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ABSTRACT

We compare different sets of regularity conditions required to derive a generalized likelihood ratio method
(GLRM) proposed by Peng et al. (2016a), and present additional applications of GLRM. A numerical
experiment substantiates that the GLRM can address a broad set of sensitivity estimation problems in a
unified framework.

1 INTRODUCTION

Stochastic derivative estimation is an important topic in simulation optimization, because it plays a central
role in both sensitivity analysis and gradient-based optimization. See Fu (2006, 2008, 2015) for general
overviews. Likelihood ratio method (LRM) is one of the most popular stochastic derivative estimation
techniques, providing an unbiased estimator that does not require continuity of the payoff. Please refer to
Glynn (1990) and Rubinstein and Shapiro (1993) for details.

For a discontinuous payoff function dependent on a structural parameter, push-out LRM, which moves
the parameter out of the payoff and into a distribution, can be a potential choice. See Rubinstein (1992),
Rubinstein (1997), and Pflug and Rubinstein (2002) for applications in different problems, and Rubinstein
and Shapiro (1993) as a review. However, the push-out technique basically applies a change of variables
and requires an explicit inverse to be implemented efficiently. Unfortunately, this requirement is not always
satisfied in application, which is shown in this work and Peng et al. (2016a).

Peng et al. (2016a) put the push-out LRM in a general framework, and show the generalized LRM
(GLRM) proposed in Peng et al. (2016a) is a generalization of the push-out LRM when the inverse of the
transformation exists but is not available in closed form. Peng et al. (2016a) derive GLRM in two different
ways under different sets of regularity conditions. One derivation is by function smoothing and integration
by parts; and another one is through change of variables and differentiation of implicit function. In this
work, we compare regularity conditions required for the two derivations and provide additional applications
of GLRM.

Other methods closely related to LRM include the combined infinitesimal perturbation analysis (IPA)-
LRM of L’Ecuyer (1990) and the support independent unified likelihood ratio and infinitesimal perturbation
analysis (SLRIPA) in Wang et al. (2012). The former puts the IPA and LRM in a unified framework,
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while the latter can treat discontinuity in both sample performance and distribution function by using a
combination of IPA and LRM. Peng et al. (2016a) show that the framework where GLRM applies is a
generalization of the framework of both combined IPA-LRM and SLRIPA, although the actual estimators are
different. Chen and Glasserman (2007) provides a LRM-based estimator for Greeks of financial derivatives
with underlying asset prices governed by a discretized diffusion process, and proves that the proposed
estimator converges to a Malliavin calculus estimator (Fournié et al. 1999) as discretiziation size goes to
zero. Peng et al. (2016a) show the estimator in Chen and Glasserman (2007) is a special case of GLRM.

The rest of the paper is organized as follows. Section 2 introduces some background on LRM and
push-out LRM. GLRM is introduced in Section 3. Applications of GLRM can be found in Section 4. A
numerical experiment is provided in Section 5. The last section offers conclusions.

2 BACKGROUND

The problem is to estimate the derivative ∂

∂θ
E[V (X ;θ)] by simulation output, where V (·; ·) : Rn×Θ→R,

and
∂

∂θ
E[V (X ;θ)] =

∂

∂θ

∫ ∫
Rn

V (x;θ) f (x;θ) dx,

where x = (x1, ..,xn) and f (x;θ) is the joint density of X = (X1, ..,Xn). With appropriate integrability
and smoothness conditions, the differentiation and expectation can be exchanged, and we have the LRM
estimator as follows:

∂

∂θ
E[V (X ;θ)] =

∫ ∫
Rn

(
∂V (x;θ)

∂θ
f (x;θ)+V (x;θ)

∂ f (x;θ)

∂θ

)
dx

= E
[

∂V (X ;θ)

∂θ
+V (X ;θ)

∂ ln f (X ;θ)

∂θ

]
.

When Xi, i = 1, ..,n, are mutually independent with PDF fi,
∂ ln f (X ;θ)

∂θ
= ∑

n
i=1

∂ ln fi(Xi;θ)
∂θ

.
From the derivation above, we know if V (x;θ) is independent of parameter θ , then the first term in the

expectation is zero, therefore unlike the pathwise derivative methods, the LRM estimator does not need to
differentiate the payoff function V , an attractive property of LRM when V is discontinuous with respect
to x. For the case when V (x;θ) is dependent on structural parameter θ without appropriate regularity
conditions, e.g. continuity, both IPA and LRM fail. In this situation, the push-out LRM, which moves the
parameter of interest into distributions, provides a potential solution.

In the rest of the section, we use the framework proposed in Peng et al. (2016a) to give a general
discussion on the push-out LRM. Suppose V (x;θ) has the following structure:

V (x;θ) = ϕ(G1(x;θ), ..,Gm(x;θ)), m≤ n,

where ϕ(y1, ..,ym) could be a function without continuity condition and the dependence on parameter θ

for V (·;θ) only comes from Gi(·;θ), i = 1, ..,m.

Remark. The framework can be easily extended as follows:

Q(x;θ) = ϑ(V1(x;θ), ..,Vn′ (x;θ);θ),

where ϑ(v1, ..,vn′ ,θ) is differentiable with respect to (v1, ..,vn′ ,θ) and Vi(·), i= 1, ..,n
′
, are defined similarly

as V (·).

The push-out LRM requires that there exists an inversion for the following change of variables:

y1 = G1(x;θ), . . . ,ym = Gm(x;θ), ym+1 = xm+1, . . . ,yn = xn, (1)
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such that we can explicitly write it out as

x1 = G−1
1 (y;θ), . . . ,xm = G−1

m (y;θ), xm+1 = ym+1, . . . ,xn = yn, (2)

where y .
= (y1, ..,yn). The subscript index of the variables x1, ..,xn are given arbitrarily, therefore we

can always assume that the last n−m transformations, if n > m, are identical without loss of generality.
Generally, transformation (1) would map Rn onto some space ΩY (θ) dependent on parameter θ . It is
essential that ΩY (θ) is independent of parameter θ , i.e. ΩY (θ) = ΩY , to apply LRM. The most frequently
used transformation in the literature is a linear transformation which has the form

y = A(θ)x+B(θ), x = A−1(θ)y−A−1(θ)B(θ), (3)

assuming the matrix A(θ) is invertible. In this case, ΩY (θ) = Rn.
We introduce the following notation: Gk(x;θ)

.
= xk, G−1

k (y;θ) = yk for k = m+1, ..,n, x1:k
.
= (x1, ..,xk),

y1:k
.
= (y1, ..,yk), G1:k(x;θ)

.
= (G1(x;θ), ..,Gk(x;θ)), G−1

1:k(y;θ)
.
= (G−1

1 (y;θ), ..,G−1
k (y;θ)) for k = 1, ..,n,

and G(x;θ)
.
= G1:n(x;θ). In the setting assumed above, we successfully push out the parameter θ into

distribution by noticing that

E[V (X ;θ)] =
∫ ∫

Rn
ϕ(G1:m(x;θ)) f (x;θ) dx =

∫ ∫
Rn

ϕ(y1:m) f (G−1(y;θ);θ) |det(J(y;θ))| dy, (4)

where G−1(y;θ)
.
= G−1

1:n(y;θ), det(·) means the determinant, and J is the Jacobian matrix of the inverse
transform (2) defined by

J(y;θ)
.
=


∂G−1

1 (y;θ)
∂y1

∂G−1
1 (y;θ)
∂y2

· · · ∂G−1
1 (y;θ)
∂yn

∂G−1
2 (y;θ)
∂y1

∂G−1
2 (y;θ)
∂y2

· · · ∂G−1
2 (y;θ)
∂yn

...
...

. . .
...

∂G−1
n (y;θ)
∂y1

∂G−1
n (y;θ)
∂y2

· · · ∂G−1
n (y;θ)
∂yn

 .

Under appropriate regularity conditions, ordinary LRM can be applied, with the only difference being that
the density of the distribution has been changed from f (x;θ) to f (G−1(x);θ) |det(J(x;θ))|. Notice that
the procedure above relies on the existence of an explicit formula for inversion (2).

3 GENERALIZED LIKELIHOOD RATIO METHOD

In this section, we introduce the GLRM proposed in Peng et al. (2016a), which generalizes the push-out
LRM in the case when the explicit inversion (2) cannot be found, although it exists and can be determined
by an implicit function. For k,k

′
= 1, ..,m, h(x) = (h1(x), ..,hk′ (x)), we define the following notation and

operations: ∂

∂x1:k

.
= ( ∂

∂x1
, .., ∂

∂xk
),

∂

∂x1:k
⊗h(x) .

=


∂

∂x1
h1(x) ∂

∂x1
h2(x) · · · ∂

∂x1
hk′ (x)

∂

∂x2
h1(x) ∂

∂x2
h2(x) · · · ∂

∂x2
hk′ (x)

...
...

. . .
...

∂

∂xk
h1(x) ∂

∂xk
h2(x) · · · ∂

∂xk
hk′ (x)

 ,

and

h(x)⊗ ∂

∂x1:k

.
=

(
∂

∂x1:k
⊗h(x)

)T

,
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∂ 2

∂θ∂x1:m

.
=
(

∂ 2

∂θ∂x1
, .., ∂ 2

∂θ∂xn

)
and ∂ 2

∂xi∂x1:m

.
=
(

∂ 2

∂xi∂x1
, .., ∂ 2

∂xi∂xm

)
, i = 1, ..,m. Define p-norm as follows:

||h||p
.
=
∫
|h(x)|pdx .

The following regularity conditions are used to justify the unbiasedness of GLRM in Peng et al. (2016a).

(A.1) The set of discontinuity points for ϕ(y1, ..,ym) has zero measure.
(A.2) Invertibility Condition: G1:m(x;θ) is differentiable with respect to x, ∀ x ∈ Rn the matrix ∂

∂x1:m
⊗

G1:m(x;θ) is invertible, and denote its inversion as

(ϒi, j(x;θ))m×m
.
=

(
∂

∂x1:m
⊗G1:m(x;θ)

)−1

=


∂G1(x;θ)

∂x1

∂G2(x;θ)
∂x1

· · · ∂Gm(x;θ)
∂x1

∂G1(x;θ)
∂x2

∂G2(x;θ)
∂x2

· · · ∂Gm(x;θ)
∂x2

...
...

. . .
...

∂G1(x;θ)
∂xm

∂G2(x;θ)
∂xm

· · · ∂Gm(x;θ)
∂xm


−1

.

Uniform Integrability: For i = 1, ..,m, suppose Gi(x;θ) is twice continuously differentiable with
respect to x,θ ; f (x;θ) is continuously differentiable with respect to x,θ ; there exists an integrable
function U1(x) such that ∀ x ∈ Rn:

max
{

sup
θ∈Θ

∣∣∣∣ϒi j(x;θ)
∂Gi(x;θ)

∂θ

∣∣∣∣ , sup
θ∈Θ

|ϕ(G1:m(x;θ))|
}

f (x;θ)≤U1(x),

sup
θ∈Θ

∣∣∣∣∣∂ ln f (x;θ)

∂θ
−

m

∑
i=1

m

∑
j=1

(
∂ϒi j (x;θ)

∂x j

∂Gi (x;θ)

∂θ
+ϒi j (x;θ)

∂ 2Gi (x;θ)

∂x j∂θ

+ϒi j (x;θ)
∂Gi (x;θ)

∂θ

∂ ln f (x;θ)

∂x j

)∣∣∣∣ f (x;θ)≤U1(x),

where Θ is any set containing a neighborhood of θ ; there exists U2(y) such that ∀ y ∈ Rn:

sup
θ∈Θ

∣∣∣∣∣
{

∂ ln f
∂θ
−

m

∑
i=1

m

∑
j=1

(
∂ϒi j

∂x j

∂Gi

∂θ
+ϒi j

∂ 2Gi

∂x j∂θ
+ϒi j

∂Gi

∂θ

∂ ln f
∂x j

)}
(G−1(y;θ);θ)

∣∣∣∣∣
× f (G−1(y;θ);θ) |det(J(y;θ))| ≤U2(y),

(A.3) Topology Condition: Denote a sub-matrix of ∂

∂x1:m
⊗G1:m(x;θ) without the i-th row as Γi(x). In

addition, there exist ε,M > 0 and an (m−1)×(m−1) sub-matrix of Γi(x) without the j-th column,
denoted as Γi j(x), such that

inf
x∈Rn

∣∣∣∣det
(

∂

∂x1:m
⊗G1:m(x;θ)

)∣∣∣∣> ε, sup
x∈Rn

∣∣det(Γi j(x))
∣∣< M .

(A.4) Dual Integrability Condition: for q ∈ (1,∞],

sup
θ∈Θ

∫
Rn−m

dym+1:n

{∫
Rm
| f (G−1(y;θ))det(Σ−1

s (G−1(y;θ));θ)|qdy1:m

} 1
q

< ∞,

and ∫
Rn−m

dym+1:n

{∫
Rm

Uq
2 (y) dy1:m

} 1
q

< ∞ .
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The matrix invertibility condition in (A.2) guarantees inversion (2) exists by the implicit function
theorem (Rudin 1964), so whenever push-out LRM that requires an explicit form transformation applies,
condition (A.2) is satisfied. Uniform integrability in (A.2) is a typical condition to apply dominated
convergence theorem that justifies the interchange of differentiation and expectation. (A.1) guarantees the
existence of a smooth function converging to ϕ a.e., while for a measurable function ϕ in Lp space, there
exists a smooth function converging to ϕ in Lp space. For general measurable function ϕ , the conclusion
in the following Theorem 1 can first be established for a truncated sequence, and then extended to the
general case using uniform integrability in (A.1). Condition (A.3) guarantees the image of transformation
(1) is the whole space.
Theorem 1 (i) Under Conditions (A.1) and (A.2), the following Equation (5) holds;
(ii) Under Conditions (A.2) and (A.4) , the following Equation (5) holds;

(iii) Under Conditions (A.2) and (A.3), the following Equation (5) holds.

∂

∂θ
E[V (X ;θ)] = E

[
V (X ;θ)

{
m

∑
j=1

[(
∂

∂x1:m
⊗G1:m(x;θ)

)−1(
∂ 2

∂x j∂x1:m
⊗G1:m(x;θ)

)
(

∂

∂x1:m
⊗G1:m(x;θ)

)−1

e j

]T (
G1:m(x;θ)⊗ ∂

∂θ

)
− tr

[(
∂

∂x1:m
⊗G1:m(x;θ)

)−1

(
∂ 2

∂θ∂x1:m
⊗G1:m(x;θ)

)]
−
(

∂

∂θ
⊗G1:m(x;θ)

)(
∂

∂x1:m
⊗G1:m(x;θ)

)−1

(
∂

∂x1:m
⊗ ln f (x;θ)

)
+

∂ ln f (x;θ)

∂θ

}∣∣∣∣
x=X

]
,

(5)

where e1
.
= (1,0,0, ..)T , e2

.
= (0,1,0, ..)T , ..., em

.
= (0,0, ..,1)T .

Notice that the formula of GLRM on the right hand side of Equation (5) only involves differentiation
and elementary operations on G(x;θ) and density f (x;θ) of input random variables, which are basic
building blocks of output random variables. The proof of the theorem can be found in Peng et al. (2016a).
Proofs of (i) and (ii) use function smoothing and integration by parts. The difference is that (i) requires
some continuity condition (A.1), while (ii) does not but requires stronger integrability condition (A.4).
Basically, the less smoothness ϕ has, the stronger integrability condition is required. (iii) is obtained by
change of variables and differentiation of implicit function. Therefore, conclusion (iii) shows GLRM is a
generalization of push-out LRM when inversion (2) exists but not in closed form. Topology condition (A.3)
is stronger than the invertibility condition in (A.2), but is satisfied by the invertible linear transformation
(3) that has been applied most frequently in the application of push-out LRM.

In the rest of the section, we discuss the applicability of regularity conditions (A.1)-(A.4) in practice.
Condition (A.1) is easy to satisfy. For example, it covers the case ϕ(y1, ..,ym) = ∏

m
i=1 hi(yi), where hi(yi)

has countably many discontinuity points, which covers two examples in Section 4 and all examples in
Peng et al. (2016b), Peng et al. (2016a), Peng et al. (2016c), and Peng et al. (2016d). The linear
transformation given in Section 2 satisfies the condition (A.2). For a Markovian model, there exists a
transition function Yi =ψi(Yi−1,Xi), i> 1, and Y1 = X1. With the condition that ∏

n
i=2 ∂ψi(yi,xi)/∂xi 6= 0 a.e.,

matrix invertibility condition in (A.2) can be guaranteed by the Markov model. We provide a simple example
that satisfies the matrix invervibility condition in (A.2), without explicit inversion. Let vi(θ), i = 2, ..,m,
be linear independent row vectors in Rm, let v1(θ) = ∑

m
i=2 vi(θ), and A11(θ) = (v2(θ), ..,vm(θ))

T . Define
the following transform:

y1 = h(x)+ v1(θ) xT
2:m,

yT
2:m = A11(θ) xT

2:m .

923



Peng, Fu and Hu

For h(x)= c1(θ)ec2(θ)x1 +c3(θ)x1+c4(θ) and h(x)= c1(θ)x3
1+c2(θ)x1+c4(θ), where c1(θ),c2(θ),c3(θ)>

0, the matrix invertibility condition in (A.2) can be easily proved to be satisfied for the transformation
above, even without explicit inversion.

The Topology condition (A.3) required by (iii) could be violated in many practical problems. In Peng
et al. (2016a), an application for the sensitivity estimates of a compound option, an option on an option,
is provided. The payoff function of an European compound option is given by

Q(X1;θ) = e−rt1V (X1;θ),

where X1 = Bt1/
√

t1,
V (X1;θ) = G1(X1;θ) 1{G1(X1;θ)> 0},

and
G1(X1;θ) =C (St1 ; t2− t1;K2)−K1,

where St = S0 exp
(
(r−σ2/2)t +σ

√
tX1
)

and

C(St ; t2− t1;K2) = N(d1)St −N(d2)K2e−r(t2−t1),

where N(·) is the CDF of the standard normal distribution, and C(·) is the price of an option with expiration
date at time t2 and strike price K1, of the underlying asset St at time t1, given by the following Black-Scholes
formula:

d1 =
1

σ
√

t2− t1

[
log
(

St

K2

)
+(r+

σ2

2
)(t2− t1)

]
,

d2 = d1−σ
√

t2− t1 .

In addition, we have
∂C(St1 ; t2− t1;K2)

∂X1
=

∂C(St1 ; t2− t1;K2)

∂S
St1σ
√

t1,

where ∂C
∂S = N(d1). Conditions in (i) (or (ii)) can be easily shown to be satisfied. However, we can see

G1(·;θ): R→ [−K1,∞) and

lim
X1→∞

(
∂C(St1 ; t2− t1;K2)

∂X1

)−1

= 0,

therefore Condition (A.3) is not satisfied by this example.

4 APPLICATIONS

4.1 Asian Option

An Asian option is a path-dependent financial derivative with its payoff depending on an average of prices
of underlying assets throughout the path. The sensitivity of Asian option is considered to be a difficult
problem (Boyle and Potapchik 2008). We illustrate how to apply GLRM to address this problem. The
payoff function of an arithmetic mean Asian call option is given by

Q(X1, ..,Xn;θ) = e−rn∆V (X1, ..,Xn;θ),

where for i = 1, ..,n, Xi = (Bi∆−B(i−1)∆)/
√

∆, where ∆ is the duration between two adjacent price ticks,

V (X1, ..,Xn;θ) = G1(X1, ..,Xn;θ) 1{G1(X1, ..,Xn;θ)> 0},

and

G1(X1, ..,Xn;θ) =
1
n

n

∑
i=1

S0 exp

{
σ
√

∆

i

∑
j=1

X j + i
(

r− σ2

2

)
∆

}
−K .
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The first-order sensitivity estimate is not a issue for an Asian option, since the payoff is still continuous,
although it has a kink. However, the discontinuity is an issue for estimating the second-order sensitivity
(as well as the first-order sensitivity of a digital Asian option). For example, the payoff function of the
first-order derivative with respect to K is

Q(X1, ..,Xn;θ) =−e−rn∆V (X1, ..,Xn;θ),

where
V (X1, ..,Xn;θ) =−1{G1(X1, ..,Xn;θ)> 0} .

The payoff function for an Asian call option with geometric mean is given by

Q(X1, ..,Xn;θ) = e−rn∆KV (X1, ..,Xn;θ),

where

V (X1, ..,Xn;θ) =
n

∏
i=1

exp{Gi(X1, ..,Xi;θ)}
1
n 1

{
n

∏
i=1

exp{Gi(X1, ..,Xi;θ)}
1
n > 1

}
,

and for i = 1, ..,n,

Gi(X1, ..,Xi;θ) = logS0− logK +σ
√

∆

i

∑
j=1

X j + i
(

r− σ2

2

)
∆ .

4.2 Inventory Processes

We use the formulation of a single-commodity, discrete-time, multiperiod inventory model with backlogging
in Pflug and Rubinstein (2002), which applied push-out LRM to address the same problem. As discussed
in the last section, GLRM is a generalization of push-out LRM, so in this example where the latter applies,
they would have the same estimator. Please refer to Pflug and Rubinstein (2002) for numerical results. We
illustrate how to put this problem into the framework given in Section 2. After fitting the problem with the
framework, there is no need to decide how to push the parameter into distribution, and the GLRM formula
in Theorem 1 has implicitly pushed the parameter out of the discontinuous sample performance.

We focus on the scenario that has stochastic lead times under no-overtaking rule. Applying the quasi-
regenerative theorem, Pflug and Rubinstein (2002) show the steady-state cost per time can be written as
the following performance measure:

`(S,L) =
E
[
∑

R1−1
m=1 ϕ(S− ŶR2− Ȳm)1

{
ŶR2 > L

}]
+K

E
[
∑

∞
n=0 1

{
ŶR2−Yn < L

}
+R1

] +

E
[
∑

∞
n=0

(
ϕ(S− ŶR2−Yn)+∑

R1−1
m=1 ϕ(S− ŶR2−Yn− Ȳm)

)
1
{

ŶR2−Yn < L
}]

E
[
∑

∞
n=0 1

{
ŶR2−Yn < L

}
+R1

] ,

where L = S− s, s and S are the parameters in the (s,S) policy, ϕ(x) = c1x++ c2x−, x+ = max{x,0} and
x− = max{x,0}, R1 and R2 are independent copies of the stochastic lead time, Yn = ∑

n
i=1Yi, Ŷm = ∑

m
j=1 Ŷj,

Ȳl = ∑
l
k=1 Ȳk, Yi, Ŷj, Ȳk are independent copies of the stochastic demands, ∑

j
i=1

.
= 0 if j ≤ 0, and K is the

fixed cost for each order.
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For the sensitivity with respect to the parameter θ , we need to estimate

∂

∂θ
E

[
∞

∑
n=0

1
{

ŶR2−Yn < L
}
+R1

]

=E

[(
∞

∑
n=0

1
{

ŶR2−Yn < L
}
+R1

)(
∂ ln fR(R1;θ)

∂θ
+

∂ ln fR(R2;θ)

∂θ

)]

+
∞

∑
n=0

E
[

∂

∂θ
E [Vn(X1, , ..,Xn+R2 ;θ)|R1,R2]

]
,

where Xi
.
= Yi, i = 1, ..,n, X j+n

.
= Ŷj, j = 1, ..,R2, and

Vn(X1, , ..,Xn+R2 ;θ)
.
= 1{Gn(X1, , ..,Xn+R2 ;θ)< 0} ,

Gn(X1, , ..,Xn+R2 ;θ)
.
= ŶR2−Yn−L;

∂

∂θ
E

[
R1−1

∑
m=1

ϕ(S− ŶR2− Ȳm)1
{

ŶR2 > L
}]

=E

[(
R1−1

∑
m=1

ϕ(S− ŶR2− Ȳm)1
{
ŶR2 > L

})(
∂ ln fR(R1;θ)

∂θ
+

∂ ln fR(R2;θ)

∂θ

)]

+E
[

∂

∂θ
E [Q(X1, , ..,XR1+R2−1;θ)|R1,R2]

]
,

where Xi
.
= Ŷi, i = 1, ..,R2, XR2+ j

.
= Ȳj, j = 1, ..,R1−1, and

Q(X1, , ..,XR1+R2−1;θ)
.
= (S−L)1{G1(X1, ..,XR2 ;θ)> 1}

×

[
R1−1

∑
m=1

ϕ (G1(X1, ..,XR2 ;θ)+Gm(XR2 , ..,Xm+R2 ;θ))

]
,

G1(X1, , ..,XR2 ;θ)
.
=

S− ŶR2

S−L
, Gm(XR2+1, ..,Xm+R2 ;θ)

.
=− Ȳm

S−L
, m = 1, ..,R1−1;

∂

∂θ
E

[
∞

∑
n=0

(
ϕ(S− ŶR2−Yn)+

R1−1

∑
m=1

ϕ(S− ŶR2−Yn− Ȳm)

)
1
{

ŶR2−Yn < L
}]

=E

[{
∞

∑
n=0

(
ϕ(S− ŶR2−Yn)+

R1−1

∑
m=1

ϕ(S− ŶR2−Yn− Ȳm)

)
1
{

ŶR2−Yn < L
}}

×
(

∂ ln fR(R1;θ)

∂θ
+

∂ ln fR(R2;θ)

∂θ

)]
+

∞

∑
n=0

E
[

∂

∂θ
E [Qn(X1, , ..,Xn+R1+R2−1;θ)|R1,R2]

]
,

where Xi
.
= Yi, i = 1, ..,n, Xn+ j

.
= Ŷj, j = 1, ..,R2, Xn+R2+k

.
= Ȳk, j = 1, ..,R1−1, and

Qn(X1, , ..,XR1+R2−1;θ)
.
= (S−L)1{G1(X1, ..,Xn+R2 ;θ)> 1}×[

ϕ (G1(X1, ..,Xn+R2 ;θ))+
R1−1

∑
m=1

ϕ (G1(X1, ..,Xn+R2 ;θ)+Gm(Xn+R2 , ..,Xn+R2+m;θ))

]
,

G1(X1, , ..,Xn+R2 ;θ)
.
=

S− ŶR2−Yn

S−L
, Gm(Xn+R2+1, ..,Xn+R2+m;θ)

.
=− Ȳm

S−L
, m = 1, ..,R1−1.
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5 NUMERICAL EXPERIMENT

In this section, we test the numerical performance of GLRM on sensitivity estimates of the arithmetic
mean Asian call option in Section 4, and compare it with a finite difference estimate with common random
number (FDC), and IPA. We first test the sensitivity estimate with respect to K. In this example, m = 1 and
we have ∂G1(x;θ)

∂x1
= σ
√

∆(G1(x;θ)+K), which satisfies Condition (A.2), ∂ 2G1(x;θ)
∂x2

1
= σ2∆(G1(x;θ)+K),

∂G1(x;θ)
∂K =−1, ln f (x)

∂x1
=−x1, and ln f (x)

∂K = 0. Therefore, a GLRM estimator for the first derivative sensitivity
can be explicitly given by

−e−rn∆1{G1(X ;θ)> 0} G1(X ;θ)

G1(X ;θ)+K

(
1+

X1

σ
√

∆

)
,

and a GLRM estimator for the second derivative sensitivity is

e−rn∆1{G1(X ;θ)> 0} G1(X ;θ)

(G1(X ;θ)+K)2

[
1

σ
√

∆
+

(
1+

X1

σ
√

∆

)2
]

.

The IPA estimator for the first derivative sensitivity is

−e−rn∆1{G1(X ;θ)> 0},

but the IPA estimator for the second derivative sensitivity fails to be unbiased. The sensitivity is tested at
σ = 0.1, r = 0.005, S0 = K = 100, ∆ = 1, and n = 5.

Table 1: First and second derivatives estimates of arithmetic mean Asian call option with respect to K,
based on 106 independent replications (mean± standard error).

FDC IPA GLRM
1st derivative −0.395 ± 4×10−4 −0.396 ± 4×10−4 −0.396 ± 10−3

2nd derivative 0.020 ± 3×10−3 N/A 0.018 ± 10−4

In general, GLRM estimator for the first derivative sensitivity can be explicitly given by

−Q(x;θ)

{
n∆

∂ r
∂θ

+

[
∂ 2G1(x;θ)

∂θ∂x1
+

∂G1(x;θ)

∂θ

(
∂ ln f (x)

∂x1
− ∂ 2G1(x;θ)

∂x2
1

/
∂G1(x;θ)

∂x1

)]/
∂G1(x;θ)

∂x1

}
.

Although GLRM can be applied to the second-order sensitivity in general form, the computation is tedious
and we omit the discussion. Besides the arithmetic mean Asian call option, we can also consider a digital
arithmetic mean Asian call option with a payoff:

Q(x;θ) = e−rn∆1{G1(x;θ)> 0},

which is discontinuous. For σ , we have

∂G1(x;θ)

∂σ
=

1
n

n

∑
i=1

S0

(
√

∆

i

∑
j=1

x j− iσ∆

)
exp

(
σ
√

∆

i

∑
j=1

x j + i
(

r− σ2

2

)
∆

)
,

and

∂ 2G1(x;θ)

∂σ∂x1
=

1
n

n

∑
i=1

S0
√

∆

[
σ

(
√

∆

i

∑
j=1

x j− iσ∆

)
+1

]
exp

(
σ
√

∆

i

∑
j=1

x j + i
(

r− σ2

2
∆

))
.
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Table 2: Derivatives estimates of arithmetic mean Asian and digital arithmetic mean Asian call options
with respect to σ , based on 106 independent replications (mean± standard error).

FDC IPA GLRM
Asian option 57.7 ± 0.1 57.5 ± 0.1 57.5 ± 0.4

digital Asian option −0.68 ± 10−2 N/A −0.71 ± 8×10−3

For r, we have

∂G1(x;θ)

∂ r
=

1
n

n

∑
i=1

S0i∆exp

(
σ
√

∆

i

∑
j=1

x j + i
(

r− σ2

2

)
∆

)
,

and
∂ 2G1(x;θ)

∂ r∂x1
=

1
n

n

∑
i=1

S0iσ∆
3/2 exp

(
σ
√

∆

i

∑
j=1

x j + i
(

r− σ2

2

)
∆

)
.

Table 3: Derivatives estimates of arithmetic mean Asian and digital arithmetic mean Asian call options
with respect to r, based on 106 independent replications (mean± standard error).

FDC IPA GLRM
Asian option 139.2 ± 0.1 138.6 ± 0.1 138.4 ± 0.4

digital Asian option 5.4 ± 8×10−2 N/A 5.4 ± 2×10−2

For the first derivative estimates in Table 1, 2 and 3, we can see FDC has comparable performance
with IPA, while both of them have variances lower than GLRM. IPA differentiates the sample performance,
which generally leads to low variance for the sample performance with semi-linear form (x−x0)

+. Notice
that the sample performance goes to infinity as x goes to infinity while its derivative which is 1{x > x0}
is bounded by one. However, for the second derivative estimates in Table 1 and the sensitivities of digital
arithmetic mean Asian option in Table 2 and 3, we can see the variance of GLRM is lower than that of
FDC. Unlike the semi-linear sample performance in the first derivative, the sample performances of the
second derivative and digital option are an indicator bounded by one. This observations are consistent with
those for other numerical examples in Peng et al. (2016a).

6 CONCLUSIONS

In this paper, we compare different sets of regularity conditions under which GLRM is derived in different
ways. We find that the regularity conditions required in the derivation using function smoothing and
integration by parts are easier to satisfy than those required in the derivation using change of variables and
differentiation of implicit functions in practice. However, the latter derivation establishes a direct connection
with the push-out LRM that is well-known in stochastic derivative estimation, which makes GLRM more
easily understandable to theorists and practitioners in this field. In addition, we apply GLRM to more
applications, which substantiates the capability of GLRM to solve broad problems in a unified framework.
In the numerical experiment where the sensitivity of Asian option is estimated, although GLRM is not
always the best alternative in all cases, it applies to more general scenarios than other stochastic derivative
estimators and is also not dominated by any method in terms of performance.
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