is known. (In our problem setting it would need to be estimated). For example, under the 
approach proposed by Johnson (1987), to generate a random vector 1( ,..., )T

Dx xx , first generate x1 from 
F1(x1), the cumulative marginal distribution for x1. Then generate px , 2,...,p D , from the cumulative 
conditional distribution 1 1)( | ,...,p p pF x x x  . Even if the joint distribution is known, the cumulative 
conditional distribution functions may not be easy to derive (Law and Kelton 2000), and consequently the 

approach is typically applied only in situations involving a small number of variables with similar 
distributions (Niederreiter 1992). 

Under the acceptance/rejection sampling approach (Devroye 1986, Johnson 1987), a joint probability 

density function (pdf) that dominates the original joint pdf is first selected. A random vector is then 

generated from the dominating pdf, and is either accepted or rejected based on whether or not it falls 
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between the two functions. As well as also requiring the joint distribution to be known, the method is 

sensitive to dimensionality, and typically becomes inefficient as the number of variables increases (Gilks 

and Wild 1992, Gentle 2002). 

The NORmal-To-Anything (NORTA) method, detailed by Cario and Nelson (1997) but based on earlier 
work by Mardia (1970) and Li and Hammond (1975), requires only partially specified properties (a set of 

marginal distributions and a correlation matrix), but not the full distribution. A D-dimensional standard 
normal random vector 1 1( , ,..., )T

Dz z zz with ( , )0 1iz N  and correlations ( ) ( , )ij i jCor z z z is first 
generated. This vector is then transformed into a uniform random vector ( ) (0,1)iz U , where   is the 
standard normal cumulative distribution function. Finally, an inverse transformation is used to transform 
this uniform vector into a vector with the target marginal distributions; i.e., 1( ( ))i iix F z

 . While the 
approach is completely general, the difficulty is in finding the correlation matrix of the normal random 

vector such that it guarantees that the final random vectors will have the desired correlation matrix (Ghosh 
and Henderson 2003). 

Closely related to the NORTA method is the generation of random vectors with copulas, where a copula 

is a multivariate probability distribution for which the marginal probability distribution of each variable is 
uniform. The usual approach is to first specify the marginal distributions, and then select an appropriate 
copula that is able to determine the dependence structure between the marginals (Hörmann, Leydold, and 

Derflinger 2004; Joe 1997; Nelsen 2007), however the copula is sometimes fitted directly to the data 
(Strelen and Nassaj 2007, Channouf and L’Ecuyer 2009). Vectors can then be generated from the copula, 
and transformed back to the original space using the inverse transformation, as per the NORTA method. 
Channouf and L’Ecuyer (2009) note that capturing the dependence can often be more important than 
capturing the correct marginals, but Blum, Dias and Embrechts (2002) note that fitting a family of copulas 
to a sample is often as difficult as estimating the joint distribution in the first place. Where the technique 

has been applied to mixed-attribute datasets, the dimensionality has usually been very small; for example, 
Channouf and L’Ecuyer (2009) use mixed datasets with only one continuous and one discrete variable, and 
de Leon and Wu (2011) use a dataset with two continuous variables and one discrete variable.  

Another line of research appears within the literature on probabilistic graphical models (Jordan 2004, 

Koller and Friedman 2009), in which a graph is used to denote the conditional dependence structure 

between random variables, with nodes in the graph representing random variables, and the pattern of edges 

representing the dependencies. If the edge structure is known, sampling from directed acyclic graphs 

consisting only of discrete variables is relatively straightforward, and can be performed using ancestral 

sampling (Bishop 2006). In the case of mixed graphical models, assumptions are normally made regarding 

the conditional distributions of continuous variables; for example, Brewer, Aitken and Talbot (1996) use a 

Gibbs sampling procedure on mixed graphical models in which continuous variables have conditional 

Normal distributions (later extended to Gamma distributions (Brewer 2000)) where the mean and variance 

depend on the discrete and continuous parents. If the edge structure of the graph is not known, then it has 

to be learned. While most work in structure learning has focused on the learning of either discrete or 

Gaussian graphical models, Lee and Hastie (2013) have recently described a generalization of this to mixed 

models in which the conditional distributions for continuous and discrete variables are given respectively 

by Gaussian linear regression and multiclass logistic regressions.  

The contribution of this paper is a novel graph-based method for the generation of random mixed-

attribute vectors. The data in matrix X is represented as a bipartite graph consisting of object nodes 

(corresponding to rows of X) and attribute value nodes (corresponding to values that attributes may take). 

Random walk on the graph can be used to estimate the distribution of any discrete or continuous target 

variable conditioned on the values of the remaining variables, thus allowing a random value to be sampled 

for the target variable. This leads to the use of a Gibbs sampling procedure to sample entire vectors.  

We emphasize that while the method is graph-based, it is fundamentally different from probabilistic 

graphical models. In the proposed method the actual data is represented in the graph, whereas in the case 

of probabilistic graphical models the graph represents the conditional dependence structure between 

variables (nodes). Unlike both the analytic method proposed by Johnson (1987) and the 
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acceptance/rejection sampling approach, the proposed method does not require the full joint distribution to 

be specified or modelled explicitly in any way, and unlike the NORTA, copula and graphical modeling 

approaches, the method does not require the correlations or dependencies to be specified, learned, or 

modeled explicitly in any way. Rather, any modelling of the distribution is entirely implicit in, and 

inseparable from, the combination of the graph-based representation and the random walk that forms the 

basis of the Gibbs sampling procedure. This allows the method to reliably generate random vectors from 

challenging real-world mixed-attribute datasets such as the Australian Credit dataset, which contains 690 

examples described over 10 discrete variables containing between 2 and 14 values, and 6 highly skewed 

continuous variables. 

The paper is structured as follows. Section 2 describes the method in the limited setting of only discrete 

variables. Section 3 then extends this to include continuous variables. Section 4 presents results of applying 

the method to generating random vectors for the Australian Credit dataset. Section 5 concludes the paper. 

2 GENERATING RANDOM VECTORS FROM DISCRETE DATA 

2.1 Graph Representation 

Assume a matrix X with N rows, representing vectors, and D columns, representing variables. Each D-
dimensional row vector is denoted by 1( ,..., )n nDnx xx , and each entry is denoted by ndx . Since we are 
assuming that the attributes are discrete, ndx takes values from a finite set 1{ } dj N

jdndx a  , where j

da  is the jth 
possible value for attribute d, and Nd is the total number of possible values for attribute d.  

The graphs used to represent datasets contain two types of nodes: object nodes, which represent the 

objects corresponding to the rows of X, and attribute value nodes, which represent an attribute value 
possessed by the objects. The graphs are bipartite, meaning that edges exist only between object nodes and 
attribute-value nodes, but not between nodes of the same type. More formally, G = (O, A, E) where 

1{ ,..., }NO o o is the set of object nodes, 1 2

1 1 2 1 1{ ... {{ } } } Dj j jN N N
j j D jA a a a       is the set of attribute value 

nodes, and E is the set of edges. The edge between object node io  and attribute value node k
ja  has a 

weighting of 1 if k
ij jx a  (i.e., if object i possesses the kth value for attribute j), and 0 otherwise. 

To illustrate, consider a Play Tennis dataset with attributes Temperature (‘hot’, ‘mild’, ‘cool’), Humidity 
(‘high’, ‘normal’, ‘low’), Outlook (‘sunny’, ‘overcast’, ‘rainy’), and Play (‘yes’, ‘no’). The graph in Figure 
1 contains data for two objects: Monday (Temp = ‘hot’, Humidity = ‘low’, Outlook = ‘sunny’, Play = ‘yes’) 
and Tuesday (Temp = ‘mild’, Humidity = ‘high’, Outlook = ‘rainy’, Play = ‘no’).  

 

 
hot 

Mon 

mild 

cool 

high 

normal 

low 

sunny 

overcast 

rainy 

yes 

no 

Temperature 

Humidity 

Outlook 

Play Tennis 

Tue 

Objects Attributes 

 

Figure 1: Bipartite graph showing object nodes and attribute value nodes. An edge of weight 1 connects an 

object node with nodes corresponding to attribute values possessed by the object. 

 

So that random walk can be performed, it is convenient to represent the graph as a matrix. In order to 
do this we first construct the object-attribute table as shown in Table 1. We denote the matrix of values in 
the table as B. Matrix B has N rows and A  columns, where A  is the cardinality of the set A. 
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Table 1: Object-attribute table for graph in Figure 1. 

 Temp Humidity Outlook Play 

 ‘h’ ‘m’ ‘c’ ‘h’ ‘n’ ‘l’ ‘s’ ‘o’ ‘r’ ‘y’ ‘n’ 

Mon 1 0 0 0 0 1 1 0 0 1 0 

Tue 0 1 0 1 0 0 0 0 1 0 1 

From B we then construct the adjacency matrix W: 

 
 

  
  

0

0
T

B
W

B
.  

Matrix W is a square matrix with N + A  rows and columns. The first N rows and columns represent objects, 
and the remaining A  rows and columns represent attribute values. The blocks of zeros in the upper left 
and lower right reflect the bipartite nature of the graph. 

2.2 Random Walks and Graph Centrality 

The concept of random walk is important, because the amount of time a random walker spends visiting 
some node on a graph provides a measure of the relative importance of that node. The probability of moving 

from node i to node j is calculated by dividing the edge weight jiw  by the sum of the weights of all of i’s 
outgoing edges: 

 

( )

ij
ij

ikk N i

w
p

w





 

where N(i) denotes the nodes that are the immediate neighbors of i. The larger the value of an outgoing 

weight, the larger is the probability of traversing that edge as opposed to the other outgoing edges.  
The relative importance, or centrality, of nodes can be determined by finding the stationary distribution 

of the graph. For a graph with adjacency matrix { }ijwW , the stationary distribution can be found by 
solving the eigenvector equation 

 (1 )e e N   1/c Wc  (1) 

in which case the dominant eigenvector c will represent the stationary distribution (Newman 2010). We 

will refer to vector c as the centrality vector, and its components as centrality scores. Note that the particular 

form of Eigenvector Centrality expressed in (1) is known as Katz Centrality (Katz 1953), and differs from 

PageRank (Brin and Page 1998) centrality in that it does not factor in an influence penalty for nodes with 

a large number of ingoing/outgoing connections; i.e., the matrix W is not row normalized. The second term 

on the right hand side of (1) can be thought of as the probability that at each step the walker is teleported 

with probability (1– e) to a random node rather than following an edge (typically e ≅ 0.85). This solves the 

problem of the walker getting stuck in disconnected parts of the graph, and means that the walker has a 

finite chance of reaching any node from any other node.  

 An important variation of this idea is to allow specification of where the walker should be teleported 

to. To specify that the walker be teleported to some particular node we can simply modify the equation to 

 (1 )c e e     Wc  

where   is a vector in which i =1 for the node to which the walker is to be teleported, and 0 for all other 

nodes. An alternative way of conceptualizing this is to think of the vector   as specifying the source of the 
walk. When used in conjunction with PageRank this is sometimes referred to as Personalized PageRank 
(Jeh and Widom 2003). Note, however, that this idea is quite general. The vector   can be set to any 
weighted combination of nodes, and is crucial to the Gibbs sampling procedure to be introduced shortly. 
Henceforth we will refer to the vector   as the personalization vector, and the ensuing walk as 
personalized random walk. 

1099



Skabar 

 

In order to find the dominant eigenvector c, an eigenvector equation needs to be solved. A general and 
robust approach is power iteration, which begins with a random vector ck, and iterates the step 

1 (1 )k ke e     c Wc    until convergence, when c will be the dominant eigenvector (Newman 2010).  

2.3 On the Utility of Random Walk 

Personalized random walk allows us to answer a number of questions. For example we may be interested 
in knowing which objects are most similar to some given object, in which case we could set the 
personalization vector to the node corresponding to the object of interest, perform random walk, and then 
rank objects according to their centrality scores. Or we may have an object for which one of the attribute 
values is missing, and wish to impute a value for that attribute. In this case we could again set the 
personalization vector to the object of interest, perform random walk, and then impute the value with highest 
conditional probability. (How the conditional probabilities can be calculated from the centrality values is 
explained in Section 2.4). Or further still, instead of imputing the most likely value for some missing 
attribute, we may have reason to sample a random value for that attribute, again based on the centrality 
scores corresponding to that attribute.  

While the examples in the preceding paragraph involved investigating the properties of given objects 
(i.e., objects whose properties were specified in the supplied data), we can also investigate properties of 
hypothetical objects in the attribute space. For example, suppose that we are presented with a new object, 
and wish to determine its class. (This is really just a special case of missing value imputation, since class is 
just an attribute). Importantly, we do not need to introduce a new node to represent this novel object; we 
can simply set the personalization vector to represent the known attribute values of this object, and then 
perform missing value imputation as described above. These ideas form the basis of our random-walk based 
Gibbs sampling procedure. 

2.4 Gibbs Sampling Procedure 

Gibbs sampling (Geman and Geman 1984) is a Markov Chain Monte Carlo (MCMC) technique that is 
applicable in a wide range of sampling problems. Suppose that 1( ) ( ,..., )Dp p x xx  is a distribution from 
which we wish to sample. At each step of the Gibbs sampling procedure, the value of one of the variables, 
say xi, is replaced by a new value, drawn from the distribution of xi conditioned on the values of the 
remaining variables; that is, xi is replaced by a value drawn from \( | )i ip x x , where \ ix  denotes 1,..., Dx x , but 
with xi omitted. This procedure is then repeated by cycling through the remaining variables. The Gibbs 
sampling procedure is described in Algorithm 1.  

ALGORITHM 1. Gibbs Sampling Procedure 

Initialize {xi : i = 1, …, D} 

for 1,...,T   

      Sample 
( 1) ( ) ( ) ( )

1 1 2 3( | , ,..., ).Dx p x x x x   
 

      Sample 
( 1) ( 1) ( ) ( )

2 2 1 3( | , ,..., ).Dx p x x x x    
 

 

      Sample 
( 1) ( 1) ( 1) ( ) ( )

1 1 1( | ,..., , ,..., ).j j j j Dx p x x x x x      

   

      Sample 
( 1) ( 1) ( 1) ( 1)

1 2 1( | , ,..., ).D D Dx p x x x x      

  

end for  

In order to draw a value from the conditional distribution \( | )i ip x x , we construct an appropriate 
personalization vector, perform random walk using this personalization vector, and finally select a value 
for xi on the basis of the resulting centrality values. 

The personalization vector P is the concatenation of an object personalization vector objP  and an 
attribute personalization vector attP . We write this concatenation as obj attP P P . The vector objP  is the 
zero vector of length N (i.e., 1Nobj  0P ), and vector attP  is defined as 

1 2
...

Datt att attP P P P , where 
1( ,..., )d

d
TN

d datt p pP  and j
dp =1 if j

d dx a  ( )d i , and 0 otherwise. Put simply, the personalization vector 
has a value of 1 corresponding to each attribute value possessed by x (with the exception of the variable for 
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which we intend to draw a sample), and zeros elsewhere. Random walk is then performed by solving the 
eigenvector equation (1 )e e     c Wc P P . 

In order to sample a value for target variable xi we require an estimate of the conditional distribution 

\( | )i ip x x . Let the centrality values for attribute i, normalized to sum to 1, be represented by the vector 
1( ,..., )iN T
i ic c , where j

ic  is the centrality value of the node corresponding to the jth value of attribute i, and Ni 
is the number of attribute values for attribute i. Also, let the empirical marginal distribution for attribute i 
(i.e., the distribution of attribute i in the supplied examples) be represented by the vector 1( ,..., )iN T

i im m , 
where j

im is the marginal probability of attribute i taking the jth value. The values 1,..., iN
i im m will sum to 1, 

and can be calculated directly from the supplied data. 
 The values in vector  1( ,..., )iN T

i ic c can be interpreted as conditional probabilities for variable xi on the 
basis that they sum to unity, and reflect the amount of time the walker spends at the node corresponding to 
each attribute value. However, the values in the vector will depend on a number of factors, including, for 
example, the value of e used in the eigenvector centrality computation. So they should not be interpreted as 
the single correct probabilities. We estimate the conditional probability that variable xi takes the jth value of 
attribute i as follows:  

  \( | )j j j j

i i i i i iP x a K m c m


  x  (2) 

where K is a constant selected to ensure that these values sum to 1 across all attribute values; i.e.,  

   
1

1
iN

k k k
i i i

k

K m c m




  . 

The intuition behind (2) is that the greater the divergence of the ic values from the im values, the greater is 
the dependency of attribute i on the values of the other attributes. The ratio j j

i ic m  provides a measure of 
this divergence, and the parameter α determines the extent to which the centrality values influence the 
estimate of the conditional probabilities. An α value of 0 will result in the conditional probabilities being 
set equal to the empirical marginals; increasing the value of α will place greater emphasis on the inter-
variable dependencies. This is best illustrated with an example.  

Suppose that an attribute can take one of three possible values, and that the empirical marginals and 
normalized centralities are as follows: 

Empirical Marg. Probs (m): [0.500,  0.300,  0.200] 

Norm. Centralities (c): [0.470,  0.340,  0.190] 

Note that for Attribute 2 the normalized centrality score is higher than the empirical marginal probability, 
whereas for Attributes 1 and 3 the centrality scores are less than the empirical marginal probabilities. The 
conditional distributions calculated using (2) for various values of parameter   are:  

Cond. Prob.  ( = 0): [0.500,  0.300,  0.200] 

Cond. Prob.  ( = 2): [0.439,  0.382,  0.179] 

Cond. Prob.  ( = 5): [0.339,  0.518,  0.143] 

Cond. Prob.  ( = 10): [0.187,  0.729,  0.083] 

Cond. Prob.  ( = 15): [0.088,  0.871,  0.041] 

When   = 0, the conditional probabilities are equal to the empirical marginal probabilities. As   increases 
the difference between the conditional probabilities and the empirical marginal probabilities is accentuated, 
with conditional probabilities for Attribute 2 increasing, and those for Attributes 1 and 3 decreasing.  

3 EXTENSION TO CONTINUOUS VARIABLES 

At first sight it might appear that a continuous attribute could be represented using a single node, with the 
object’s value for that attribute being represented by the weight of the connection between the object node 
and attribute node; however, this leads to difficulties. To illustrate, consider a random walk on such a graph. 
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The probability of moving from one node to another depends on the weight of the edge connecting those 
two nodes. Since object nodes are not directly connected with one another, walk from one object node to 
another can only proceed via an attribute value node. If two objects have a high value for some continuous 
attribute, then the probability that walk proceeds through that connection will be higher than what would 
be the case if the objects both had low values for that same attribute. A general treatment of continuous 
attributes must allow for the case that the implicit similarity between two objects might be a result of their 
sharing similar, but necessarily high, values for some numeric attribute. 

To solve this problem we use a distributed representation by which continuous attributes are discretized 
into a finite number of bins, each corresponding to a unique attribute value node. For example, values taken 
by the continuous attribute Temperature might be discretized into categories of low, medium or high, and 
then represented as per the scheme for discrete attributes described above. However, while this scheme 
comes some way towards solving the problem (since random walk can now proceed through any of the 
three nodes corresponding to that attribute), two problems remain: (i) information can be lost at the 
boundaries (e.g., two objects may have similar values for the attribute, but one may be discretized to low, 
the other to medium), and (ii) sampling a value for the variable will result in a discrete value, whereas we 
wish to generate continuous values. To solve the first problem, we discretize in such a way as to allow 
partial membership to the categories, as shown in Figure 2. Note that prior to computing membership 
values, it is assumed that continuous attributes have been normalized to the interval [0,1].  

 

0 

Low Medium High 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1.0 

0.0 

0.5 

0.25 

0.75 

 

Figure 2: Membership functions for the distributed representation of continuous attributes. 
 

We illustrate with a revised version of the Play Tennis dataset in which the attributes for Temperature 
and Humidity are now continuous, and each in the range [0,  100]. Consider the following objects: Monday 
(Temp = 80, Humidity = 75, Outlook = ‘sunny’, Play = ‘yes’) and Tuesday (Temp = 50, Humidity = 40, 
Outlook = ‘rainy’, Play = ‘no’). Discretizing as described above results in the object-attribute table shown 
in Table 2, from which we can then construct the adjacency matrix W exactly as described in Section 2.1. 

Table 2: Object-Attribute table for mixed Play Tennis dataset. 

 Temp Humidity Outlook Play 

 ‘h’ ‘m’ ‘l’ ‘h’ ‘m’ ‘l’ ‘s’ ‘o’ ‘r’ ‘y’ ‘n’ 

Mon 0.6 0.4 0.0 0.5 0.5 0.0 1 0 0 1 0 

Tue 0.0 1.0 0.0 0.0 0.8 0.2 0 0 1 0 1 

 

There are several points to note. Firstly, there is no loss of information in discretizing continuous 

variables in this way, since the original value can be retrieved exactly from the distributed representation. 

Secondly, the representation maintains an equal balance between the contribution of discrete and 

continuous variables in calculating centrality values; i.e., for each discrete variable the sum of weights 

connecting an object node to its attribute value nodes will be one, and in the case of continuous variables 

the sum of outgoing values for each attribute will also be one. Thirdly, the representation allows the random 

walk procedure described in the previous section to be maintained unchanged. 
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3.1 Sampling Continuous Variables 

In order to sample a value for the continuous-valued target variable xi we again require an estimate of the 
conditional distribution \( | )i ip x x . As for discrete variables, the personalization vector P is again defined as 

obj attP P P  where 
1 2

...
Datt att attP P P P , however, if attribute d is continuous, then ( ), , d

l m h T
d d datt p p pP , 

where ,l m
d dp p  and h

dp  are the membership values for xd. 
We perform random walk, and let ( ), , Tl m h

i i ic c c  be the vector of centrality values (normalized to sum to 
1) for the three nodes used in the distributed representation of xi. We then convert from this distributed 
representation back to a continuous value as follows, treating the resulting value as the expected value of 
xi: 

 ) (0.0, 0.5, 1.0( )( ) , , Tl m h
i i i iE x c c c  

We draw a sample for xi based on some distribution around this expected value. Since the distribution of 
the random variable xi is limited to an interval of finite length, a suitable distribution is the Beta distribution, 
which is defined on the interval [0, 1], and whose shape is determined by parameters p and q.  

 Sample ( , )ix eta p q   

The mean of the Beta distribution is / ( )p p q , and the width is controlled by p q . Figure 3 shows Beta 
distributions with means 0.1, 0.5 and 0.8 for three different widths. Note that the larger the value of p + q , 
the narrower is the distribution.  

It is convenient to introduce a parameter β to represent the width of the distribution (i.e., p q   ). 
Note that distribution parameters p and q can be determined since the mean of the distribution / ( )p p q  
will equal the expected value E(xi), and the value of β will be specified. The parameter β can be considered 
analogous to the parameter α used in the case of discrete attributes. 

 
 p + q = 5  p + q = 20  p + q = 100 

Figure 3: Beta distributions with means 0.1, 0.5 and 0.8 for different values of p+q. 

4 CASE STUDY: THE AUSTRALIAN CREDIT DATASET 

The Australian Credit dataset (Quinlan 1987) contains 690 examples, described over 16 attributes (10 
discrete and 6 continuous). The discrete variables take between 2 and 14 values, and the continuous 
attributes are highly skewed. The dataset has traditionally been used as a classification dataset, with 15 of 
the attributes being used as input, and a binary attribute used as the class variable whose value is to be 
predicted. In this section we provide results of generating random 16-dimensional vectors for this dataset.  
 In order for the set of generated vectors to be considered to be from the same distribution as the set of 
690 supplied vectors we require that: (i) the marginal distributions of variables in each set be the same, and 
(ii) that the correlations between variables be the same. While comparison of marginal distributions is 
relatively straightforward, direct comparison of correlations between 16 variables is difficult due to the 
number of combinations (120 correlations at just the pairwise level), and this is compounded by the 
difficulty in measuring correlations between continuous and discrete variables.  
 As a surrogate to the direct comparison of correlations, we propose the following procedure: (1) 
construct a training set consisting of all the generated vectors, and a test set consisting of all the supplied 
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vectors; (2) train a classifier using the examples in the training set; (3) test the performance of the classifier 
on the test set. If the generated vectors (training set) have not successfully captured the dependency structure 
of the original data, then classifier performance on the supplied vectors (test set) should be poor; by 
contraposition, successful classification on the supplied vectors will support the hypothesis that the 
generated examples (training set) reflect the correlation structure of the original data.  

Figure 4 shows training and test accuracies, averaged over 100 trials, of a logistic regression classifier 
trained on 10,000 randomly generated vectors and tested on the 690 supplied examples. (Logistic regression 
was chosen on the grounds that it is much less likely to overfit in comparison to classifiers such as MLPs, 
and when used without regularization does not require specification of any hyper-parameters that may 

influence results). Results are shown for values of α ranging from 0 to 20. The value of the parameter β was 
held constant at 10 (discussed later). Also shown is the value of the leave-one-out cross-validation baseline 
of 84.9%, obtained by applying conventional leave-one-out cross-validation using only the 690 supplied 
examples. If the generated vectors are from the same distribution as the supplied examples, then we would 
expect that the test accuracy of a classifier trained on the generated examples and tested on the supplied 
examples be in the vicinity of this baseline. 

It can be seen from Figure 4 that low values of α yield poor classification performance on both the 
training (generated) examples and the test (supplied) examples. This is because the α value is too small for 
the generated vectors to capture the dependencies in the data. (Recall from Section 2.4 that for α = 0, the 
conditional probabilities for discrete attributes are equal to the empirical marginal probabilities, and hence 
do not capture any of the correlations). As the value of α is increased, classification performance increases 
for both the training and test examples, but more rapidly for the test examples. At α = 6, classification 
performance on the test examples reaches the baseline, and as α is further increased, accuracy on the test 
examples plateaus at approximately 86%, while accuracy on the training examples continues to rise. 

 

Figure 4: Classification accuracy on Australian Credit dataset using Logistic Regression classifier trained 

on generated examples and tested on supplied examples (β = 10). 
 

The observation that training accuracy is lower than test accuracy for smaller values of α can be 
explained using the simple 1-dimensional example in Figure 5. Each plot shows the same five positive and 
fives negative examples, described over one continuous input attribute. The curves represent estimates of 
the distributions of these examples. Also shown is the decision boundary; all examples to the left of the 
decision boundary would be classified as positive, and those to the right as negative. Consider drawing 
samples from each of the estimated distributions, and then training a classifier using these samples. If the 
distributions from which the samples are drawn are very broad (as in the figure on the left), there will be a 
large amount of overlap between regions of the input space occupied by positive and negative training 
examples, and hence the accuracy on the training examples will be lower than that on the ten test examples. 
Conversely, if the estimated distributions are narrow, then there will be little or no overlap between positive 
and negative training examples, and thus training accuracy will exceed test accuracy. The parameter α in 
our model has the same effect: low values of α result in the generated samples being more broadly 
distributed around the supplied examples; high α values result in more compact estimates. 
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Figure 5: 1D classification example. Dotted line represents decision boundary. 

 

While the classification experiment on the Australian Credit dataset was performed as a surrogate to the 
direct comparison of correlations, from a machine learning perspective it is quite remarkable that a classifier 
trained entirely on randomly generated data is able to achieve classification performance superior to that of 
using leave-one-out cross-validation in the conventional supervised learning setting. Machine learning 
practitioners familiar with the Australian Credit dataset will know that a classification accuracy of 86% is 
at the very upper limits of performance achievable on this dataset, yet we have been able to achieve this 
accuracy through training using only randomly generated examples. This leads us to conclude that the 
correlations and dependencies in the original vectors have indeed been captured in the generated vectors. 

We now compare the marginal distributions between the 690 supplied vectors and a sample of 10,000 
generated vectors. Figure 6 shows the marginal distributions for supplied and generated vectors 
corresponding to α = 6 and β = 10. For all continuous variables (i.e., Variables 2, 3, 8, 11, 14 and 15), the 
highly skewed nature of the distributions is well-captured by the generated examples. For categorical 
variables the distributions are also very similar, even for variables such as 6 and 7, which can take a large 
number of possible values. 

 
Figure 6: Marginal distributions for supplied (left) and generated (right) vectors of Australian Credit dataset. 
 

 Finally we consider the effect of the parameter β, which controls the width of the Beta distribution from 
which continuous attributes are sampled as part of the Gibbs sampling procedure. Figure 7 compares the 
marginal distribution of Variable 2 for the supplied examples with the marginal distribution resulting from 
different values of β. Small values of β (corresponding to broad Beta distributions) result in broad marginal 
distributions; large values of β result in narrower distributions. A β value of 10 gives the best match.  
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 Supplied  β = 2 β = 5 β = 10 β = 20 β = 50 

Figure 7: Effect of β on marginal distribution for continuous variable Var 2 (α = 6). 

5 CONCLUDING REMARKS 

The paper has presented a new approach for the random generation of correlated vectors based on data 
contained in a set of supplied vectors. Whereas most methods decompose the problem into two separate 
steps—a modelling step in which the joint distribution is estimated, and a generation step in which a random 
vector is generated—the proposed method does not involve any explicit modelling of the joint distribution. 
Rather, any modelling of the distribution is entirely implicit in, and inseparable from, the combination of the 
graph-based representation and the random walk that forms the basis of the Gibbs sampling procedure.  

The method is controlled by two parameters—one for discrete variables (α), and one for continuous 
variables (β). These need to be selected to ensure that the marginal distributions and the correlation structure 
are correct. Parameter β can be set by comparing the marginals of continuous variables in the generated 
vectors with those in the supplied examples. To set α, we suggest commencing with a small value, and 
increasing α while monitoring the marginal distributions and correlations. For low-dimensional datasets it 
may be possible to monitor pairwise correlations directly; for higher-dimensional datasets it may be more 
convenient to use a surrogate (e.g., classification performance). Since α and β jointly affect performance, 
these cannot be set independently, and some tuning may be required.  

Computationally, the method is linear in both the number of vectors generated and the dimensionality 
of the dataset, with a single random walk required for every attribute value sampled. The convergence time 
for the random walk will depend on the size of the graph.  

The method can also be used to generate vectors from any marginal or conditional distribution. To 
generate vectors from a marginal distribution, simply generate vectors as described above (i.e., over the full 
joint distribution), but keep only the variables of interest. To generate vectors from conditional distributions, 
simply clamp the variables to be conditioned on, sampling only the remaining variables.  

There are many potential uses for the method, the most obvious being for generating data for simulation 
studies. In the context of machine learning, it can be applied to dataset expansion for supervised learning. 
A special case of this may be in addressing the class imbalance problem, in which case we can generate 
vectors from the conditional distribution of the underrepresented class. The method might also be used to 
generate entirely synthetic data, in which case any number of vectors can be randomly generated based on 
a relatively small number of manually created examples. 
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