
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

THE GOAL-HYPOTHESIS-EXPERIMENT FRAMEWORK: A GENERATIVE COGNITIVE
DOMAIN ARCHITECTURE FOR SIMULATION EXPERIMENT MANAGEMENT

Levent Yilmaz
Sritika Chakladar

Kyle Doud

Department of Computer Science and Software Engineering
Auburn University

3101 Shelby Center
Auburn, AL 36849, USA

ABSTRACT

Simulation experiments are not conducted in a vacuum. They are performed to address specific research
questions that require evaluation of testable hypotheses. However, the connections among goals, hypotheses,
and experiments are often characterized in an ad hoc manner. In this paper, we examine symbiotic
dependencies among goals, hypotheses, and experiments within the context of computational discovery.
Model-Driven Science is advanced as a strategy to facilitate the search process within the operational
level of hypotheses and the tactical level of experiments. We discuss the theory of explanatory coherence
for evaluating and revising hypotheses while using it as a run-time cognitive model that evolves via
experimentation toward an explanatory theory of the system under study.

1 INTRODUCTION

Simulation experiments are central to advancing scientific knowledge (Kleijnen 2007, Teran-Somohano,
Smith, Ledet, Yilmaz, and Oğuztüzün 2015). However, experiments are not conducted in isolation; they are
performed with specific goals and definite questions in mind. These questions and goals are formulated in
the form of hypotheses that drive the experimentation process with the help of models. The role and utility
of such computational models as abstract and ideal representations are well acknowledged (Glotzer, Kim,
Cummings, Deshmukh, Head-Gordon, Karniadakis, Petzold, Sagui, and Shinozuka 2009). As advancements
in model development methodologies reduce the gap between the solution and problem spaces, scientists
continue to improve their ability to conceive abstractions that are necessary to effectively address research
questions.

However, despite successful automation of the routine aspects of simulation and data management,
scientific process continues to require considerable human expertise and effort. To reduce such manual effort,
we aim to underline the need for revisiting Model-Driven Engineering (MDE) methods and coupling them
with cognitive computing strategies to extend the scope of human intellect and to partner with scientists
on a broad range of tasks. These tasks include identifying, prioritizing, and formulating questions,
hypothesizing behavioral mechanisms (Darden 2001), defining or generating simulation experiments to test
hypotheses, drawing inferences (Dzeroski, Langley, and Todorovski 2007), and evaluating results within an
incremental and iterative discovery lifecycle (Bunge 1998). This iterative process calls for explicit models
of hypotheses, experiments, and models, along with traceability among them to support computational
exploration (Sliwoski, Kothiwale, Meiler, and Lowe 2014).

In supporting computational discovery, reliable models are necessary but not sufficient in addressing
complex research problems (Kleijnen, Sanchez, Lucas, and Cioppa 2005) as proper design and management

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 1001

Yilmaz, Chakladar, and Doud

of experiments are critical to instill confidence in the use of computer simulations (Ewald and Uhrmacher
2014). However, due to under-utilization (Teran-Somohano, Dayibas, Yilmaz, and Smith 2014) of the Design
of Experiments (DoE) methodology (Montgomery 2006) and the lack of transparency in the collection and
analysis of simulation data, there is an emerging credibility gap in simulation-based science and engineering
(Freire, Bonnet, and Shasha 2012). To mitigate these issues, there already exist proposals, including the
development of frameworks, guidelines, tools, and methodologies for computational reproducibility. For
instance, Simulation Experiment Description Markup Language (SED-ML) was initiated as a community-
wide effort that aims to document and improve the communication and sharing of experiments. Simulation
experiment description languages (Ewald and Uhrmacher 2014) and model-driven engineering principles
(Teran-Somohano, Smith, Ledet, Yilmaz, and Oğuztüzün 2015) are also promoted to streamline the
management of experiments.

In this paper, by promoting a Model-Driven Science (MDS) approach and taking into consideration the
characteristics of computational discovery, we present a strategy that advocates agility in model development
and revision. Unlike Model-Driven Engineering (MDE), which rapidly converges to an authoritative model,
our vision of MDS takes into account the iterative nature of the discovery process, requiring evaluation
and revision of numerous competing assumptions and constraints until sufficient degree of veridicality
is attained. This requires cognitive tools that support the co-evolution and symbiotic adaptation of the
hypothesis and experiment spaces as active–learning takes place through experimentation.

To highlight the significance of properly placing simulation experiments in the context of computational
discovery, the rest of the paper is structured as follows. In section 2, we overview existing workflow and
experiment management systems as well as critical knowledge structures and activities in scientific discovery.
Section 3 introduces a conceptual framework based on three central elements in computational research:
Goals, Hypotheses, and Experiments. In section 4, we sketch selected elements of a Domain-Specific
Language to make progress toward the envisioned computational strategy. Section 6 demonstrates the
evaluation of hypotheses in terms of an evolving cognitive run-time model of the phenomena under study.
We conclude in section 7 by summarizing the contributions and put forward potential research directions.

2 BACKGROUND

In this section, we overview related efforts in workflow and simulation experiment management and then
discuss the issues raised by computational scientific discovery. We posit that these issues suggest critical
requirements for the development of next generation experiment management systems.

2.1 Workflow and Experiment Management Systems

Scientific workflow systems are widely used to streamline experiments in computational science. These
systems support execution of software modules or services to automate and repeat workflows. Among the
popular workflow languages are Taverna (Oinn, Addis, Ferris, Marvin, Senger, Greenwood, Carver, Glover,
Pocock, Wipat, and Li 2004), Kepler (Altintas, Berkley, Jaeger, Jones, Ludascher, and Mock 2004), and
myExperiment, which enable sharing and distribution of platform-specific workflow models.

Experiment management systems have also been proposed to standardize definition of simulation
experiments. For instance, Simulation Experiment Description Markup Language (SED-ML) is an XML-
based format for encoding simulation scenarios. It supports sharing simulation experiments in the biomedical
sciences domain. Simulation Experiment Specification via a Scala Layer (SESSL) (Ewald and Uhrmacher
2014) uses a general purpose language to introduce an internally defined DSL for experiment definition.
SESSL allows model specification, definition of replications, the stop condition for the simulation run, the
objective, and the optimization method. In Simulation Automation Framework for Experiments (SAFE)
(Perrone, Main, and Ward 2012) and NIMROD (Peachey, Diamond, Abramson, Sudholt, Michailova, and
Amirriazi 2008), experiment specifications are standardized to enable reproducibility. The ns-3 Experiment
Description Language (NEDL) (Riley and Pekley 2011) also aims to meet the demand for a language

1002

Yilmaz, Chakladar, and Doud

capable of explicitly capturing experiment scenarios. Despite their utility, existing experiment specification
languages view experiment management independent of the overall scientific discovery context (Teran-
Somohano, Smith, Ledet, Yilmaz, and Oğuztüzün 2015) characterized in the previous section. To partly
mitigate this issue, experiment lifecycle management and Model-Driven Engineering (MDE) principles and
practices, which are introduced in (Teran-Somohano, Dayibas, Yilmaz, and Smith 2014), aim to facilitate
derivation and online adaptation of experiment models based on high-level specifications.

2.2 Computational Discovery of Scientific Knowledge

The nature of scientific knowledge structures and the associated activities, including theory formation
and revision (Bunge 1998), impose additional requirements on experiment management. Among the
critical scientific knowledge structures are concepts, hypotheses (including laws), experiments, and models
(grounded on theories). Concepts abstract entities in a domain and establish the vocabulary and terminology
of the problem domain. A conceptual model includes not only the concepts, but also their properties
(attributes) and associations. Models and hypotheses are framed and defined in terms of the domain model.
Hypotheses define relations and expected regularities among variables, events, processes, and objects. They
also characterize assumptions that stretch our information and help us define fruitful questions to study the
object of interest. By evaluating testable consequences of hypotheses, experiments facilitate validation or
falsification of hypotheses using models that express statements about the structure and processes underlying
the system. Models are defined in terms of the concepts and the initial fundamental mechanistic assumptions
(axiomatic hypotheses) that serve as premises of the model.

Of particular interest for the purpose of our study is the relation between hypotheses and experiments.
Each scientific inquiry starts with a specific goal (e.g., explain, predict, control) and imply specific problems
of certain kind (e.g., which, where, why, whether, functional (how, what)). The answers are hypothesized
and tested against empirical or simulated observations. Hypotheses, rather than experiments and data, are
at the center of cognitive activity. All the initial assumptions underlying the model of the theory, whether
formal or factual, are hypotheses. These include the posited corrigible behavioral mechanisms, which form
the basic assumptions of the model. As shown in Table 1, hypothesis can be classified based on their
derivation and level of abstraction.

Table 1: Types of Hypotheses

Hypothesis Models
Criteria Type of Hypothesis
Derivation Non-Constructive Deductive
Strategy Inductive

Constructive Intuitive
Abductive

Abstraction Low Phenomenological
Level High Mechanistic

Regardless of how an hypothesis is derived, it may either refer to the observable behavior of the phenomena
in terms of relations between the dependent and independent variables or refer to underlying mechanisms
(i.e., representational view) that generate the expected regularity (e.g., relational or distributional). Scientific
activities operate over knowledge structures to support taxonomy formation, law/hypothesis generation via
generalization, and theory formation and revision. Inductive, deductive, and abductive reasoning involve
distinct activities to govern the knowledge generation process. In contrast to inductive discovery of a law
from simulation-generated or observed data, deductive analysis uses an explanatory framework (e.g., a
mechanistic model) to derive a law and an explanation via the model about how the law is generated from
the fundamental axiomatic mechanisms of the model. Explanation relies on abductive reasoning to posit,
if necessary, new mechanistic hypotheses that can effectively explain and account for the law.

1003

Yilmaz, Chakladar, and Doud

3 CONCEPTUAL FRAMEWORK FOR EXPERIMENT LIFECYCLE MANAGEMENT

Based on the foregoing discussion on scientific knowledge structures and activities, we aim to place
simulation experiments in the context of the overall knowledge discovery process. First, we introduce the
Goal-Hypothesis-Experiment (GHE) framework, which helps us structure the process in terms of conceptual,
operational, and tactical levels. Following the introduction of the GHE framework, we sketch a conceptual
model-driven engineering architecture to support the framework.

3.1 The Conceptual Level: Goals

The scientific method starts with background domain knowledge and involves the following general steps
to address a specific goal: (1) Formulate well-structured precise questions. (2) Specify testable hypotheses
that are grounded in the domain ontology to answer the questions. (3) Generate the logical consequences
of assumptions in the form of expected behavior. (4) Design computer simulations to test the underlying
assumptions (e.g., mechanistic hypotheses) about the phenomena. (5) Validate the simulation for relevance
and reliability. (6) Design experiments, execute them, and interpret results. (7) Evaluate the correctness
of the assumptions, and if necessary revise the model, experiments, or the expected behavior. These steps
suggest three major activities, taking place at different levels of abstraction.

Table 2: Goal Specification is defined in terms of multiple dimensions.

Dimension Example

Object of study
Immune system influence on hepatic cytochrome P450
regulation

Purpose Explain/characterize

Issue/Focus
the reason for changes in downstream drug metabolism
and hepatotoxicity

Viewpoint
based on the response of hepatic cytochrome P450-
regulating mechanisms

Context when health and/or therapeutic interventions change

The scientific activity starts with a goal, which is defined in relation to a phenomena or object for a
variety of reasons, from a point of view, and in relation to a particular context (see Table 3. In computational
experiments, from the perspective of scientific discovery, one can aim to characterize, understand, evaluate,
predict, or improve the object of the study. For instance, in biomedical sciences, mechanism discovery is
of particular interest.

3.2 The Operational Level: Hypotheses

Once a problem has been set up and examined, a solution will be sought. The solution does not start by
rushing into experiments, but rather starts with ideas related to experience, expectation, or observations in
the form of assumptions, called hypotheses, which are upgraded into laws, resulting in a system of laws,
called theories. To characterize the attainment or evaluation of the goal of the study and to support the
definition of models, a set of questions are formulated. Hypotheses are generated based on these questions
and defined in terms of models of the phenomena or system of interest. The central role of hypotheses
are often ignored or overlooked due to pejorative meaning associated with the term “assumption”. Most
scientific and real-world activities involve assumptions stretching beyond perceivable information available
in a given context. With respect to model-driven and simulation-based knowledge generation activities, we
distinguish three types of hypotheses:

1004

Yilmaz, Chakladar, and Doud

• Phenomenological hypotheses are intended to make assertions about the relations between inputs
and outputs of simulations. If input factors (independent variables) satisfy a set of constraints, the
conjecture is that the output (dependent variables) will take a specific form or exhibit specified
regularities. Such hypotheses facilitate analysis by allowing comparison of system configurations
and sensitivity analysis.

• Mechanistic hypotheses define theoretically grounded model’s fundamental and basic mechanisms
that produce and maintain the desired behavior. Conducting experiments to determine the behavioral
mechanisms that produce, underlie, and maintain a system behavior is also known as synthesis.

• Control hypotheses relate to optimization of behavior. Given the mechanisms of the model,
the objective is to discern input factors that generate optimal behavior. The search for and the
identification of these input factors and their levels constitute the optimization process.

Table 3: Illustrative phenomenological and mechanistic hypotheses.

Type Example

Phenomenological
In response to lipopolysaccharide, Kupffer cells down regulate hepatic P450
levels via inflamatory cytokines, thus leading to a reduction in metabolic
capacity.

Mechanistic

Inflammatory-induced P450 down-regulation is mediated by proinflammatory
cytokines that specifically regulate different yet overlapping subsets of P450s
in both humans and rats (Aitken and Morgan 2007). Many of these cytokines
are derived from Kupffer cells. While some cytokines down-regulate P450
in primary hepatocytes cultures, others are dependent upon the presence of
Kupffer cells (Sunman, Hawke, LeCluyse, and Kashuba 2004). Kupffer cells
can be activated by bacterial endotoxin (lipopolysachharide, LPS). An LPS
stimulus causes Kupffer cells to release proinflammatory cytokines, triggering
P450 down-regulation and the subsequent decrease in drug clearance.

3.3 The Tactical Level: Experiment

Experiments involve concrete procedures and metrics to answer the questions posited and to validate or
refute the related assumptions and hypotheses. Outcomes of experiments feed back into the process to
facilitate revision of goals, models, questions, and experiments. An experiment may have many factors, each
of which might be assigned a range of values, called the levels of the factor in DOE terminology. Factors are
classified into types, including quantitative/qualitative, discrete/continuous, and controllable/uncontrollable.

The GHE framework aims to provide a mechanism for defining and interpreting operational questions
and measurable experiments for the conceptual research questions of interest. The framework is construed
in the form of a hierarchical structure starting with a goal (specifying the problem, the purpose of the
study, object to be measured, and viewpoint from which the measure is taken). The goal is decomposed
into multiple hypotheses (formulated in the form of questions and assumptions), which refine the issue
underlying the problem into its major components. Each question is then mapped onto experiments that
aim to address the questions. Experiments need to be conducted in a way to discriminate between rival
hypotheses. However, within the current state of the art, simulation tools and techniques are not structured
to support seamless navigation and traceability between these levels. To mitigate this issue, we propose to
take steps toward supporting the GHE framework by leveraging the principles and practices of model-driven
engineering, domain-specific languages, and the intelligent agent technology.

1005

Yilmaz, Chakladar, and Doud

4 A COMPUTATIONAL STRATEGY TO SUPPORT THE GHE FRAMEWORK

Model-Driven Engineering (MDE) has emerged as a practical and unified methodology to manage complex
simulation systems development by bringing model-centric thinking to the fore. The use of platform
independent domain models along with explicit transformation models facilitates deployment of simulations
across a variety of platforms. While the utility of MDE principles in simulation development is now widely
recognized, its benefits for experimentation have not yet received sufficient attention.

In (Yilmaz 2015), a conceptual framework is presented to integrate MDE, agent models, and product-line
engineering to manage the overall lifecycle of a simulation experiment. Building on this framework, the
major elements of our proposed strategy are shown in the component architecture presented in Figure 1. In
the component architecture, the experiment and simulation model spaces are tightly coupled to orchestrate
the co-evolution of simulation and experiment spaces as learning takes place. Next, we overview these
components to open a discussion about their potential contributions to the process of computational discovery.

Figure 1: Experiment Management Framework

4.1 DSLs for Experiment and Hypothesis Modeling

For generating experiment specifications from research questions and hypotheses, the DOE methodology in
simulation experiment design (Kleijnen, Sanchez, Lucas, and Cioppa 2005) provides a structured basis for
automation. The DOE ontology defines the vocabulary and grammar. i.e., the abstract syntax for building
the experiment domain model. To support the instantiation of the experiment specifications conforming to
the DOE metamodel, a suitable Domain Specific Language is needed. The experiment model defined by
the DSL needs to be configured with the aspects specified in an experiment feature model. An experiment
design can have various mandatory, alternative, and optional features, which are prominent attributes that
facilitate modeling variants of experiments to support different objectives (Sanchez, Sanchez, and Wan
2014). For instance, the type of the experiment design (e.g., factorial, fractional factorial), the optimization
strategy (e.g., evolutionary strategy vs. simulated annealing), and the analysis method (e.g., ANOVA vs.
MANOVA) are potential features that collectively define plausible configurations of an experiment.

1006

Yilmaz, Chakladar, and Doud

4.2 Agent-assisted Experiment Specification Generation

An experiment design agent evaluates questions of interest to generate an experiment design that is not only
effective in discriminating rival hypotheses, but also efficient in covering the parameter space of the system.
A trade-off analysis between the number of design points and the number of replicates per design point
are carried out in relation to the type of experiment being conducted. Consider, for instance, two options:
one with many replicates per design point, and another with more design points with fewer replicates. The
first option enables explicit estimation of response variances that can vary across scenarios. If the primary
objective is to find a robust system design, then some replication at every design point is essential. If
the goal is to understand the system behavior, this requires understanding the variance, again mandating
replication. However, if the goal is that of comparing systems and a constant variance can be assumed,
then this constant can be estimated using classic ordinary least squares regression. Replication is then of
less concern, and the second option (exploring more design points/scenarios) can be a better way to spend
limited computer resources.

4.3 Agent-monitored Experiment Orchestration and Update

Experiment orchestration involves experiment design adaptation capabilities so that factors that are not
significant in explaining the differences in the dependent variables are reclassified as control variables,
and, if necessary, design schema can adapt as experimentation moves from variable screening to factor
analysis. The aggregation of results for effective analysis and communication is a critical step. Regression
trees and Bayesian networks are effective ways of communicating which factors are most influential on
the performance measures.

Model updating based on the analyses performed by an Experiment Orchestration Agent is the next
step. We consider two types of updates: (1) experiment model (space) update and (2) simulation model
(mechanistic hypothesis space) update. Adaptation of an experiment occurs at multiple levels. Based on
sequential experiment results, specific factors are identified as significant, while others are classified as
control variables. The reduction in the number of pertinent factors triggers a more detailed analysis of the
levels of relevant factors. Such changes in the direction of exploration of the parameter space do not require
an update in the experiment schema. However, higher-order experiment schema (metamodel) and search
strategy adaptation may be necessary when the observed response surface complexity and the change in the
number of factors trigger, for example, an update from a Central Composite Design to a Latin Hypercube
design. Schema adaptation can be followed by a complete schema revision, requiring a new experiment
model consistent with the evolving focus of the experiment.

5 CASE STUDY: A DOMAIN-SPECIFIC LANGUAGE FOR THE GHE FRAMEWORK

Our Model-Driven approach to experiment management is driven by explicit specification of goals, hy-
potheses, and experiments. We studied and modeled different types of hypotheses which allow the user
to ask questions about the model or the system under study. In the context of Design of Experiments,
hypotheses can be defined as: mechanistic hypotheses, relational hypotheses, and constraints. Relational
hypotheses deal with the impact of changes in inputs on the outputs. Mechanistic hypotheses deal with
the mechanisms of the model. Constraints are the temporal or spatial properties that are to be verified or
falsified through the experiment. For illustration purposes, the evolving DSL is used to define experiments
for an agent-based In Silico Hepatocyte Culture (ISHC) model (Petersen, Ropella, and Hunt 2014), which
we replicated to explore the concepts proposed in this study.

The model section of the specification consists of the model’s name, the conjectured mechanisms, the
events, and the factor parameters. Mechanisms consist of the processes that plausibly take place in the
simulated system. If they are confirmed via experiments, they become possible mechanisms, which in turn
become actual. Events define the path for tracing the functions that evaluate elements of the evidences or
constraints. Parameters are the inputs to the model; they have properties, which impact the response of the

1007

Yilmaz, Chakladar, and Doud

simulation run.

model ISHC is {
mechanism M1 : ’Cytokines is produced in Kupffer cells when

inflammatoryAgent is greater than inflammatory threshold’
mechanism M2 : ’Cytokines are not produced when noOfCytokines

is greater than cytokine threshold’
mechanism M3 : ’Hepatocytes down-regulate P450 levels in

response to cytokines ’

parameters are :
Metabolite1: type Solute with properties {bindable:false,

pBind : 0.05}
Metabolite2: type Solute with properties {bindable : false,

pMetabolize :0.6}
KupfferCell: type Cell with properties

{inflammatoryThreshold: 0.87 , cytokineThreshold :0.9}
}

The hypothesis section consists of relational hypotheses, mechanistic hypotheses and expected regular-
ities and constraints. Phenomenological hypotheses deal with the impact of inputs on outputs. Mechanistic
hypotheses reference the behavioral mechanisms defined in the model section. Expected regularities are
the temporal and spatial properties that are to be verified or falsified. It is stated in terms of high-level
finite state property patterns, which are translated by the language processor into Linear Temporal Logic.
The coherence model describes the explanatory coherence relations (see section 6) between the hypotheses
and the expected behavior.

goals {
object of study : ’Immune system influence on hepatic

cytochrome P450 regulation’
purpose : ’Explain / characterize’
focus : ’the reason for changes in downstream drug metabolism

and hepatotoxicity’
view point : ’based on the response of hepatic

cytochrome P450- regulating mechanisms’
context : ’when health and/or therapeutic interventions change.’

}
hypotheses {

phenomenological hypotheses {
H1 : [if LPS is added to Kupffer cells

then hepatic P450 is DECREASED]
H2 : [if LPS is added to Kupffer cells

then noOfCytokines is INCREASED]}
}

evidence {
E1: inflammation occurs after inflamAgent > inflamThreshold

confidence : 0.5
E2: inflammation is absent after cytokine < cytokineThreshold

confidence : 0.5}

1008

Yilmaz, Chakladar, and Doud

coherence model {
(EXPLAIN (H1)(E1))
(EXPLAIN (H1,H2)(E2))
(ANALOGOUS (H1)(H2))

}

Experiment – The metamodel (abstract syntax) for the experiment section encompasses the structural
elements of an experiment which includes the experiment’s design and performance measure. Based on the
model’s parameters and their levels, as well as the hypothesis and goal of the experiment, a design is created
that is used in subsequent steps of the experiment life-cycle. The experimental design is defined by the
dependent variables, the control variables, the independent variables. Based on this design, one can charac-
terize the design matrix, which specifies the actual experimental runs, that is, the combination of factor levels.

experiment ISHC
design {

designType: FulFactorial
variables {

independent variables {
Metabolite2 levels : LOW where

LOW is in the range 100 to 200
KupfferCell levels : 100 to 700 with step 50

}

control variables {
Metabolite1 levels : 1000

}

dependent variables {
cytokines : type Integer

}
}

}

6 COGNITIVE COMPUTING AS AN AID TO SUPPORT COMPUTATIONAL DISCOVERY

To support experimentation within the experiment and hypothesis spaces, there is a need to conjecture
plausible explanations for the targeted behavior and discern a coherent set of mechanisms that collectively
work together to generate it. To this end, we explore the use of explanatory coherence theory (Thagard 1989)
toward developing a strategy. Our implementation technique uses a self-organizing coherence maximization
approach to discern the combination of mechanisms that fit together to exhibit the desired behavior.

To incorporate the theory of explanatory coherence into our framework, we defined in the DSL features
that represent the hypotheses and evidences, along with initial facilitation and inhibition relations among
them. These relations are subject to change based on experiment results. The evidences or expected
behavior are presented in terms of finite state verification patterns, which are compiled by the DSL into
Linear Temporal Logic. Using the SPIN model checker, we examine if the evidence is supported by the
mechanisms of the model.

Coherence theory builds on the observed data to establish relations among specified propositions.
Coherence between two propositions is achieved if any of the following is true: (1) P is part of the

1009

Yilmaz, Chakladar, and Doud

explanation of Q. (2) Q is part of the explanation of P. (3) P and Q are together part of the explanation of
some R. (4) P and Q are analogous in the explanations they respectively give of some R and S. For illustrative
purposes, in Figure 2, we present a hypothetical coherence network that is comprised of evidence and
hypothesis nodes. In this example, hypotheses H1 and H2 together explain the evidence E1. The evidence
can be represented by a predicate or expected pattern, whereas hypotheses are the behavioral mechanisms
that when enacted generate model behavior consistent with the evidence. That is, H1 and H2 explain the
evidence E1. An edge with a solid thin line indicates facilitation or explanation relation among two nodes,
whereas a thick line denotes an inhibition relation. For instance, H8 supports or contributes to H4 and
H2, whereas it inhibits E4. Synthesizing a model that is capable of and effective in explaining/generating
a set of target behaviors can be viewed in terms of the coherence problem.

Figure 2: An Illustrative Coherence Network

The Coherence Problem: The coherence problem is defined as follows: We define a finite set of
elements ei and two disjoint sets, C+ of positive constraints, and C− of negative constraints, where a
constraint is specified as a pair (ei,e j) and weight wi j. The set of elements are partitioned into two sets, A
(accepted) and R (rejected), and w(A,R) is defined as the sum of the weights of the satisfied constraints.
A satisfied constraint is defined as follows: (1) if (ei,e j) is in C+, then ei is in A if and only if e j is in
A. (2) if (ei,e j) is in C−, then ei is in A if and only if e j is in R. The underlying dynamics of coherence
maximization is akin to simultaneous firing of neurons. Each unit receives input from every other unit that
it is connected. The inputs are then moderated by the weights of the link from which the input arrives. The
activation value of a unit is updated as a function of the weighted sum of the inputs it receives. The process
continues until the activation values of all the units settle by no longer changing over a pre-specified limit.
More formally, if we define the activation level of each node j as a j, where a j ranges from −1 (rejected)
and 1 (accepted), the update function for each unit is as follows:

a j(t +1) =

{
a j(t)(1−θ)+net j(M−a j(t)), if net j > 0
a j(t)(1−θ)+net j(a j(t)−m), otherwise

The variable θ is a decay parameter that decrements the activation level of each unit at every cycle. In
the absence of input from other units, the activation level of the unit gradually decays. In the equation, m
is the minimum activation and M is the maximum activation; net j is the net input to a unit, defined by the
following equation: ∑i wi jai(t). These computations are carried out for every unit until the network reaches
an equilibrium. Nodes with positive activation levels at the equilibrium state are discerned as maximally
coherent propositions. For experimentation purposes, the design of the network can be calibrated and fine
tuned to alter the weights of individual links representing the significance of the constraints. Furthermore,

1010

Yilmaz, Chakladar, and Doud

initial activation levels of the propositions and initial levels of evidential support can be set to provide
priority or higher weight to specific evidences and hypotheses. We have implemented the above algorithm
and tested the coherence maximization algorithm on networks of various size. The next step is to incorporate
the algorithm into the run-time engine of the experiment management system.

7 CONCLUSIONS

The vision and the strategy presented herein aims to provide a pathway toward a reference implementation of
the GHE experiment management system. As we continue to expand the DSL with features that improve the
use of cognitive computing in experiment management and to increase the degree of automation in mapping
goals and questions to experiment designs, the role of agent technology (in orchestrating experiments and
drawing inferences from the results) requires further exploration. In extending the DSL, our focus shifts
toward bringing precision to the specification of mechanisms and introducing the transformation algorithms
that map hypotheses to experiment designs. The search within the experiment space requires strategies
that can effectively discriminate between competing hypotheses. The precision in the specification of
mechanisms will allow weaving them to synthesize the simulation model, which will evolve based on
recommendations rendered by the cognitive explanatory coherence system.

REFERENCES

Aitken, A. E., and E. T. Morgan. 2007. “Gene-specific Effects of Inflammatory Cytokines on Cytochrome
P450 2C, 2B6 and 3A4 mRNA Levels in Human Hepatocytes”. Drug Metabolism and Disposition:
The Biological Fate of Chemicals 35 (9): 1687–93.

Altintas, I., C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. 2004. “Kepler: An Extensible System
for Design and Execution of Scientific Workflows”. In Proceedings. 16th International Conference on
Scientific and Statistical Database Management, 2004., 423–424: IEEE.

Bunge, M. 1998. Philosophy of Science: From Problem to Theory. Transaction Publishers.
Darden, L. 2001. “Discovering Mechanisms: A Computational Philosophy of Science PerspectiveTitle”.

In Discovery Science. Volume 2226 of the series Lecture Notes in Computer Science, 3–15. Springer
Berlin Heidelberg.

Dzeroski, S., P. Langley, and L. Todorovski. 2007. “Computational Discovery of Scientific Knowledge”.
In Computational Discovery of Scientific Knowledge, Introduction, Techniques, and Applications in
Environmental and Life Sciences, 1–14.

Ewald, R., and A. Uhrmacher. 2014. “SESSL: A Domain-Specific Language for Simulation Experiments”.
ACM Transactions on Modeling and Simulation 24 (2): 1–25.

Freire, J., P. Bonnet, and D. Shasha. 2012. “Computational Reproducibility: State-of-the-Art, Challenges, and
Database Research Opportunities”. In Proceedings of the 2012 International Conference on Management
of Data - SIGMOD ’12, 593–596. New York, New York, USA: ACM Press.

Glotzer, S., S. Kim, P. Cummings, A. Deshmukh, M. Head-Gordon, G. Karniadakis, L. Petzold, C. Sagui,
and M. Shinozuka. 2009. Research and Development in Simulation-based Engineering and Science.
WTEC Technical Report.

Kleijnen, J. P. C. 2007. Design and Analysis of Simulation Experiments. Springer.
Kleijnen, J. P. C., S. M. Sanchez, T. W. Lucas, and T. M. Cioppa. 2005. “State-of-the-Art Review: A

User’s Guide to the Brave New World of Designing Simulation Experiments”. INFORMS Journal on
Computing 17 (3): 263–289.

Montgomery, D. C. 2006. Design and Analysis of Experiments. John Wiley and Sons.
Oinn, T., M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. R. Pocock,

A. Wipat, and P. Li. 2004. “Taverna: A Tool for the Composition and Enactment of Bioinformatics
Workflows”. Bioinformatics 20 (17): 3045–54.

1011

Yilmaz, Chakladar, and Doud

Peachey, T., N. Diamond, D. Abramson, W. Sudholt, A. Michailova, and S. Amirriazi. 2008. “Fractional
Factorial Design for Parameter Sweep Experiments Using Nimrod/E”. Scientific Programming 16 (2-3):
217–230.

Perrone, L. F., C. S. Main, and B. C. Ward. 2012. “SAFE: Simulation Automation Framework for
Experiments”. In Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque,
J. Himmelspach, R. Pasupathy, O. Rose, and A. Uhrmacher, 1–12. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

Petersen, B. K., G. E. P. Ropella, and C. A. Hunt. 2014. “Toward Modular Biological Models: Defining
Analog Modules based on Referent Physiological Mechanisms”. BMC Systems Biology 8:95–116.

Riley, G., and J. Pekley. 2011, mar. “An XML Experiment Description Language for ns-3”. In SimuTools’11
Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, 447–453:
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

Sanchez, S. M., P. J. Sanchez, and H. Wan. 2014. “Simulation Experiments: Better Insights by Design”. In
Proceedings of the 2014 Summer Simulation Multiconference, 53–60. Society for Computer Simulation
International.

Sliwoski, G., S. Kothiwale, J. Meiler, and E. W. Lowe. 2014. “Computational Methods in Drug Discovery”.
Pharmacological Reviews 66 (1): 334–95.

Sunman, J. A., R. L. Hawke, E. L. LeCluyse, and A. D. M. Kashuba. 2004. “Kupffer Cell-mediated IL-2
Suppression of CYP3A Activity in Human Hepatocytes.”. Drug Metabolism and Disposition: The
Biological Fate of Chemicals 32 (3): 359–63.

Teran-Somohano, A., O. Dayibas, L. Yilmaz, and A. Smith. 2014. “Toward a Model-Driven Engineering
Framework for Reproducible Simulation Experiment Lifecycle Management”. In Proceedings of the
2014 Winter Simulation Conference, edited by A.Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley,
and J. A. Miller, 2726–2737. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Teran-Somohano, A., A. E. Smith, J. Ledet, L. Yilmaz, and H. Oğuztüzün. 2015. “A Model-Driven
Engineering Approach to Simulation Experiment Design and Execution”. In Proceedings of the 2015
Winter Simulation Conference, edited by L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal,
and M. D. Rossetti, 2632–2643. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Thagard, P. 1989. “Explanatory Coherence”. Behavioral and Brain Sciences 12:435–502.
Yilmaz, L. 2015. “Toward Agent-Assisted and Agent-Monitored Model-Driven Simulation Engineering”.

In Concepts and Methodologies for Modeling and Simulation, 3–18. Springer.

AUTHOR BIOGRAPHIES

LEVENT YILMAZ is Professor of Computer Science and Software Engineering at Auburn University with
a joint appointment in Industrial and Systems Engineering. He holds M.S. and Ph.D. degrees in Computer
Science from Virginia Tech. His research interests are in agent-directed simulation, cognitive computing,
and model-driven science and engineering for complex adaptive systems. He is the founding organizer and
general chair of the Agent–Directed Simulation Conference series. His email address is yilmaz@auburn.edu.

SRITIKA CHAKLADAR is a Graduate Student at the Department of Computer Science and Software
Engineering in Auburn University. Her research interests are in model-driven engineering and computational
biomedical research. Her email address is szc0098@auburn.edu.

KYLE DOUD is a Graduate Student at the Department of Computer Science and Software Engineering in
Auburn University. His research interests are in model-driven engineering and formal methods. His email
address is krd0015@auburn.edu.

1012

