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ABSTRACT

The cross entropy (CE) method is a model based search method to solve optimization problems where
the objective function has minimal structure. The Monte-Carlo version of the CE method employs the
naive sample averaging technique which is inefficient, both computationally and space wise. We provide
a novel stochastic approximation version of the CE method, where the sample averaging is replaced with
bootstrapping. In our approach, we reuse the previous samples based on discounted averaging, and hence it
can save the overall computational and storage cost. Our algorithm is incremental in nature and possesses
attractive features such as computational and storage efficiency, accuracy and stability. We provide conditions
required for the algorithm to converge to the global optimum. We evaluated the algorithm on a variety of
global optimization benchmark problems and the results obtained corroborate our theoretical findings.

1 INTRODUCTION

In the paper, we consider the following optimization problem:

Find x∗ ∈ argmax
x∈X ⊂Rm

H (x). (1)

Here H :Rm→R is a deterministic, multi-modal, bounded real-valued continuous function and the solution
space X is a compact subset of Rm. We assume that x∗ is unique and x∗ ∈ interior(X ). The continuity
of H implies that H (x∗) is not an isolated point.

The problem is made more challenging by considering a “black-box” scenario, i.e., a closed form
expression of the objective function is unavailable, however for a given x ∈X , the value of the objec-
tive function H (x) is available. A few predominant algorithms which solve problems of this kind are,
simultaneous perturbation stochastic approximation (SPSA) (Spall 1992), model reference adaptive search
(MRAS) (Hu, Fu, and Marcus 2007), cross entropy (CE) method (Rubinstein and Kroese 2013),(Kroese,
Porotsky, and Rubinstein 2006), estimation of distribution algorithms (EDA) (Zhang and Mühlenbein 2004)
and gradient-based adaptive stochastic search (GASS) (Zhou and Hu 2014). SPSA is a randomized finite
difference method, while the rest of the above methods belong to a broader class of methods called the
model based search methods. The model based search methods are zero-order or gradient-free techniques,
i.e., do not need knowledge of the gradient of the objective function. Hence the algorithm can be applied in
any setting, where the function does not possess smooth differentiable structure. The goal of this method is
to find a “model” or probability distribution which concentrates on the global maximum x∗. The search is
therefore performed on a parametrized family of distributions F = { fθ (·)|θ ∈Θ}, where fθ is a probability
density function on the solution space X . It follows an iterative procedure where at each iteration k, a
model over the space X is developed and as k goes to infinity, the model sequence better represents the
promising region (the neighbourhood around x∗).
Exponential family of distributions: The common choice for F is the exponential family of distributions:
C , { fθ (x) = h(x)eθ>Γ(x)−K(θ) | θ ∈Θ⊂Rd}, where h : Rm −→R, Γ : Rm −→Rd and K : Rd −→R and
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K(θ) = log
∫

h(x)eθ>Γ(x)dx. The Gaussian distribution with mean vector µ ∈Rm and the covariance matrix
Σ ∈ Rm×m belongs to C . In this case,

fθ (x) = ((2π)m|Σ|)−1/2 exp{−(x−µ)>Σ
−1(x−µ)/2}, (2)

and so one may let h(x) = (2π)−m/2,Γ(x) = (x,xx>)>, θ = (Σ−1µ,−1
2 Σ−1)>.

In this paper, we consider the well known cross entropy (CE) method. The cross entropy method
is inspired from the algorithm proposed in (Rubinstein 1997) to estimate the probability of rare events
in stochastic networks. Later, an adaptive scheme based on this algorithm found significant inroads in
combinatorial optimization (Rubinstein 1999). Solutions to various NP-hard problems were obtained using
the CE method. The cross entropy was also applied to continuous optimization problems (Kroese, Porotsky,
and Rubinstein 2006). In this paper, we study the properties of the CE method, understand its limitations
and propose a modified approach to resolve them. We also propose the conditions required for CE method
to converge to the global maximum of the objective function.
Notation: We use x to denote a random variable and x for deterministic variable. For A⊂Rm, IA represents
the indicator function of A, i.e., IA(x) = 1 if x ∈ A and 0 otherwise. Let fθ (·) denote the probability density
function parametrized by θ andEθ [·] be the expectation w.r.t. fθ . For ρ ∈ (0,1), let γH

ρ (θ) denote the (1−ρ)-
quantile of H (x) w.r.t. the fθ , i.e., γH

ρ (θ) , sup{l : Pθ (H (x) ≥ l) ≥ ρ . Let supp( f ) , {x| f (x) 6= 0}
denote the support of f and interior(A) be the interior of set A. Also dae denote the smallest integer greater
than a. For x ∈ Rm, let ‖x‖∞ represent the sup-norm, i.e., ‖x‖∞ = maxi |xi|.

1.1 Cross Entropy (Ideal Version)
The CE method aims to find a sequence of model parameters {θk ∈Θ}k∈Z+ and an increasing sequence of
thresholds {γk ∈ R}k∈Z+ with the property that the support of the model fθk satisfies supp( fθk)⊆{x|H (x)≥
γk}. By assigning greater weight to the higher values of H at each iteration, the expected behaviour of
the probability distribution sequence should improve. This is achieved by solving at each instant k+1, the
following optimization problem:

θk+1 = argmax
θ∈Θ

Φk(θ ,γk+1), (3)

where Φk(θ ,γ) , Eθk

[
ϕ(H (x))I{H (x)≥γ} log fθ (x)

]
and ϕ : R→ R+ is a monotone strictly increasing

positive function. Note that when fθ belongs to the exponential family of distributions, Φk is concave in θ

and hence the equality in (3) is well-defined. The most common choice for γk+1 is γρ(θk): the (1−ρ)-quantile
of H (x) w.r.t. fθk , where ρ ∈ (0,1) is set a priori. (We drop the superscript H , since H is fixed.)

In this paper, we take the Gaussian distribution as the preferred choice for fθ . The model is parametrized as
θ = (µ,Σ)>, where µ ∈Rm is the mean vector and Σ∈Rm×m is the covariance matrix. Hence the distribution
space F = { fθ |θ = (µ,Σ)> ∈ Θ⊂ Rm(m+1)}. It is easy to verify that the above parametrization has one-
to-one correspondence with the parametrization (Σ−1µ,−1

2 Σ−1)> given in (2). For brevity we denote by
ϑ(θ) = (ϑ1,ϑ2)

> , (Σ−1µ,−1
2 Σ−1)>. We further assume that the model parameter space Θ is a compact

subset of Rm(m+1) and is large enough so that the solution to (3) is contained in interior(Θ).
We obtain a closed-form expression for θk+1 by equating ∇Φk to 0 and using (2) for fθ (·) as follows:

∇ϑ1Φk(θ ,γ) = 0⇒ µ =
Eθk

[
g1
(
H (x),x,γ

)]
Eθk [g0(H (x),γ)]

, ϒ1(θk,γ), (4)

∇ϑ2Φk(θ ,γ) = 0⇒ Σ =
Eθk

[
g2
(
H (x),x,γ,µ

)]
Eθk

[
g0
(
H (x),γ

)] , ϒ2(θk,γ), (5)

where g0(((H (x),γ))), ϕ(H (x))I{H (x)≥γ}, g1(((H (x),x,γ))), ϕ(H (x))I{H (x)≥γ}x and
g2(((H (x),x,γ,µ))), ϕ(H (x))I{H (x)≥γ}(x−µ)(x−µ)>. It is easy to verify that ϒ1 and ϒ2 are well-defined.
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1.2 Cross Entropy (Monte Carlo Version)
The operator Eθ [·] and the quantile γρ(θ) used in (4) and (5) are hard to compute in general. Hence their
stochastic counterparts are employed. The stochastic versions of ϒ1 and ϒ2 are as follows:

ϒ̄1(θ ,γ,Λ),
1
N ∑

N
i=1 g1(((H (xi),xi,γ)))

1
N ∑

N
i=1 g0(((H (xi),γ)))

, ϒ̄2(θ ,γ,Λ),
1
N ∑

N
i=1 g2(((H (xi),xi,γ,µ)))

1
N ∑

N
i=1 g0(((H (xi),γ)))

. (6)

where N = |Λ| and Λ = {x1, . . . ,xN} ∼ fθ .

A naive approach is used to estimate γρ(θ) as follows: γ̄ρ(θ),H(d(1−ρ)Ne), (7)

where H(i) is the ith-order statistic of {H (xi)}N
i=1, N = |Λ| and Λ = {x1, . . . ,xN} ∼ fθ .

A user configured observation allocation rule {Nk ∈ Z+}k∈Z+ is used to decide the sample size required
for each iteration, where Nk ↑ ∞. The Monte Carlo CE method is given in Algorithm 2.

Algorithm 1 Monte Carlo CE Method
Step 0: Choose an initial p.d.f. fθ̄0

(·) on X and ε > 0.

Step 1: [Sampling Candidate Solutions] Sample Nk i.i.d. solutions Λk = {x1, . . . ,xNk} using fθ̄k
(·).

Step 2: [Threshold Evaluation] Calculate the sample (1−ρ)-quantile.
γ̄k+1 = γ̄ρ(θ̄k).

Step 3: [Threshold Comparison]
if γ̄k+1 ≥ γ̄∗k + ε then

γ̄∗k+1 = γ̄k+1.
else

γ̄∗k+1 = γ̄∗k .
end if

Step 4: [Model Parameter Update]

θ̄k+1 =
(
ϒ̄1(θ̄k, γ̄

∗
k+1,Λk), ϒ̄1(θ̄k, γ̄

∗
k+1,Λk)

)>.

Step 5: If the stopping rule is satisfied, then return θ̄k+1and terminate, else set k := k+1 and go Step 1.

1.3 Motivation of the paper
Even though the Monte Carlo CE tracks the ideal CE, it has a few significant drawbacks: (i) The naive
approach of the Monte-Carlo CE does not utilize prior information efficiently. Note that Monte-Carlo CE
possesses a stateless behaviour. At each iteration k, a completely new collection of samples are drawn
using the distribution fθk . The samples are used to derive the estimates γ̄k+1, µ̄k+1 and Σ̄k+1. The algorithm
does not utilize the estimates generated prior to k (ii) The second drawback is the poor computational and
space complexity. The performance of the Monte Carlo version depends heavily on the sample size Nk.
In most practical cases, the best value of Nk can only be obtained by trying the same for various values
in a brute force manner. The estimate γ̄k requires the order statistic H(i) which is obtained by sorting the
list {H (xi)}Nk

i=1. The summation operation in (6) requires O(Nk) time, while the sort operation required
for the order statistic H(i) in (7) requires O(Nk logNk). Note that Nk diverges and hence this super-linear
relationship is computationally expensive and algorithm becomes well nigh intractable. Also note that the
space complexity of the Monte Carlo CE is O(Nk) which is mainly attributed to the space occupied by the
samples Λk. This is a heavy requirement too. All these are further worsened by the direct relationship of
the sample size Nk with the dimension m of the solution space X , i.e., higher the dimension, more the
required number of samples. Variants of the CE method such as gradient based CE method (Hu, Hu, and
Chang 2012) and modified CE method (Wang and Enright 2013) also suffer similar drawbacks.
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1.4 Our Contribution
The above mentioned drawbacks on the inefficient information utilization and the heavy cost on the space
and computational requirements are primarily attributed to the non-incremental and stateless nature of the
algorithm. In this paper, we resolve these shortcomings of the CE algorithm by remodelling the same using
the stochastic approximation framework. We replace the sample averaging with a bootstrapping approach,
i.e., deriving new estimates using the current estimates. The algorithm possesses various features which we
find desirable: (1) Stability (2) Limited restriction on the objective function, i.e. without imposing heavy
structural restrictions on the objective function (3) Incremental in nature, i.e., evolves at each time instant
according to the data (the function value H (·)) available at that particular instant. In other words the
solution is built incrementally. (4) Efficient use of prior information, i.e., the algorithm adopts an adaptive
nature where the function values H (·) are requested only when required. The boostrapping nature of the
algorithm guarantees a continuous evolution (in contrast to the stateless nature of the Monte-Carlo version)
and hence no data or prior information is under-utilized. A recent study (Hu, Hu, and Chang 2012),(Hu,
Fu, and Marcus 2007) shows that CE method is only a local improvement (local optimization) algorithm.
In (Hu, Hu, and Chang 2012), a few counter examples are also provided. But in many practical cases, CE
method exhibits good global convergence behaviour. In this paper, we explore this dichotomy and propose
conditions which facilitate the convergence of the CE method to the global optimum.

2 PROPOSED ALGORITHM: CE2-ND
In this paper, we propose a new algorithm CE2-ND which stands for Cross Entropy 2-Normal Distribution. The
idea is to track the ideal CE method using stochastic approximation. We provide a stochastic approximation
algorithm whose asymptotic behaviour is equivalent to that of the ideal CE algorithm.

Stochastic approximation algorithms (Borkar 2008, Kushner and Clark 2012, Robbins and Monro 1951)
are a natural way of encoding prior information and are expressed as recursive equations of the form:

zk+1 = zk +αk+1∆z(zk,bk,Dk+1)), (8)

where ∆z(z,b,D) = h(z)+b+D is the increment term, bk is the bias term with bk→ 0, Dk is a random noise
with zero-mean and h(·) a Lipschitz continuous function. The learning rate αk satisfies Σαk = ∞,Σα2

k < ∞.
In the Monte Carlo version of CE, naive approaches are employed to estimate γρ(·), ϒ1 and ϒ2. At

each iteration k, a completely new collection of samples Λk is used to derive the estimates. This is a
stateless approach where any structural relationship between the distribution parameter θ and γρ(θ) or
between θ and ϒ1,ϒ2 are completely discarded. The continuity relationship that holds between them can
in fact be exploited to accelerate the whole procedure. Bootstrapping which is inherent in the stochastic
approximation techniques can be employed to achieve this.

We found the following lemma from (Homem-de Mello 2007) to be beneficial in deriving a stochastic
recursion to track the (1−ρ)-quantile of H (·) w.r.t. a given probability distribution.
Lemma 1. The (1− ρ)-quantile of a bounded real-valued function H(·)

(
H(x) ∈ [H1,H2]

)
w.r.t the

probability distribution fθ (·) is reformulated as the optimization problem:

Find γ
H
ρ (θ) = argmin

u∈[H1,H2]

Eθ [ψ(H(x),u)] , (9)

where ψ(H(x),u) = (1−ρ)(H(x)−u)I{H(x)≥u}+ρ(u−H(x))I{H(x)≤u}.

We use this lemma to develop a stochastic gradient recursion which solves the optimization problem
in (9). The increment term for the recursion is the sub-differential of ψ w.r.t. u, and is given by

∇uψ(H(x),u) =−(1−ρ)I{H(x)≥u}+ρI{H(x)≤u}. (10)
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For the model parameter update, we track ϒ1(θk,γ) and ϒ2(θk,γ) (from (4) and (5)). For this we introduce
two new variables, η and ξ , whose stochastic recursions track ϒ1 and ϒ2 respectively. The increment
functions for the respective stochastic recursions are defined as follows:

∆η(x,γ) = g1(H (x),x,γ)−ηg0(H (x),γ), (11)

∆ξ (x,µ,γ) = g2(H (x),x,γ,µ)−ξ g0(H (x),γ). (12)

The CE2-ND algorithm is given in Algorithm 2.

Algorithm 2 CE2-ND
Data: ε1 ∈ (0,1),αk,λk ∈ (0,1), θ0 = (µ0,Σ0)

>.
Init: γ0 = 0, η0 = 0m×1, ξ0 = 0m×m, T0 = 0, γ∗0 =−∞, λ = λ0.
while stopping criteria not satisfied do

xk+1 ∼ f̃θk(·) where f̃θk = (1−λ ) fθk +λ fθ0 ;

•
[
Tracking (1−ρ)-quantile of H (·) w.r.t. f̃θk

]
γk+1 = γk−αk+1∇uψ(H (xk+1),γk); (13)

•
[
Tracking µk+1 of equation (4)

]
ηk+1 = ηk +αk+1∆η(xk+1,γk); (14)

•
[
Tracking Σk+1 of equation (5)

]
ξk+1 = ξk +αk+1∆ξ (xk+1,ηk,γk); (15)

•
[
Threshold comparison

]
Tk+1 = Tk +λ

(
I{γk+1>γ∗k }− I{γk+1≤γ∗k }−Tk

)
; (16)

•
[
Model parameter update

]
if Tk+1 > ε1 then

θk+1 = θk +αk+1

(
(ηk,ξk)

>−θk

)
; (17)

γ
∗
k+1 = γk; Tk = 0; λ = λk; (18)

else
γ∗k+1 = γ∗k ; θk+1 = θk;

end if
k := k+1;

end while

The algorithm uses only a single sample xk+1 per iteration. The computational cost per iteration is proportional
to m2, where m is the dimension of the solution space X . This is a significant improvement in terms of
computational and space requirements.

Note that in the algorithm, a mixture distribution f̃θk is used to generate the sample xk+1, where
f̃θk = (1−λ ) fθk +λ fθ0 with λ the mixing weight. λ takes its values from a pre-defined decaying sequence
{λk}k∈Z+ , with assignment happening in (18) during the model parameter update. The initial distribution
parameter θ0 is chosen such that the density function fθ0 has strictly positive values for every point in the
solution space X , i.e., fθ0(x) > 0,∀x ∈X . The mixture approach facilitates exploration of the solution
space and prevents the iterates from getting locked in suboptimal solutions.
Assumption (A2): The learning rate αk and the mixing weight λk are deterministic, non-increasing and
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satisfy the following:
λk ∈ (0,1],αk ∈ (0,1], lim

k→∞

λk = 0,
∞

∑
k=1

αk = ∞,
∞

∑
k=1

α
2
k < ∞. (19)

The step size αk controls the rate at which the algorithm accrues the information and it is sensitive to the
objective function and hence requires proper tuning. A very common choice of step-size used in stochastic
approximation algorithms is the constant step-size, i.e., αk = α ∈ (0,1)∀k. In this case, the convergence
can only be claimed with high probability (Borkar 2008). This implies that there are rare events where the
algorithm diverges.

The threshold comparison is achieved using the recursion (16) of the random variable Tk. Note that the
model parameter θk is not updated at each epoch k. Rather it is updated whenever Tk arches over ε1, where
ε1 ∈ (0,1) is a constant. So the update of θk only happens along a subsequence {k(n)}n∈Z+ of {k}k∈Z+ .
Between k = k(n) and k = k(n+1), the variable γk tracks γρ(θ̃k(n)): the (1−ρ)-quantile of H w.r.t. f̃θk(n)

.

The threshold γ∗k is also updated in (18) during the ε1 crossover. Thus γ∗k(n) is the estimate of γρ(θ̃k(n−1)):

the (1−ρ)-quantile of H w.r.t. f̃θk(n−1)
. Put succinctly, Tk tracks the evolution of γk and tries to deduce a

reasonable comparison between γρ(θ̃k(n)) and γρ(θ̃k(n−1)).

Proposition 1: Tk belongs to (−1,1), ∀k > 0.
Proof: By rearranging terms in (16) we get Tk+1 = (1−λ )Tk +λ (I{γk+1≥γ∗k+1}− I{γk+1<γ∗k+1}),

where λ ∈ (0,1). In the worst case, either I{γk+1≥γ∗k+1} = 1,∀k or I{γk+1<γ∗k+1} = 1,∀k. Since the two events

are mutually exclusive, we will only consider the former event {I{γk+1≥γ∗k+1} = 1,∀k}. In this case

lim
k→∞

Tk = lim
k→∞

(
λ +λ (1−λ )+ · · ·+λ (1−λ )k−1)= 1.

Similarly for the event {I{γk+1<γ∗k+1} = 1,∀k}, we have limk→∞ Tk =−1. �

3 CONVERGENCE ANALYSIS

Assumption (A1): The sequence{γk}k∈Z+ in equation (13) satisfy supk |γk|< ∞ a.s..

Remark 3: The assumption (A1) is a technical requirement to prove convergence of the algorithm. A
commonly used procedure to ensure almost sure boundedness of iterates in a stochastic iterative scheme
is to project these after each update to an a priori chosen (large enough) compact and convex set. In this
case, the bound on the compact set can be derived from the bound on H (·).

As mentioned above, θk is updated only along a subsequence {k(n)}n∈Z+ of {k}k∈Z+ . Between k = k(n) and
k = k(n+1), the model parameters θk remain constant. So we can analyse the limiting behaviour of γk, ξk
and ηk by keeping θk fixed. We now have the following result for recursion (13):

Lemma 2. Assume θk ≡ θ ,∀k. Let assumption (A1) hold. Then γk → γρ(θ̃) as k→ ∞ w.p. 1., where
f̃θ = (1−λ ) fθ +λ fθ0 .

Interpretation of Lemma 2: Lemma 2 claims that if the model parameter is held constant, i.e., θk ≡ θ ,∀k,
then γk successfully tracks γρ(θ̃): the (1−ρ)-quantile of H w.r.t. f̃θ .

Now we analyse the asymptotic behaviour of the sequences {ηk}k∈Z+ and {ξk}k∈Z+ . We keep the model
parameter θk constant during the analysis.
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Lemma 3. Assume θk ≡ θ ,∀k and γ∗k ≡ γ∗,∀k, then a.s.

(i) lim
k→∞

ηk = η∗ =
E

θ̃

[
g1
(
H (x),x,γρ(θ̃)

)]
E

θ̃

[
g0
(
H (x),γρ(θ̃)

)] ,

(ii) lim
k→∞

ξk = ξ∗ =
E

θ̃

[
g2
(
H (x),x,γρ(θ̃),η

∗)]
E

θ̃

[
g0
(
H (x),γρ(θ̃)

)] .

(iii) Further if γρ(θ̃)> γ∗, then limk→∞ Tk = 1 a.s., where f̃θ = (1−λ ) fθ +λ fθ0 .

Interpretation of Lemma 3: Lemma 3 claims that if the model parameter is held constant, i.e., θk ≡ θ ,∀k,
then ηk and ξk successfully track ϒ1(θ̃ ,γρ(θ̃)) and ϒ2(θ̃ ,γρ(θ̃)) respectively. Part (iii) of Lemma 3 claims
that Tk gives a credible comparison of the thresholds. In practical cases, we choose ε1 close to 1.

Notation: For the subsequence {k(n)}n>0 of {k}k∈Z+ , we denote k−(n) , k(n)−1 for n > 0.

Along the subsequence {k(n)}n≥0 with k0 = 0 the update of θk can be expressed as follows:

θk(n+1) = θk(n) +αk(n+1)∆θk(n+1) , (20)

where ∆θk(n+1) = (ηk−
(n+1)

,ξk−
(n+1)

)>−θk(n) . We show now that the increment term ∆θk(n+1) in equation (20) is

indeed an estimate of ∇ϑ(θ)Ψ(θ)
∣∣
θ=θ̃k(n)

, where

Ψ(θ) = logEθ

[
g0
(
H (x),γρ(θ)

)]
(21)

with θ = (µ,Σ)> and ϑ(θ) = (Σ−1µ,−1
2 Σ−1)>.

We now state a key lemma about the gradient of Ψ.
Lemma 4. For the given function H (·) ∈ R, θ = (µ,Σ)> and ϑ = (ϑ1,ϑ2)

> = (Σ−1µ,−1
2 Σ−1)>, we

have

∇ϑ1Ψ(θ) =
Eθ

[
g1
(
H (x),x,γρ (θ)

)]
Eθ

[
g0
(
H (x),γρ(θ)

)] −µ.

∇ϑ2Ψ(θ) =
Eθ

[
g2
(
H (x),x,γρ (θ) ,µ

)]
Eθ

[
g0
(
H (x),γρ (θ)

)] −Σ.

We now present our main result. The following theorem shows that the convergence of the model sequence
{θk}k∈Z+ generated by CE2-ND is indeed guaranteed and provides a characterization of the limit points.
Additionally, by imposing certain structural restrictions on the objective function H , the convergence of
the algorithm to the degenerate distribution concentrated on the global maximum x∗ is ensured.

Theorem 5. (Convergence to global maximum) Let ϕ(x) = exp(rx),r ∈ R+. Assume that the objective
function H satisfies the following two conditions: (i) ∇2H exists and (ii) ∂ 2H

∂xi∂x j
is continuous for

1 ≤ ∀i,∀ j ≤ m. Let the learning rate αk, k ∈ Z+ satisfy (19). Let {θk = (µk,Σk)
>}k∈Z+ be the sequence

generated by CE2-ND and assume θk ∈ interior(Θ), ∀k ∈ Z+. Also, let the assumptions (A1) and (A2)
hold. Then

lim
k→∞

θk = lim
k→∞

(µk,Σk)
> = (x∗,0m×m)

>, w.p.1

where x∗ is defined in (1).
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Proof: Rewriting the equation (17) along the subsequence {k(n)}n∈Z+ , we have for n ∈ Z+,

θk(n+1) = θk(n) +αk(n+1)

(
(ηk−

(n+1)
,ξk−

(n+1)
)>−θk(n)

)
. (22)

Also supn ‖θk(n)‖< ∞ a.s. Rearranging the equation (22) we get, for n ∈ Z+,

θk(n+1) = θk(n) +αk(n+1)

(
E
[
∇ϑ(θ)Ψ(θk(n))

∣∣∣θk(n)

]
+o(1)

)
, (23)

where the o(1) term corresponds to errors in the estimation of ηk and ξk and each decay to zero a.s.
Now consider the gradient flow ODE

dθ(t)
dt

= ∇ϑ(θ)Ψ(θ(t)), t ∈ R+. (24)

By appealing to Theorem 2, Chapter 2 of (Borkar 2008), the asymptotic equivalence between the
equations (23) and (24) can be easily established. Therefore the recursion (17) reduces to a stochastic
gradient ascent which optimizes the objective function Ψ(·). Hence the limiting behaviour of the model
sequence {θk}k∈Z+ can be obtained by analysing the same of the above ODE. The equilibrium points of
the ODE (24) can be obtained by equating ∇Ψ to 0.

Equating ∇ϑ1Ψ(θ) to 0m×1, we get µ =
Eθ

[
g1
(
H (x),x,γρ(θ)

)]
Eθ

[
g0
(
H (x),γρ(θ)

)] . (25)

Equating ∇ϑ2Ψ(θ) to O(= 0m×m), we get
Eθ

[
g2
(
H (x),x,γρ(θ),µ

)]
Eθ

[
g0
(
H (x),γρ(θ)

)] −Σ =O. (26)

For brevity let L(θ) = Eθ

[
g0
(
H (x),γρ(θ)

)]
and ĝ0(x,θ), g0

(
H (x),γρ(θ)

)
.

Substituting the expression for µ from (25) in (26) and after further simplification we get,

(1/L(θ))Eθ

[
ĝ0(x,θ)xx>

]
−µµ

>−Σ =O. (27)

Since Σ = Eθ

[
xx>

]
−µµ>, the equation (27) implies

(1/L(θ))Eθ

[
ĝ0(x,θ)xx>

]
−Eθ

[
xx>

]
=O =⇒1 (1/L(θ))Eθ

[
(ĝ0(x,θ)−L(θ))xx>

]
=O

=⇒2 ΣΣEθ

[
∇

2
xg0(x,θ)

]
=O =⇒3 Σ

2Eθ

[
ϕ(H (x))G(x)I{H (x)≥γρ (θ)}

]
=O, (28)

where G(x), r2∇H (x)∇H (x)>+ r∇2H (x). Note that =⇒2 follows from “integration by parts” rule for
multivariate Gaussian and=⇒3 follows from the assumption ϕ(x) = exp(rx). Note that for each x∈X , G(x)
is a m×m square matrix. Since (∇iH )2 ≥ 0, we can find an r ∈R+ and 1≤ i≤m s.t. Gii(x)> 0, ∀x ∈X .
This further implies that Eθ [ϕ(H (x))G(x)I{H (x)≥γρ (θ)}] 6=O, ∀θ ∈ Θ. Hence, from (28) we get Σ =O.
This proves that for any x ∈ Rm, the degenerate distribution concentrated on x given by θx = (x,0m×m)

>

is an equilibrium point of the ODE (24). Also note that the ODE (24) is asymptotically stable at all local
maxima of Ψ(·). The existence of the Lyapunov function Vx : Ux→ R+ on the open neighbourhood Ux of
θx, defined as Vx(θ),Ψ(θx)−Ψ(θ) is enough to prove the local asymptotic stability.

To prove that the limit is indeed θ ∗, the degenerate distribution concentrated at x∗, we use proof by
contradiction technique. So assume to the contrary, i.e., θk → θ̂ = (x̂,0m×m)

>, where x̂ 6= x∗. Note that
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Eθ

[
g1
(
H (x),x,γρ(θ)

)]
, Eθ0

[
g1
(
H (x),x,γρ(θ)

)]
, Eθ

[
g0
(
H (x),γρ(θ)

)]
and Eθ0

[
g0
(
H (x),γρ(θ)

)]
are all continuous on θ . This implies that we can find scalars ε2 > 0,δ2 > 0 and k ∈ Z+ s.t.∥∥θk− θ̂

∥∥
∞
< δ2,∥∥E

θ̂

[
g1
(
H (x),x,γρ(θ̂)

)]
−Eθk

[
g1
(
H (x),x,γρ(θk)

)]∥∥
∞
< ε2,∥∥Eθ0

[
g1
(
H (x),x,γρ(θ̂)

)]
−Eθ0

[
g1
(
H (x),x,γρ(θk)

)]∥∥
∞
< ε2,∥∥E

θ̂

[
g0
(
H (x),γρ(θ̂)

)]
−Eθk

[
g0
(
H (x),γρ(θk)

)]∥∥
∞
< ε2,∥∥Eθ0

[
g0
(
H (x),γρ(θ̂)

)]
−Eθ0

[
g0
(
H (x),γρ(θk)

)]∥∥
∞
< ε2.

(29)

Now consider ∇ϑ1Ψ(θ)|
θ=θ̃k

= (1/L(θ))Eθ

[
g1
(
H (x),x,γρ(θ)

)]
−µ

∣∣∣
θ=θ̃k

(30)

We denote by e = (1, . . . ,1)> ∈ Rm. Applying sup norm on either side of (30) and using (29) we get,

∥∥∥∇ϑ1Ψ(θ)|
θ=θ̃k

∥∥∥
∞

≥
∥∥∥(1−λ )E

θ̂

[
g1
(
H (x),x,γρ(θ̂)

)]
+λEθ0

[
g1
(
H (x),x,γρ(θ̂)

)]
− ε2e

(1−λ )E
θ̂

[
g0
(
H (x),γρ(θ̂)

)]
+λEθ0

[
g0
(
H (x),γρ(θ̂)

)]
+ ε2

− x̂−δ2e
∥∥∥

∞

≥
∥∥∥(1−λ )x̂ϕ(H (x̂))+λEθ0

[
g1
(
H (x),x,H (x̂)

)]
− ε2e

(1−λ )ϕ(H (x∗))+λEθ0

[
g0
(
H (x),H (x̂)

)]
+ ε2

− x̂−δ2e
∥∥∥

∞

≥
∥∥∥(K1(x̂,ε2)−1)x̂+K2(x̂,ε2)

Eθ0

[
g1
(
H (x),x,γρ(θ̂)

)]
Eθ0

[
g0
(
H (x),γρ(θ̂)

)] − (ε2 +δ2)e
∥∥∥

∞

> K3 > 0,

where K2(·, ·)> 0 and 0<K1(·, ·)< 1 with K1(x1,x2)→ 1 as x1→ x∗ and x2→ 0. This is a contradiction since
Ψ(θ) is continuously differentiable (easily verifiable). However for θ ∗, we haveEθ0

[
g1
(
H (x),x,γρ(θ

∗)
)]

=
0m×1 and Eθ0

[
g0
(
H (x),γρ(θ

∗)
)]

= 0. We also have K1(x∗,ε2)→ 1 as ε2→ 0. Hence a lower positive bound

for
∥∥∥∇ϑ1Ψ(θ)|

θ=θ̃k

∥∥∥
∞

cannot be obtained for θ ∗. This eliminates the possibility of the model sequence

{θk} converging to any degenerate distribution but to θ ∗. This concludes the proof. �

4 EXPERIMENTAL ILLUSTRATIONS

We tested CE2-ND on several global optimization benchmark functions from (Jamil and Yang 2013).
To evaluate the algorithm, we compare it against the Monte-Carlo CE (MCCE) and the state-of-the-art
gradient based Monte-Carlo CE (GMCCE) (Hu, Hu, and Chang 2012), which is a modified version of the
Monte-Carlo CE. Here, we consider ϕ = exp(rx),r > 0. In each of the plots shown in this section, the solid
graph represents the trajectory of H (µk), while the dotted horizontal line is the global maximum H ∗ of
the objective function H . The x-axis represents the real time relative to the start of the algorithm. All the
algorithms use the same initial distribution θ0, which helps to compare them without any initial bias. The
results shown are averages over 10 independent simulations obtained with the same initial distribution θ0.
We consider the following benchmark functions for performance evaluation:
1. Griewank function [m = 200][Continuous, Differentiable, Non-Separable, Scalable, Multimodal]

H1(x) =−1− 1
4000

m

∑
i=1

x2
i +

m

∏
i=1

cos(xi/
√

i). (31)
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2. Levy function [m = 50][Continuous, Differentiable, Multimodal]

H2(x) =−1− sin2 (πy1)− (ym−1)2(1+ sin2 (2πym))−
m

∑
i=1

[(yi−1)2(1+10sin2 (πyi +1))],

where yi = 1+
xi−1

4
.

3. Trigonometric function [m = 30][Continuous, Differentiable, Non-Separable, Scalable, Multimodal]

H3(x) =−1−
m

∑
i=1

[8sin2 (7(xi−0.9)2)+6sin2 (14(xi−0.9)2)− (xi−0.9)2].

4. Rastrigin function [m = 30][Continuous, Differentiable, Scalable, Multimodal]

H4(x) =−
m

∑
i=1

(x2
i −10cos(2πxi))−10m.

5. Qing function [m = 30][Continuous, Differentiable, Separable, Scalable, Multimodal]

H10(x) =−
m

∑
i=1

(x2
i − i)2.

6. Bukin function [m = 2][Multimodal, Continuous, Non-Differentiable, Non-Separable, Non-Scalable ]

H9(x) =−100
√

x2−0.01x2
1−0.01|x1 +10|−20.0.

The results of the numerical experiments are shown in Figure 1. The various parameter values used in the
experiments are shown in Table 1 and Table 2. To illustrate the advantage of CE2-ND in terms of memory
requirements, we present in Figure 2, the real time memory usage of CE2-ND and GMCCE.

Table 1: The parameter values used in the experiments.

CE2-ND GMCCE
H (·) r αk λk ε1 ρ r αk ρ Nk

H1 1.0 k−0.52 k−3.0
(n) 0.9 0.001 0.1 0.1 0.001 Nk+1 = 1.03∗Nk, N0 = 700

H2 0.001 0.1 k−3.0
(n) 0.9 0.1 0.001 0.1 0.1 Nk+1 = 1.001∗Nk, N0 = 700

H3 0.001 0.03 k−3.0
(n) 0.9 0.001 0.001 0.001 0.1 Nk+1 = 1.001∗Nk, N0 = 700

H4 0.01 0.2 k−3.0
(n) 0.9 0.1 0.001 0.2 0.01 Nk+1 = 1.001∗Nk, N0 = 800

H5 0.00001 0.05 k−3.0
(n) 0.9 0.01 0.001 0.2 0.01 Nk+1 = 1.001∗Nk, N0 = 1000

H6 0.1 k−0.52
(n) k−3.0

(n) 0.9 0.01 0.1 0.1 0.01 Nk+1 = 1.001∗Nk, N0 = 2000

From the experiments, we have made the following observations:
• The algorithm CE2-ND shows good performance compared to GMCCE and MCCE. The algorithm
CE2-ND also exhibits good global convergence behaviour when applied to the functions H1 to H5. However,
when applied to the Bukin function, all the three algorithms fail to converge to the global optimum. It is
easy to verify that Bukin function is non-differentiable and hence does not satisfy the criteria proposed
in Theorem 5. This particular illustration corroborates the findings of Theorem 5. The algorithm exhibits
robustness with respect to the initial distribution θ0. An initial distribution which weighs the solution
space reasonably well, seems to be sufficient. The values of the parameters λk and ε1 are same for all test
cases. This implies that these parameters require minimal tuning in most cases. As with any stochastic
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Figure 1: The performance comparison of CE2-ND against GMCCE and MCCE. Here y-axis is H (µk)
and x-axis is the time in secs relative to the start of the algorithm.

approximation algorithm, the choice of the learning rate αk is vital. The algorithm seems to be dependent
on the quantile factor ρ which needs further investigation.
• The computational and storage requirements of the algorithm CE2-ND are minimal. This is attributed
to the streamlined and incremental nature of the algorithm. This attribute makes the algorithm suitable in
settings where the computational and storage resources are scarce.

5 CONCLUSIONS
We developed, in this paper, a stochastic approximation version of the cross entropy (CE) method. Our
technique generalises the Monte-Carlo cross entropy method as it requires only one sample (as opposed to
Nk) at each (kth) update epoch. The proposed algorithm is incremental in nature and possesses attractive
features like robustness, stability as well as computational and space efficiency. We showed the almost sure
convergence of our algorithm and proposed conditions required to achieve the convergence to the global
maximum of the objective function. Numerical experiments over diverse benchmark functions are shown
to support the theoretical findings.
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