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ABSTRACT

This paper describes and analyzes the problem of selecting the best of several alternatives (“systems”),
where they are compared based on quantiles of their performances. The quantiles cannot be evaluated
analytically but it is possible to sequentially sample from each system. The objective is to dynamically
allocate a finite sampling budget to minimize the probability of falsely selecting non-best systems. To
formulate this problem in a tractable form, we introduce an objective associated with the probability of
false selection using large deviations theory and leverage it to design well-performing dynamic sampling
policies. We first propose a naive policy that optimizes the aforementioned objective when the sampling
budget is sufficiently large. We introduce two variants of the naive policy with the aim of improving
finite-time performance; these policies retain the asymptotic performance of the naive one in some cases,
while dramatically improving its finite-time performance.

1 INTRODUCTION

Given a finite number of alternatives, henceforth referred to as systems, we are concerned with the problem
of selecting the best system in the situation where performances of the systems are initially unknown but it
is possible to sequentially sample from each system. A critical assumption made in most academic studies
is that a decision maker is primarily interested in the average performances of the systems. However, these
mean-based procedures are not flexible to accommodate various risk preferences of the decision maker.

Alternatively, the systems can be compared based on pth quantiles of their performances, where p can
be chosen based on the decision maker’s risk preference. The quantile-based procedure has a practical
importance when downside or upside risk is more critical than mean performance. As a prototypical
example, consider a call center system in which response time to customer is important. When evaluating
possible designs of the systems, analysts may be interested in exceptionally high response times, which
may lead to a significant decrease in potential profit. In this case the desired performance measure is a
quantile.

The main objective of this paper is to design a dynamic sampling policy that minimizes the probability of
falsely selecting non-best systems subject to a given sampling budget. Unfortunately, as is well documented
in the literature, this objective is not analytically tractable. To arrive at a tractable objective, our departure
point will be an asymptotic benchmark characterized by large sampling budget. In this regime, the objective
can be written in an analytically tractable form and we leverage it to design a well-performing policy.

Building on structural insights from the asymptotic benchmark, we introduce three dynamic sampling
policies. The first policy is a naive approach; it repeatedly estimates the aforementioned objective function
from history of sample observations, and then allocates a sample in each stage as if the estimated objective
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function is the true objective. We show that this policy is asymptotically optimal with respect to the
aforementioned objective, but exhibits poor finite-time performance because such an objective function
is difficult to estimate accurately. The other two policies are designed with the aim of improving the
finite-time performance of the former for continuous and discrete cases, respectively. The key idea is to
approximate the objective function, which is quite susceptible to sampling errors, by a simple function that
is stable against such errors. We show that the alternative algorithms retain the asymptotic performance of
the former in some cases, while dramatically improving the finite-time performance.

An area closely related to the ordinal optimization is the Ranking and Selection (R&S) problem,
where the goal is to take as few samples as possible to satisfy a desired guarantee on the probability of
correct selection. See a survey paper by Kim and Nelson (2006). Despite wide usage of quantile as a
performance metric, the topic of quantile-based R&S procedures has not received much attention in this
literature. Bekki et al. (2007) modify a traditional two-stage IZ procedure by Rinott (1978) to suggest a
grouped quantile approach where a quantile estimate from micro-replications is taken as a single estimate
of macro-replications. Although normality assumption is violated, this procedure takes the average of
macro-replications to make quantile estimates nearly normal. Batur and Choobineh (2010) also suggest
a two-stage procedure based on Rinott (1978), where a set of quantile values is compared between two
systems. Recently, Lee and Nelson (2014) suggest an R&S procedure based on bootstrapping, which can
be applied to general performance measures including quantile, albeit with a heavy computational load.

In the ordinal optimization framework, Pasupathy et al. (2010) characterize the rate function associated
with the probability of false selection using large deviations theory when full information on the underlying
distribution functions is given a priori. The performance criterion introduced in this paper has a close
connection to this rate function, however, our work is fundamentally different than Pasupathy et al. (2010)
in that one needs to learn the underlying probability distributions and simultaneously allocate budget to
optimize the objective.

The remainder of the paper is organized as follows. In Section 2 we present large deviation preliminaries
and formulate the problem. In Section 3 we propose dynamic policies and provide main theoretical results.
In Section 4 we give numerical experimentation using the proposed policies and discuss the results. All
proofs can be found in Shin et al. (2016).

2 FORMULATION

2.1 Model Primitives

Consider k stochastic systems, whose performance is governed by a random variable X j with a distribution
function Fj(·), j = 1, . . . ,k. Fix p ∈ (0,1) that represents the quantile of interest and define the pth quantile
of Fj(·) as

ξ
p
j = inf{x : Fj(x)≥ p}. (1)

Denote ξξξ = (ξ1, . . . ,ξk) the k-dimensional vector of the pth quantiles. We assume that ξ
p
1 > ξ

p
2 ≥ ·· · ≥ ξ

p
k .

A decision maker is given a sampling budget T , which means T independent samples can be drawn from
the k systems, and the goal is to correctly identify the system with the largest pth quantile. Further, to avoid
trivial cases where the probability of false selection is zero, we assume that [ξ p

k ,ξ
p
1 ] ⊂ ∩k

j=1H
0

j , where
H j = {x ∈R | Fj(x) ∈ (0,1)} and A0 denotes an interior of any set A. Essentially, this ensures the sample
pth quantile (to be made precise below) from each system can take any value in the interval [ξ p

k ,ξ
p
1 ].

Let πππ denote a policy, which is a sequence of random variables, π1,π2, . . ., taking values in the set
{1, . . . ,k}; the event {πt = j} means a sample from system j is taken at stage t. Define X jt , t = 1, . . . ,T ,
as a sample from system j in stage t. The set of non-anticipating policies is denoted as Π, in which the
sampling decision in stage t is determined based on all the sampling decisions and samples observed in
previous stages.

Let Nπππ
jt be the cumulative number of samples up to stage t from system j induced by policy πππ and

define απππ
jt = Nπππ

jt/t as the sampling rate for system j at stage t. The sample distribution function for system
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j is defined as

F̂πππ
jt (x) =

∑
t
τ=1 I{X jτ ≤ x}I{πτ = j}

Nπππ
jt

, (2)

where I{A} is one if A is true and zero otherwise. Denote ξ̂
p,πππ
jt as the sample pth quantile of the sample

distribution function, i.e.,
ξ̂

p,πππ
jt = inf{x : F̂πππ

jt (x)≥ p}. (3)

For brevity, the superscript πππ may be dropped when it is clear from the context. With a single subscript
t, NNNt = (N1t , . . . ,Nkt) and ααα t = (α1t , . . . ,αkt) denote vectors of the cumulative number of samples and the
sampling rates in stage t, respectively. Likewise, we let ξ̂ξξ

p
t = (ξ̂ p

1t , . . . , ξ̂
p
kt) be the vector of sample quantile

estimates.
In what follows, we also consider static policies, in which the sampling decisions up to stage T are

fixed in the beginning of stage 1. A static policy πππααα is characterized by a vector ααα ∈ ∆ with

∆ =

{
(α1, . . . ,αk) ∈Rk :

k

∑
j=1

α j = 1 and α j ≥ 0 for all j

}
, (4)

so that N jt = α jt for each j, ignoring integrality constraint on N jt .

2.2 Large Deviations Preliminaries

The probability of false selection, denoted P(FSt) with FSt = {ξ̂ p
1t < max j 6=1 ξ̂

p
jt}, is a widely used criterion

for the efficiency of a sampling policy (see, e.g., a survey paper by Kim and Nelson 2006). However, the
exact evaluation of P(FSt) is not analytically tractable. Alternatively, we view this measure in light of
large deviations theories. In this regime, one can characterize how fast P(FSt) converges to 0.

To this end, fix a static policy πππααα for some ααα ∈ ∆ and observe that P(ξ̂ p
jt > x) = P(∑

N jt
s=1 I{X jτ j(s) <

x} < [pN jt ]), where τ j(s) = inf{t : N jt ≥ s} and [y] is the greatest integer less than y. Similarly, P(ξ̂ p
jt <

x) = P(∑
N jt
s=1 I{X jτ j(s) < x} > [pN jt ]). Hence, applying the Cramer’s theorem for the sum of Bernoulli

random variables (Dembo and Zeitouni 2009), the large deviation probability for ξ̂
p
jt can be characterized

as follows:
lim
t→∞

1
t

logP(ξ̂ p
jt > x) =−α jI j(x) for x > ξ

p
j

lim
t→∞

1
t

logP(ξ̂ p
jt < x′) =−α jI j(x′) for x′ < ξ

p
j ,

(5)

where

I j(x) = p log
(

p
Fj(x)

)
+(1− p) log

(
1− p

1−Fj(x)

)
. (6)

Next, we impose the following assumptions on the distribution functions to avoid technical difficulties in
the development of theoretical results.

(F1) ξ
p
j is the unique solution x of Fj(x−)≤ p≤ Fj(x)

(F2) For each j 6= 1, I1(x1)< I j(x1) and I1(x j)> I j(x j), where x j is the smallest minimizer of I j(x)

Assumption (F1) is a mild assumption that ensures Fj(·) is not flat around the pth quantile. Assumption
(F2) is trivially satisfied for continuous distributions, but it rules out certain families of discrete distribution
functions with large jumps.

The following proposition characterizes the convergence rate of the probability of false selection.
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Proposition 1 Suppose assumption (F1) holds. For a static policy πππααα for some ααα ∈ ∆,

lim
t→∞

1
t

logP(FSt) =−ρ(ααα), (7)

with ρ(ααα) = min j 6=1{G j(ααα)}, where

G j(ααα) = inf
x∈[ξ p

j ,ξ
p
1 ]

{
α1I1(x)+α jI j(x)

}
. (8)

To rephrase Proposition 1, P(FSt) behaves roughly like exp(−ρ(ααα)t) for large values of t. It follows
that the best possible asymptotic performance can be characterized by the allocation that maximizes ρ(·).
The properties of the function ρ(ααα) is summarized in the next proposition.
Proposition 2 Under assumption (F1), ρ(ααα) is a continuous, concave function of ααα ∈ ∆. If assumption
(F2) is further satisfied, each element of ααα∗ ∈ argmaxααα∈∆{ρ(ααα)} is strictly positive.

2.3 Problem Formulation

The function ρ(·) measures the asymptotic efficiency of an allocation in relation to the rate function
associated with P(FSt). We define the relative efficiency Rπππ

t for any given policy πππ ∈Π in stage t to be

Rπππ
t =

ρ(ααα t)

ρ∗
, (9)

where ρ∗ = maxααα∈∆{ρ(ααα)}. By definition, the value of Rπππ
t lies in the interval [0,1]; an allocation is

considered efficient when Rπππ
t is close to 1 for sufficiently large t.

Definition 1 (Consistency) A policy πππ ∈Π is consistent if N jt → ∞ almost surely as t→ ∞ for each j.
Recall that Π is the set of all non-anticipating policies. In the optimization problem we consider,

we further restrict attention to a set of consistent policies, denoted as Π̄ ⊂ Π. Under such policies the
sample quantiles are consistent estimators of the population counterparts, as formalized in the following
proposition.
Proposition 3 (Consistency of quantile estimators) Under assumption (F1),

ξ̂
p
jt → ξ

p
j (10)

almost surely as t→ ∞ for any consistent policy πππ ∈ Π̄.
Note that consistent policies ensure P(FSt)→ 0 as t→ ∞ since each sample quantile converges to its

population counterpart. We remark that the consistency is not a trivial result for a dynamic policy, although
any static policy πππααα with ααα ∈ ∆0 is consistent since N jt = α jt→ ∞ as t→ ∞.

We are interested in the policy that maximizes the expected relative efficiency with the budget T :

sup
πππ∈Π̄

E(Rπππ
T ). (11)

We introduce a notion of asymptotic optimality, which will be used in the analysis of dynamic sampling
policies in the following section.
Definition 2 (Asymptotic optimality) A policy πππ ∈ Π̄ is asymptotically optimal if

E(Rπππ
T )→ 1 as T → ∞. (12)
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3 PROPOSED POLICIES AND MAIN THEORETICAL RESULTS

3.1 A Naive Approach

The preliminary observations in Section 2 imply that a policy may achieve optimal relative efficiency
asymptotically if its allocation ααα t converges to ααα∗ ∈ argmaxααα∈∆{ρ(ααα)} as t→∞. We first suggest a naive
policy that iteratively estimate such an optimal allocation from the history of sample observations. Define
ρ̂t(ααα) = min j 6=b{Ĝ jt(ααα)} with b = argmax j 6=1{ξ̂

p
jt},

Ĝ jt(ααα) = inf
x∈[ξ̂ p

jt ,ξ̂
p
bt ]
{αbÎbt(x)+α j Î jt(x)} (13)

for j 6= b, and

Î jt(x) = p log
(

p
F̂jt(x)

)
+(1− p) log

(
1− p

1− F̂jt(x)

)
(14)

for j = 1, . . . ,k. Note that ρ̂t(ααα) is the estimation of ρ(ααα) in stage t with {Fj(·)}k
j=1 replaced with its

empirical counterpart, {F̂jt(·)}k
j=1. Define α̂αα t ∈ argmaxααα∈∆{ρ̂t(ααα)}. The naive policy is designed to make

ααα t approach ααα∗ as t→ ∞.

Algorithm 1 πππ(n0)

For each j, take n0 samples and let t = kn0
while t ≤ T do
Solve for α̂αα t ∈ argmaxααα∈∆{ρ̂t(ααα)}
Take a sample from system πt+1 such that

πt+1 =

{
argmin j{α jt} if α̂ jt = 0 for some j
argmax j{α̂ jt −α jt} otherwise

(15)

Let t = t +1
end while

Theorem 1 (Asymptotic performance of Algorithm 1) Under assumptions (F1)-(F2), a policy by Algorithm 1
is consistent and asymptotically optimal.
Remark 1 (Poor finite-time performance of Algorithm 1) Despite the theoretical guarantee on its asymptotic
performance, the Algorithm 1 exhibits poor finite-time performance as will be illustrated in Section 4,
because the estimations of ρ(·) and its maximizer ααα∗ require full information on the distribution functions
for certain ranges of their domains. This causes significant portion of the budget wasted in estimating them,
leaving less budget to optimize the objective function. This intuitive argument will be more precise in
the next subsection by comparing with an alternative scheme that judiciously balances the two competing
goals.

3.2 Alternative Approach for Continuous Distributions

We discuss here the case in which the underlying distributions are continuous with the following condition.

(F3) Fj(x) possesses a positive continuous density f j(x) for x ∈H j and a bounded second derivative at
x = ξ

p
j .

It is trivial to check that the smoothness assumption (F3) implies (F1)-(F2). Note that the bounded second
derivative at x = ξ

p
j ensures that I j(x) can be closely approximated, using a Taylor expansion, by a quadratic

function of x in a neighborhood of ξ
p
j , which will be a key to the theoretical results in this subsection.
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Let δ = ξ
p
1 − ξ

p
2 be the gap between the best and the second best systems and define ρδ (ααα) =

min j 6=1{Gδ
j (ααα)} with

Gδ
j (ααα) =

(ξ p
1 −ξ

p
j )

2

2p(1− p)
(

1/(α1 f 2
1 (ξ

p
1 ))+1/(α j f 2

j (ξ
p
j ))
) . (16)

To provide some intuition behind the definition of ρδ (·), note that, under assumption (F3), the sample
pth quantile of system j is asymptotically normal with mean ξ

p
j and variance p(1− p)/(α j f 2

j (ξ
p
j )t) (see,

e.g., Serfling 2009). After scaling by 1/t, each term on the right-hand side of (16) can be viewed as the
difference between the two quantiles, in terms of the number of standard errors of the difference. Therefore,
if ρδ (ααα) is large, one can conclude with more confidence whether ξ

p
1 is greater than ξ

p
j , j 6= 1, because of

the smaller (asymptotic) variance of the difference. Hence, one might expect that ρδ (ααα) is closely aligned
with ρ(ααα). This intuitive observation is summarized in the following proposition.
Proposition 4 (Validity of approximation ρδ (·) for ρ(·)) Under assumption (F3), for any ααα ∈ ∆

|ρ(ααα)−ρ
δ (ααα)|= o(δ 2) as δ → 0 (17)

Also, ρδ (ααα) has a unique maximum αααδ∗ which is strictly positive.
Proposition 4 states that one can achieve near-optimal performance with respect to ρ(ααα) by maximizing

ρδ (ααα) when δ is sufficiently close to 0.
Remark 2 (Structural properties of αααδ∗) We note that, as opposed to the nested structure in the optimization
problem of Algorithm 1, it is more computationally efficient to solve for αααδ∗. In particular, the objective
function of (19), being a minimum of concave functions, is concave for ααα ∈ ∆. Further, from the first order
conditions (Avriel 2003), the following equations can be used to determine αααδ∗ = argmaxααα∈∆{ρδ (ααα)}:

(ξ p
1 −ξ

p
i )

2

1/(αδ∗
b f 2

1 (ξ
p
1 ))+1/(αδ∗

i f 2
i (ξ

p
i ))

=
(ξ p

1 −ξ
p
i )

2

1/(αδ∗
1 f 2

1 (ξ
p
1 ))+1/(αδ∗

j f 2
j (ξ

p
j ))

, for i, j 6= 1

(αδ∗
1 )2 f 2

1 (ξ
p
1 ) = ∑

j 6=1
(αδ∗

j )2 f̂ 2
j (ξ

p
j ).

(18)

Based on Proposition 4, we now propose an alternative dynamic policy that iteratively estimates
αααδ∗ = argmaxααα∈∆{ρδ (ααα)} from the history of sample observations. Specifically, denote α̂αα

δ

t as the
estimator of αααδ∗ in stage t; formally,

α̂αα
δ

t = argmax
ααα∈∆

min
j 6=b

(ξ̂ p
bt − ξ̂

p
jt)

2

2p(1− p)
(

1/(αb f̂ 2
bt)+1/(α j f̂ 2

jt)
)
 , (19)

where b = argmax j{ξ̂
p
jt} and for each j,

f̂ jt =
1

N jt

t

∑
τ=1

Kh(τ)(ξ̂
p
jτ −X jτ)I{πτ = j} (20)

is the kernel-based estimator of density at ξ̂
p
jt with a kernel function K(·) and a bandwidth parameter

h(t)≥ 0 for each t. A kernel with subscript h is called a scaled kernel and defined as Kh(x) = 1/hK(x/h).
The optimal choices of the kernel function and the bandwidth parameter are not in the scope of this paper
(see, e.g., Silverman 1986), but we impose regularity conditions on K(·) and h(t), which are satisfied by
almost any conceivable kernel such as normal, uniform, triangular, and others:
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(K1)
∫
|K(x)|dx < ∞ and

∫
K(x)dx = 1

(K2) |xK(x)| → 0 as |x| → ∞

(K3) h(t)→ 0 and th(t)→ ∞ as t→ ∞.

We propose a policy that matches ααα t with α̂αα
δ

t in each stage, simultaneously making α̂αα
δ

t approach αααδ∗

as t→ ∞. The algorithm is summarized below, with n0 being a parameter of the algorithm.

Algorithm 2 πππ(n0)

For each j, take n0 samples and let t = kn0
while t ≤ T do
Obtain α̂αα

δ

t from (19)
Take a sample from system πt+1 = argmax j{α̂δ

jt −α jt} and let t = t +1
end while

Theorem 2 (Asymptotic performance of Algorithm 2) Under assumption (F3), a policy by Algorithm 2
is consistent and its asymptotic performance is characterized as

lim
T→∞

E(Rπππ
T ) =

ρ(αααδ∗)

ρ∗
. (21)

Also, if limδ→0 f j(ξ
p
j )≥ c for some exogenous c > 0, then ρ(αααδ∗)/ρ∗→ 1 as δ → 0.

To rephrase (21), the Algorithm 2 eventually allocates the sampling budget so that ρδ (ααα) is maximized,
and the loss in asymptotic efficiency due to maximizing ρδ (·) instead of ρ(·) decreases to 0 as δ → 0. In
Theorem 2, the condition that f j(ξ

p
j ) is bounded below is a mild restriction that is introduced to exclude

some improbable situations. We provide a simple example to better understand this condition.
Example 1 (Exponential systems) Consider two exponential systems with means (µ,µ − δ ), for which
( f1(ξ

p
1 ), f2(ξ

p
2 ))→ ((1− p)/µ,(1− p)/µ) as δ → 0, satisfying the condition in Theorem 2. As an extreme

counterexample, consider two exponential systems with means (δ + 1/δ ,1/δ ), for which (ξ p
1 ,ξ

p
2 ) =

(−(δ +1/δ ) log(1− p),−(1/δ ) log(1− p)). In this case, ( f1(ξ
p
1 ), f2(ξ

p
2 ))→ (0,0) as δ → 0, violating the

condition in Theorem 2.
Remark 3 (Bias-variance tradeoff) The major advantage of Algorithm 2 over Algorithm 1 is that the
former only requires local information on densities at particular points, while the latter requires the full
knowledge of the distribution functions on certain regions. As a result, ααα t under Algorithm 1 is quite
volatile around ααα∗. However, Algorithm 2 exhibit smaller variance of ααα t around αααδ∗, while introducing a
small bias αααδ∗−ααα∗ which is in an order of o(δ 2). To be more precise, let k = 2 and, with a slight abuse
of notation, denote ρ(α1t) = ρ(ααα t) for ααα t = (α1t ,α2t). Using a second order Taylor expansion of ρ(·) at
α∗1 , observe that

ρ(α∗1 )−ρ(α1t) =−
ρ ′′(α∗1 )

2
(α1t −α

∗
1 )

2 +o((α1t −α
∗
1 )

2), (22)

where ρ ′′(α∗1 ) is the second derivative of ρ(·) at α∗1 . Hence, the expected optimality gap, E(ρ(α∗1 )−ρ(α1t)),
can be largely explained by the mean squared error (MSE), E(α1t−α∗1 )

2, which can be further decomposed
as

E(α1t −α
∗
1 )

2 = E(α1t −E(α1t))
2 +(E(α1t)−α

∗
1 )

2. (23)

The first term represents the variance component and the second represents the bias component of the MSE.
As illustrated in Figure 1, most part of the MSE is due to the variance under the policy by Algorithm 1.
On the other hand, Algorithm 2 significantly reduces the variance, while introducing a small bias that
decreases with δ . Further, if let Tδ denote the sampling budget where the MSE’s under the two algorithms
are equal, then it can be seen that Algorithm 2 performs better for T � Tδ . The figure also suggests that
Tδ increases as δ → 0.
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Figure 1: Bias-variance tradeoff. The mean squared error (MSE), E(α1t−α∗1 )
2, is estimated via simulation

for the two policies by Algorithms 1-2. The system configurations are (a) two normal systems with means
(0,0) and standard deviations (1,3) and (b) two normal systems with the same means and standard deviations
(1,2). The solid lines are the MSE’s and the dotted and the dashed lines are the variance components for
Algorithms 1 and 2, respectively.

3.3 Alternative Approach for Discrete Distributions

We now assume that the distributions are discrete and, without loss of generality, that they have supports
in the set of nonnegative integers. Define

h j1 =
Fj(ξ

p
1 )−Fj(ξ

p
j )

ξ
p
1 −ξ

p
j

h1 j =
F1(ξ

p
1 )−F1(ξ

p
j )

ξ
p
1 −ξ

p
j

(24)

for each j 6= 1 and let hhh = {(h j1,h1 j) | j 6= 1}. Also define ε ∈ (0,1) as a constant such that, for each j 6= 1
and x ∈ [ξ p

j ,ξ
p
1 ],

1− ε ≤
Fj(x)

p+(x−ξ
p
j )h j1

,
1−Fj(x)

1− p− (x−ξ
p
j )h j1

≤ 1+ ε

1− ε ≤ F1(x)
p+(x−ξ

p
1 )h1 j

,
1−F1(x)

1− p− (x−ξ
p
1 )h1 j

≤ 1+ ε.

(25)

The constant ε represents (multiplicative) errors when Fj(x) is approximated by a linear function with its
slope characterized by h j1 or h1 j. We consider a set of discrete distributions that satisfies the following
condition, which ensures that h j1 and h1 j defined in (24) are strictly positive for each j 6= 1.

(F3’) The probability mass function, f j(x) = Fj(x)−Fj(x−1), is positive for all integer x ∈H j

Now, Define ρδ ,ε(ααα) = min j 6=1{Gδ ,ε
j (ααα)} with

Gδ ,ε
j (ααα) =

(ξ p
1 −ξ

p
j )

2

2p(1− p)
(

1/(α1h2
1 j)+1/(α jh2

j1(u))
) , (26)

which has a similar structure as that of ρδ (·) in (16) in the continuous case, except that f j(ξ
p
j ) in ρδ (·)

is replaced with h j1 or h1 j. To provide some intuition behind the definition of ρδ ,ε(ααα), recall that the
asymptotic variance of ξ̂

p
jt is inversely proportional to f j(ξ

p
j ) in the continuous case. In other words, the
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Algorithm 3 πππ(n0)

For each j, take n0 samples and let t = kn0
while t ≤ T do
If ξ̂

p
bt = ξ̂

p
jt , ĥ jbt = 0, or ĥb jt = 0 for some j 6= b, then take a sample from system πt+1 = argmini= j,b{αit}.

Otherwise, solve for α̂αα
δ ,ε
t = argmaxααα∈∆{ρ̂

δ ,ε
t (ααα)} and let

πt+1 = argmax
j
{α̂δ ,ε

jt −α jt} (31)

Let t = t +1
end while

asymptotic variance is low (high) when samples from system j are more (less) likely lie around ξ
p
j . Note

that h j1 or h1 j captures the likelihood of samples lying around ξ
p
j , and hence, plays a role of f j(ξ

p
j ) in the

continuous case. The following proposition validates this intuition in a precise mathematical manner. We
use the following notation: h̄ = max j 6=1{max(h j1,h1 j)}, r = max j 6=1{ξ p

1 −ξ
p
j }/min j 6=1{ξ p

1 −ξ
p
j }, θ = rh̄δ ,

and u :R+→R+ is a non-decreasing function of θ defined as

u(θ) =
2θ p(1− p)(θ 3 +3θ p(1− p)+ p(1− p))

3(p−θ)3(1− p−θ)3
(27)

Proposition 5 (Characteristic of ρδ ,ε ) Under assumptions (F1)-(F2) and (F3’), for any ααα ∈ ∆

(1− ε)(1−u(θ))≤ ρ(ααα)

ρδ ,ε(ααα)
≤ (1+ ε)(1+u(θ)), (28)

for θ sufficiently small so that u(θ)< 1.
Proposition 5 validates approximation of ρ(ααα) by ρδ ,ε(ααα) for small δ (equivalently, small θ ) and

ε . We now present an alternative algorithm that iteratively maximizes ρδ ,ε(·) from history of sample
observations. Let α̂αα

δ ,ε
t be the estimator of αααδ ,ε∗ in stage t; formally,

α̂αα
δ ,ε
t ∈ argmax

ααα∈∆

min
j 6=b

(ξ̂ p
bt − ξ̂

p
jt)

2

2p(1− p)
(

1/(αbĥ2
b jt)+1/(α jĥ2

jbt)
)
 , (29)

where b = argmax j{ξ̂
p
jt} and for each j,

ĥ jbt =
F̂jt(ξ̂

p
bt)− F̂jt(ξ̂

p
jt)

ξ̂
p
bt − ξ̂

p
jt

ĥb jt =
F̂bt(ξ̂

p
bt)− F̂bt(ξ̂

p
jt)

ξ̂
p
bt − ξ̂

p
jt

(30)

The algorithm for the discrete case is summarized below, with n0 being a parameter.
We note that the event {ξ̂ p

bt = ξ̂
p
jt} or the event {ĥ jbt = 0 or ĥb jt = 0} for some j 6= b can occur

with positive probability, in which case α̂αα
δ ,ε
t in (29) may not be well defined. When these cases occur,

Algorithm 3 takes a sample from system j or b, whichever is sampled less.
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Figure 2: Asymptotic performance of Algorithm 3 and its lower bound defined in (32) for three discrete
uniform systems with quantiles (0,−δ ,−2δ ) for p = 0.1. The lengths of supports are 104, or equivalently,
h j1 = h1 j = 10−4 for each j 6= 1.

Theorem 3 (Asymptotic performance of Algorithm 3) Under assumptions (F1)-(F2) and (F3’), a policy
by Algorithm 3 is consistent and its asymptotic performance is characterized as

lim
T→∞

E(Rπππ
T ) =

ρ(αααδ ,ε∗)

ρ∗
≥ (1−u(θ))(1− ε)

(1+u(θ))(1+ ε)
(32)

for sufficiently small θ such that u(θ)< 1.
Remark 4 (Tightness of the lower bound in Theorem 3) We note that u(θ) is a continuous function of
θ ≥ 0 with u(0) = 0. Hence, when θ and ε are close to 0, the bound in (32) is tight, uniformly across all
discrete distributions satisfying mild assumptions (F1), (F2), and (F3’). In Figure 2 we provide a numerical
example to illustrate the tightness of the bound for the case with discrete uniform distributions. One can
observe that the bound becomes loose as δ increases, or equivalently, as u(θ) approaches 1.

4 COMPARISON WITH BENCHMARK POLICIES

4.1 Benchmark Sampling Policies

We compare the proposed policies with a couple of other policies: the equal allocation and a simple heuristic
policy based on Hoeffding’s inequality; see details below.

• Equal allocation (EA). This is a simple static policy, where all systems are equally sampled, i.e.,
πt = argmin j{N jt}, breaking ties by selecting the system with the smallest index.

• Heuristic based on Hoeffding’s inequality (HH). This policy takes two parameters: the number of
initial samples n0 and β ∈ (0,1). The policy is summarized in Algorithm 4.

To provide some intuition behind the HH policy, denote ξ p as the pth quantile for distribution F(·)
and ξ̂

p
n as the sample quantile from n independent samples. From Hoeffding’s inequality, observe that

P(ξ̂ p+ζ
n < ξ

p) = P

(
n

∑
i=1

(I{Xi ≤ ξ
p}− p)≥ ζ n

)
≤ e−2nζ 2

. (34)

In other words, the population quantile ξ p is less than ξ̂
p+ζ
n with probability greater than or equal to

1−exp(−2nζ 2). Note that, in Algorithm 4, a confidence interval is characterized by the parameter β ; the
upper bound of the confidence interval for system j 6= b is vt , while the lower bound for system b is vt .
The significance level of each confidence interval can be bounded by a function of N jtζ

2
jt as seen from the

Hoeffding’s inequality (34). This implies that the algorithm is designed to take a sample from the system
with the least significance level in each stage.
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Algorithm 4 πππ(n0,β )

For each j, take n0 samples and let t = kn0
while t ≤ T do
Let b = argmax j{ξ̂

p
jt} and b′ = argmax j 6=b{ξ̂

p
jt}

Fix vt = β ξ̂
p
bt +(1−β )ξ̂ p

b′t
Define {ζ jt}k

j=1 as follows

ζ jt =

{
p− F̂bt(vt) for j = b
F̂jt(vt)− p for j 6= b

(33)

Take a sample from system πt+1 = argmin j{N jtζ
2
jt} and let t = t +1

end while
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(a) Continuous case
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Algorithm 2
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Figure 3: Probability of false selection in continuous and discrete cases. The system configurations are (a)
normal distributions with means (0,0,0,0) and standard deviations (1,1.2,1.4,1.6) with p = 0.05 and (b)
Poisson distributions with parameters (1000,990,980,970) with p = 0.5. For all algorithms, n0 = 0.02T .
For HH algorithm, the parameter β is tuned to be 0.5.

4.2 Numerical Experiments

We perform numerical tests for continuous and discrete cases; we take normal and Poisson distributions
as representative examples of the two. P(FSt) is estimated by counting the number of false selections out
of m simulation trials, which is chosen so that:√

Pt(1−Pt)

m
≤ Pt

10
, (35)

where Pt is the order of magnitude of P(FSt). This implies standard errors for the estimates of P(FSt)
are at least ten times smaller than the value of P(FSt) so that we have sufficiently high confidence that
the results are not driven by simulation error. For all policies we let n0 = 0.02T ; this is by no means an
optimal choice for any specific policy but the same qualitative results hold for different values of n0.

On the left panel of Figure 3, it can be seen that Algorithm 2 significantly improves the performance of
Algorithm 1 in terms of P(FSt). Note that Algorithm 1 performs no better than the equal allocation policy.
This provide a crucial insight for practitioners who need to choose an algorithm most suitable for problem
instances they face: When only a small budget is given and the difference between best and non-best
systems are small enough, as is the case of Figure 3a, we recommend to use Algorithm 2. Algorithm 1
would be appropriate only when the sampling budget is extraordinarily large, which makes it less attractive
in most applications. These conclusions are consistent with our theoretical results and Remark 3.
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Further, although the parameter β is tuned, we observe that the HH policy does not perform well
compared to the equal allocation. This result is expected, taking into account the fact that it is based on
the Hoeffding’s inequality, (34), which does not precisely capture the behavior of P(FSt). This in turn
suggests that any policy without close association with the rate function ρ(·) can perform arbitrarily poorly.
Essentially the same arguments hold for the discrete case in the right panel of Figure 3, but we highlight
that Algorithm 3 significantly outperforms Algorithm 1.
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