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ABSTRACT

In this study, we consider ranking and selection problems where the simulation model is subject to input
uncertainty. Under the input uncertainty, we compare system designs based on their worst-case performance,
and seek to maximize the probability of selecting the design with the best performance under the worst-case
scenario. By approximating the probability of correct selection (PCS), we develop an asymptotically (as
the simulation budget goes to infinity) optimal solution of the resulting problem. An efficient selection
procedure is designed within the optimal computing budget allocation (OCBA) framework. Numerical
tests show the high efficiency of the proposed method.

1 INTRODUCTION

We consider the problem of selecting the best system design among a finite number of choices, where
the performance of each design is evaluated via stochastic simulation. The goal is to determine the best
allocation of simulation replications in order to maximize the probability of correct selection (PCS) for the
best design. This problem setting falls in the well-established branch of statistics known as ranking and
selection (R&S) or multiple comparison procedures. For a comprehensive review of this field, see Kim
and Nelson (2007), Xu et al. (2015).

There are three common approaches for solving R&S problems. The indifference-zone (IZ) approach
seeks to provide a guaranteed lower bound for PCS, assuming that the mean performance of the best
design is at least δ ∗ better than each alternative, where δ ∗ is the minimum difference worth detecting
(Dudewicz and Dalal 1975, Rinott 1978, Kim and Nelson 2001, Nelson et al. 2001). The expected value of
information procedure (VIP) procedure describes the evidence for correct selection with Bayesian posterior
distributions and allocates the simulation budget to maximize the expected value of information in the
simulation samples (Chick and Inoue 2001b, Chick and Inoue 2001a, Chick and Frazier 2012, Xie et al.
2016). The optimal computing budget allocation (OCBA) method allocates the samples sequentially to
maximize PCS under a simulation budget constraint (Chen et al. 2000, Chen et al. 2008, Gao and Chen
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2015, Gao and Chen 2016a, Gao and Chen 2016b). The high efficiency of the OCBA approach has been
demonstrated in various numerical experiments (Branke et al. 2007, Chen et al. 2014).

Most of the abovementioned R&S procedures implicitly assume that the input distributions and their
parameters can be specified accurately for the simulation model. However, in real applications, the input
distributions and their parameters are typically unknown and have to be estimated from limited historical
data. As a result, there often exists profound input uncertainty for the simulation model, which might
(severely) affect the selection for the best design. To address this issue, Corlu and Biller (2013) developed
a subset selection procedure that accounts for the input uncertainty. Fan et al. (2013) presented a robust
IZ-based R&S formulation that selects the best design with respect to the worst-case performance among
a finite collection of possible input models, called robust selection of the best (RSB). Song et al. (2015)
explored the impact of model risk due to input uncertainty on R&S procedures. This issue is also related
to two streams of literature. The first is input uncertainty quantification, which quantifies the impact of
input uncertainty on the simulation output (Chick 2006, Barton 2012, Barton et al. 2014). The other is
robust optimization (RO) (Delage and Ye 2010, Goh and Sim 2010, Ben-Tal et al. 2013). Different from
simulation-based optimization in which targeted problems do not have nice structures to be exploited, RO
often requires that the optimization problems are available explicitly in closed form.

To approach R&S problems with input uncertainty, in this study, we assume that each design has
a finite number of scenarios, each corresponding to an input distribution. An OCBA-based procedure,
called OCBAR, is proposed to maximize the probability of correctly selecting the design with the best
performance under the worst-case scenario. Since making decisions based on the worst-case scenario
can prevent potential high risk, this setting is preferred by conservative decision makers. According to
OCBAR, we only need to concentrate our simulation budget on a small fraction of all the scenarios under
consideration to improve efficiency. For the special case that each design has only one scenario, OCBAR
reduces to the original OCBA allocation rule derived previously in Chen et al. (2000).

The rest of the paper is organized as follows. Section 2 formulates the R&S problem with input
uncertainty. Section 3 derives the asymptotic optimal solution for the problem formulated. Numerical
experiments are provided in Section 4, followed by conclusions in Section 5.

2 PROBLEM SETTING

We consider the problem of selecting the best design from a given set of k designs. For all the k designs, we
assume that the set of possible input distributions U is identical and contains a finite number m of scenarios.
We call U the uncertainty set, which incorporates the uncertainty from both the input distributions and their
associated parameters. Note that this assumption is not restrictive for practical purposes. From historical
data, we can first identify a number of appropriate input distributions for the simulation model and then
discretize the possible ranges of the associated parameters to establish U .

Let Ji, j, σ2
i, j and J̄i, j be the mean, variance and sample mean for the simulation output of the scenario j

of design i, i = 1,2, ...,k and j = 1,2, ...,m. T is the total simulation budget and αi, j is the proportion of T
allocated to scenario j of design i. The performance of design i is represented by the performance of its worst-
case scenario, i.e., max j∈{1,2,...,m} Ji, j, and the true best design is t = argmini∈{1,2,...,k}max j∈{1,2,...,m} Ji, j. We
assume that for each design i∈ {1,2, ...,k}, there exists scenario ji such that Ji, ji > Ji, j for all j ∈ {1,2, ...,m}
and j 6= ji, and there exists design i ∈ {1,2, ...,k} such that Ji, ji < Ji′, ji′ for all i′ ∈ {1,2, ...,k} and i′ 6= i.
This assumption ensures that the worst-case scenario of each design and the true best design are uniquely
defined. In order to make the derivation more tractable, we further assume that the simulation output
samples for each scenario are normally distributed for all the designs and are independent from replication
to replication and across different designs and scenarios.
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Design t is correctly selected when for any design l ∈ {1,2, ...,k} and l 6= t, there exists some scenario
r of design l such that for any scenario j of design t, J̄t, j ≤ J̄l,r. Thus,

PCS = P

{
k⋂

l=1,l 6=t

m⋃
r=1

m⋂
j=1

(J̄t, j ≤ J̄l,r)

}
. (1)

In general, PCS in (1) is analytically intractable when both k≥ 2 and m≥ 2. In this study, we develop
a surrogate for the problem of maximizing PCS by approximating PCS using a lower bound.
Theorem 1 Denote the worst-case scenario rl = argmaxr∈{1,2,...,m} Jl,r for design l ∈ {1,2, ...,k} and l 6= t.
Then,

PCS≥ 1−
k

∑
l=1,l 6=t

m

∑
j=1

P{J̄t, j > J̄l,rl} ≡ APCS.

Theorem 1 can be proved using the Bonferroni inequality. Detailed proof of it is in Gao et al. (2016).
We refer to this lower bound of PCS as the approximated probability of correct selection (APCS). In this
research, we consider the following optimization problem,

max
αi, j

APCS

s.t.
k

∑
i=1

m

∑
j=1

αi, j = 1,

αi, j ≥ 0, i = 1, ...,k, j = 1, ...,m. (2)

Compared to PCS, APCS can be computed easily and quickly. More importantly, by making the approxi-
mation, we derive a selection rule which is easy to compute and implement and can help provide important
insights about the selection problem under consideration.

3 ASYMPTOTIC OPTIMAL SOLUTION

Denote δi j,uv = Ji, j− Ju,v for any i,u ∈ {1,2, ...,k} and j,v ∈ {1,2, ...,m}. It j,lr =
δ 2

t j,lr

2(σ2
t, j/αt, j+σ2

l,r/αl,r)
for any

l ∈ {1,2, ...,k} and l 6= t and j,r ∈ {1,2, ...,m}. Define design l j and scenario jl such that

It j,l jrl j
= min

l∈{1,2,...,k},l 6=t
It j,lrl , j ∈ {1,2, ...,m},

It jl ,lrl = min
j∈{1,2,...,m}

It j,lrl , l ∈ {1,2, ...,k}, l 6= t.

In order to solve optimization problem (2), we can investigate the Karush-Kuhn-Tucker (KKT) conditions
(Boyd and Vandenberghe 2004) of it. This result is referred as robust optimal computing budget allocation
(OCBAR). The detailed derivation and the sequential procedure for implementing the allocation rule can
also be found in Gao et al. (2016).
Theorem 2 Problem (2) is asymptotically (as T → ∞) optimized if

m

∑
j=1

α2
t, j

σ2
t, j

=
k

∑
l=1,l 6=t

α2
l,rl

σ2
l,rl

, (3)

It j,l jrl j
= It j′,l j′ rl j′

, j, j′ ∈ {1,2, ...,m}, j 6= j′, (4)

It jl ,lrl = It jl′ ,l′rl′ , l, l′ ∈ {1,2, ...,k}, l 6= l′ 6= t. (5)
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According to Theorem 2, it is not necessary to correctly compare all the km scenarios. Let S1 =
{scenario j of design t : j ∈ {1,2, ...,m}} and S2 = {scenario rl of design l : l ∈ {1,2, ...,k} and l 6= t}.
We only need to correctly distinguish scenarios in S1 and S2, i.e., the m scenarios of the best design and
the worst-case scenario of all the k−1 non-best designs. This is sufficient to lead to a correct selection.
Since there are only k+m−1 scenarios in S1 and S2, by focusing the simulation budget on these two sets
of scenarios, the scale of the problem is reduced and the efficiency of the selection procedure might be
considerably improved.

In the special case that each design has only one scenario, i.e., there is no input uncertainty and the
input distributions are accurately specified, the optimality condition (3) reduces to

α2
t,1

σ2
t,1

=
k

∑
l=1,l 6=t

α2
l,1

σ2
l,1
. (6)

Equation (4) becomes invalid and (5) reduces to

δ 2
t1,l1

σ2
t,1/αt,1 +σ2

l,1/αl,1
=

δ 2
t1,l′1

σ2
t,1/αt,1 +σ2

l′,1/αl′,1
, l, l′ ∈ {1,2, ...,k}, l 6= l′ 6= t. (7)

If we further assume that αt,1� αl,1 for all l 6= t, (7) becomes,

αl,1

αl′,1
=

(
σl,1/δt1,l1

σl′,1/δt1,l′1

)2

. (8)

Note that (6) and (8) are identical to the original OCBA allocation rule (Chen et al. 2000) for selecting
the best design without input uncertainty.

4 NUMERICAL EXPERIMENTS

In this section, we implement numerical experiments to investigate the performance of the proposed OCBAR
algorithm. We test three selection examples, which are described as follows.

• Example 1: Constant-variance configuration. Ji, j = i+ j− 1 and σ2
i, j = 25 for i = 1,2, ...,k and

j = 1,2, ...,m. The best design t = 1.
• Example 2: Increasing-variance configuration. Ji, j = i+ j− 1 and σ2

i, j = 20+ j for i = 1,2, ...,k
and j = 1,2, ...,m. The best design t = 1.

• Example 3: Decreasing-variance configuration. Ji, j = i+ j−1 and σ2
i, j = 31− j for i = 1,2, ...,k

and j = 1,2, ...,m. The best design t = 1.

In the numerical experiments, we employ two different selection methods for comparison.

• Equal Allocation (EA): This is the simplest way to conduct simulation experiments and has been
widely applied. The total simulation budget is equally allocated to all the km scenarios under
consideration. The equal allocation is easy to implement in practice. Although equal allocation
does not appear to have any efficient mechanism for R&S with input uncertainty, it supplies a good
benchmark against which improvement may be measured.

• Robust Selection of the Best (RSB): This is an IZ-based procedure that selects the design with the
best worst-case performance for R&S problems with input uncertainty (Fan et al. 2013). RSB has
two layers. The first layer conducts an IZ-based R&S procedure to select for design i a scenario
which deviates at most δ1 from the worst-case scenario of this design with at least a specified
probability level, i = 1,2, ...,k. The second layer conducts an IZ-based R&S procedure to select a
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scenario which deviates at most δ2 from the best one among the scenarios selected in layer 1 with
at least a specified probability level. In this test, we will use the KN procedure (Kim and Nelson
2001) to satisfy the IZ criteria.

Among the three methods for comparison, RSB must be implemented differently. It keeps increasing
the sample size until PCS is guaranteed at a pre-specified level, while OCBAR and EA should be performed
with a fixed sample size. In order to compare the three methods, we first run RSB for 3000 replications
and calculate the averaged total sample size and PCS. Next, we run OCBAR and EA for 3000 replications
with the total sample size being the averaged total sample size of RSB. The PCS of OCBAR and EA is
estimated and compared with that of RSB. When implementing RSB, the target probability level for PCS
is set at 95%. The IZ parameters δ1 = δ2 = 1 and the initial number of simulation replications for each
scenario is 20. For OCBAR, the initial number of simulation replications for each scenario is 20 and the
incremental simulation budget in each iteration is 20. Table 1 reports the PCS of OCBAR, RSB and EA
with different values of k and m for the three tested examples. The sample sizes of the three methods are
also reported in the table.

Table 1: PCS comparison of OCBAR, RSB and EA.

OCBAR RSB EA Sample Size

Example 1

k = 5

m = 3 0.996 0.986 0.9556 2.26×103

m = 5 0.9983 0.9843 0.944 3.23×103

m = 10 1 0.9873 0.9496 5.08×103

k = 10

m = 3 1 0.988 0.9716 4.51×103

m = 5 1 0.9913 0.9726 6.27×103

m = 10 1 0.9897 0.9603 9.39×103

Example 2

k = 5

m = 3 0.9946 0.981 0.9486 2.60×103

m = 5 0.9963 0.9823 0.9487 3.71×103

m = 10 1 0.9833 0.966 5.74×103

k = 10

m = 3 1 0.9853 0.971 4.93×103

m = 5 1 0.9896 0.9733 7.04×103

m = 10 1 0.988 0.9636 1.04×104

Example 3

k = 5

m = 3 0.9966 0.9893 0.9646 1.96×103

m = 5 0.998 0.9913 0.9496 2.78×103

m = 10 1 0.9906 0.919 4.06×103

k = 10

m = 3 1 0.9936 0.956 3.60×103

m = 5 0.9996 0.99 0.9266 5.12×103

m = 10 1 0.9906 0.8763 7.66×103

It is observed that the proposed OCBAR procedure performs the best among the three selection methods
in all the cases tested. The advantage of OCBAR in performance tends to increase with the scale of the
problem. This is because OCBAR concentrates the simulation budget on the k+m− 1 scenarios in sets
S1 and S2 in order to improve efficiency. This effect becomes more significant with larger k and m.
The performance of RSB is second to OCBAR. RSB is not so efficient as OCBAR probably due to the
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conservativeness in budget allocation that was observed for IZ-based procedures (Branke et al. 2007).
EA has the worst performance. This is not surprising because EA does not appear to have any efficient
mechanism for selecting the best design with input uncertainty.

5 CONCLUSIONS

The optimal solutions of R&S problems may depend heavily on the specification of the input distributions
and their associated parameters. However, due to limited data or information, it is often difficult to specify or
estimate them precisely. If the input uncertainty is not properly managed, the optimal solution obtained for
these problems may turn out to be rather suboptimal. Our work aims to account for the input uncertainty by
selecting the design with the best performance under the worst-case scenario. Although an exact solution
appears to be intractable for the general case, we are able to propose an asymptotic optimal solution
that captures the important features of an efficient allocation rule. Numerical results indicate the higher
efficiency of the proposed procedure than the compared methods.
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