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ABSTRACT 

Large scale optimization problems are often with complex systems and large solution space, which 
significantly increase their computing cost. The idea of ordinal transformation (OT) is proposed in the 
method MO2TOS which can improve the efficiency of solving optimization problems with limited scale 
solution space by using multi-fidelity models. In this paper, we integrate OT with evolutionary algorithms 
to speed up the solving of large-scale problems. Evolutionary algorithms are employed to search the 
solutions of low-fidelity model from a large solution space and provide a good direction to the OT 
procedure. Meanwhile, evolutionary algorithms need to determine how to select solutions from multi-
fidelity models after the OT procedure to update the next generation. We theoretically show the 
improvement by using multi-fidelity models and employ genetic algorithm (GA) as an example to exhibit 
the detailed implementation procedure. The numerical experiments demonstrate that the new method can 
lead to significant improvement. 

1 INTRODUCTION

As a popular research area, optimization problem often arises in varied applications and has been well 
studied in many years. A lot of methods have been developed to solve optimization problems, such as 
Linear Programming, Non-linear Programming, and Dynamic Programming. These conventional 
computational methods are analytically well developed but have certain requirements on the problem 
configuration. However, the real world problems are usually large-scale optimization problems. These 
problems have large solution space, the noisy or incomplete data, or multimodality. These significantly 
increase the difficulty for the conventional methods solving the real optimization problems due to these 
approaches’ rigorous requirements on the problem structure.  

Some evolutionary techniques are then proposed or applied in optimization area for tackling the 
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large scale problems with complex configuration because of their few or no assumptions about the 
optimization problem, such as Genetic Algorithms (GAs) (Holland 1975), Cross-Entropy Method (CE) 
(Rubinstein 1999), Particle Swarm Optimization (PSO) (Kennedy and Eberhart 1995, Bratton and 
Kennedy 2007), and so on. Although the evolutionary algorithms provide useful tools for large-scale 
optimization problems, the computational efficiency is still one challenge point. One reason is the large 
and nonlinear solution spaces of large-scale optimization problems. The other reason is the high 
computing cost to evaluate the solutions due to the very complex systems.  

One way to tackle the computational efficiency issue of large-scale problems is the multiple-fidelity 
optimization. For the same system, it is often possible to build multiple evaluating models with different 
fidelity levels. High-fidelity models have high accuracy on predicting the performance of a solution but 
they may take a long time to run, which leads to the high computing cost. Low-fidelity models usually 
have biased estimation of the objective value of solutions but their computational cost is very low and  
can provide certain useful information to help us find the true best solution(s).  

There are some literatures related to multi-fidelity optimization for complex systems optimization 
problems. Huang et al. (2006) proposed a Multi-Fidelity Sequential Kriging Optimization (MFSKO) 
procedure and use the expected improvement (EI) as a measurement to determine the next solution to 
evaluate and the level of fidelity for that solution. Moore (2012) used the value of information (VOI) 
instead of EI as the maximized objective to determine the next solution and the fidelity of model to 
evaluate. Both of these two methods use Kriging to predict the bias of the low-fidelity model. However, 
kriging may require a large number of design points to perform well when the response surface is highly 
nonlinear and multi-modal, and/or the dimension of the solution space is high. Xu et al. (2014, 2016) and 
Huang et al. (2015) then proposed a novel ordinal transformation (OT) framework, named as MO2TOS to 
effectively use the information of multi-fidelity models to solve deterministic optimization problems with 
a finite number of solutions.  

In this paper, we integrate the idea of OT with evolutionary algorithms (GA) to improve their 
efficiency for large-scale deterministic optimization problems with multi-fidelity models. Because the 
low-fidelity model has low computing cost, much more solutions in the low-fidelity model can be 
generated and evaluated at each iteration of evolutionary algorithms. OT helps find good solutions to be 
evaluated by high-fidelity model and improve the search direction of evolutionary algorithms. Therefore, 
by applying OT with multi-fidelity models, the evolutionary algorithms can increase its capability in 
exploration and exploitation.  

The rest of the paper is organized as follows. In Section 2, we propose a way to use low-fidelity 
models for evolutionary algorithms and theoretically analyze the benefits of using low-fidelity models. 
Section 3 provides an algorithm integrating with GA. The numerical results are shown in Section 4. 
Section 5 concludes the whole paper.   

2 GENERAL GUIDELINES MULTIPLE FIDELITY MODELS IN RANDOM SAMPLING 
OPTIMIZATION ALGORITHMS 

2.1 Language Introduction of Ordinal Transformation 

The Ordinal Transformation is the main part of MO2TOS. Firstly, all solutions are evaluated by the low-
fidelity model. The Ordinal Transformation (OT) methodology then transforms the original solution space 
into a one-dimensional ordinal space based on the ranking of solutions using the low-fidelity model. 
Compared to the original solution space, which can be highly nonlinear, multi-modal, high-dimensional, 
and include a mix of discrete and categorical decision variables, the ordinal space is one-dimensional and 
often owns good structure.  

Xu et al. (2014, 2016) apply OT to a machine allocation problem in a flexible manufacturing system 
with an objective to maximize system resilience as measured by steady-state cycle time (smaller is better) 
under demand disruptions and machine failures. There are 37 machines and 5 workstations. The problem 
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is to determine the number of machines allocated to each workstation such that the average cycle time can 
be minimized. The constraints is the number of machines in each work station must be between 5 and 10. 
There are total 780 feasible solutions for the optimization problem. Figure 1 shows the performance of 
each solution evaluated by high-fidelity model. A low-fidelity model for the problem is built by using 
Jackson network analysis. Figure 2 shows the performance of each solution in low-/high-fidelity models 
after OT. From Figures 1 and 2, we can see that using low-fidelity model by OT can help to re-organize 
the structure of high-fidelity model in the original solution space and show a global trend. By this trend, 
the efficiency of finding good solutions can be significantly improved.  

 
Figure 1:  Cycle times in the original decision space. 

 
Figure 2:  Cycle times in the transformed decision space. 

2.2 Theoretical Analysis About The Benefits of Using Low-Fidelity Model 

In this section, we analyze the application of OT in evolutionary algorithms. The following is the list of 
notations. 

X: a solution, of dimension K; 
g(X)/f(X): the performance of solution X according to the low/high-fidelity deterministic model; 
Nh: the total number of solutions evaluated using high-fidelity model at each iteration; 

sNh: the total number of solutions evaluated using low-fidelity model at each iteration; 
For each solution 𝑋𝑋, we assume that g(X) and f(X) follow bi-variate normal distribution as below. 
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21/)( ρσσρµµδ −−−=  ( Z  is a standard normal random variable). In 

the formula, we also can see that )(xδ follows normal distribution and is independent to )(Xg . Hence, the 
best Nh solutions from the sNh solutions evaluated by low-fidelity model are selected to run the high-
fidelity model.  Based on the above assumptions and parameter settings, we have the following lemmas. 

Lemma 1. If we only use high-fidelity model during the implementation of evolutionary algorithms, 
the best solution of each iteration has the following expected performance. 
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Lemma 2. If we use both low- and high- fidelity models during the implementation of evolutionary 
algorithms, the best solution of each iteration has the following upper bound of the expected performance. 
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Based on Lemma 1 and 2, we can see there always exists a large enough s such that the best 
solutions found by using two fidelity levels models is better that that found by only using high fidelity 
model, which theoretically shows the benefits of using low-fidelity models in evolutionary algorithms. 

3 PROCEDURES TO IMPLEMENT GAOT 

In this section, we proposed an algorithm, GAOT, in a large design space with multiple-fidelity models. In 
the large design space, even though the low-fidelity model cannot evaluate all solutions. The quality of 
solutions selected based on low-fidelity model performance will impact searching efficiency in high-
fidelity model. We thus use GA to explore good low-fidelity solutions to OT stage. GA is a stochastic 
search algorithm which was proposed by Holland 1975 and it has been successfully applied to a wide 
variety optimization problems (Lin and Chen 2015). The GAOT implements the GA and the OT 
alternatively in the total evolution process. The GA works on and updates the population of the low-
fidelity model, while the OT is implemented to determine the evaluation of high-fidelity model and 
feedback evaluated chromosomes to GA for updating the next generation. The schematic structure of the 
GAOT is depicted in Figure 3.  
 The main components of GAOT are the chromosome encoding, the evaluation of fitness function, 
rank, selection, crossover and mutation. In the chromosome encoding, we use the binary encoding. The 
evaluation fitness function of GA is performed using the low-fidelity model. When GA finish evaluating 
all solutions of the low-fidelity model, these results will input the OT procedure. The first step of OT, 
ranks chromosome by using low-fidelity performance. We then evaluate high-fidelity model from the 
transformed space until all computing budget of each generation has been used. Now there are some 
solutions are evaluated and the other solutions are not evaluated. The selection process in GA determines 
which of the chromosomes from the current population will crossover to create new chromosomes. Based 
on the chromosomes that better fitness values have better chances of selection, we first select evaluated 
solutions of the high-fidelity model according to their rank to the mating pool. This means evaluated 
solutions have higher priority to be selected in the crossover process. For the rest candidates, we use the 
non-evaluated solutions based on their rank of low-fidelity to fill the mating pool. The mating pool is 
performed roulette wheel method, where individuals are given a probability of being selected which is 
directly proportionate to their rank. The crossover operator in this study is two cut-point exchange from 
two selected parent chromosomes to produce one child chromosome. In the mutation strategy, two genes 
are chosen randomly and their bit in the chromosome are inverted. The detailed pseudocode of the GAOT 
is described in Table 1. 
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Figure 3: Schematic structure of GAOT. 

Table 1: Procedure of GAOT. 

Initialization Set the following parameters: 
Gmax: maximum generation; 
Nh: the population size of high-fidelity (computing budget); 
Nl: the population size of low-fidelity; 
Cr: crossover rate; 
Mr: mutation rate. 

NL chromosomes are randomly generated. 

Loop while generation < Gmax do 

Evaluation  All chromosomes are evaluated by using low-fidelity model. 

Loop while computing budget < Nh do: OT 

 

Rank N solutions using low-fidelity performance. 
Perform ordinal transformation using the ranking of all solutions 
Select solutions from the transformed space as design points and evaluate 
them with high-fidelity models. 

End of Loop 
Updating (GA) 

 
For i=1 to  Nh 

Select evaluated solutions to mating pool according to their rank of 
high-fidelity model 

 End for 
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4 NUMERICAL EXPERIMENT 

In this section, we will compare the performance of GAOT with GA on two test problems which are 
function optimization and  simultaneous scheduling problem. 

4.1 Multiple-Fidelity Function Optimization 

The following two functions are used to test GAOT and GA. These functions can be controlled as the 
different correlation between low-fidelity and high-fidelity function through a parameter (Toal 2015). We 
perform two different correlations of each function. All experiment results are based on 30 IID runs and 
the average performances are plotted. 
 

(1) Branin function 
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                      where A1 is a parameter to control the correlation between high-fidelity and low-fidelity. In 
this function, we set A1=0 and 0.36 which the correlation is 0.9587 and 0.7126, respectively. 
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 The minimum value of this function is -1. The feasible range of each dimension is [0.3,1]. 

For i= Nh  to  Nl 
Select non-evaluated solutions to mating pool according to their rank 
of low-fidelity model. 

End for 
 

Perform roulette wheel method in mating pool. 
For i=1 to Nl 

Randuniform(0,1) 
            If Rand <Cr 

Then crossover 
End if 
Randuniform(0,1) 
If Rand<Mr 

Then mutation  
End if  

End for 
End of Loop 
Stopping  The optimal solution and its performance are output. 
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where A2 is a parameter to control the correlation between high-fidelity and low-fidelity. In 
this function, we set A2=0.1 and 0.35 which the correlation is 0.9974 and 0.7104, respectively. 

The population size of high-fidelity for GA and GAOT are set to 10. In GAOT, the population size 
of using low-fidelity is set to 30 and 100. In all following experiments, we collect the best 
performance, worst performance, average performance and standard deviation of all runs. 

 

 
Figure 4: Results of GA and GAOT under lower correlation for Branin function. 

The performances of GA and GAOT  for Branin function with different correlation are shown in 
Table 2. The results show that GAOT has better performance than GA. Using more population from 
low-fidelity can help GAOT to find a better solution. Higher correlation of low-fidelity model can 
provide more useful information for searching the optimal solution. 

Table 2: Experiment result for Branin function with different correlations. 

 ρ=0.7126 ρ=0.9587 
 GA (10) GAOT (30) GAOT (100) GAOT (30) GAOT (100) 

Best performance 0.3987 0.3979 0.3979 0.3979 0.3979 
Worst performance 2.3121 0.4523 0.3979 0.4015 0.3979 
Avg. performance 0.5296 0.404 0.398 0.3985 0.3979 
Std. of all runs 0.3534 0.0165 1.90E-04 0.0014 1.81E-06 

 
The convergence plots of GA and GAOT for Branin function with  different correlation are 

shown in Figures 4 and 5. From these figures, we can see OT into GA can support GA to converge 
to the optimal solution faster. 
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Figure 5: Results of GA and GAOT under higher correlation for Branin function. 

Table 3 reports the performances of GA and GAOT  for Paciorek function with different correlation. 
From Table 3, we observe GAOT still can acquire a better solution than GA. It can be concluded that both 
of using more low-fidelity solutions and higher correlation of low-fidelity model can enhance the 
searching efficiency of GA in these experiments. 

 

 
Figure 6: Results of GA and GAOT under lower correlation for Paciorek function. 

Table 3: Experiment result for Paciorek function with different correlation. 

 ρ=0.7104 ρ=0.9974 
 GA (10) GAOT (30) GAOT (100) GAOT (30) GAOT (100) 

Best performance -1 -1 -1 -1 -1 
Worst performance -0.9537 -0.9755 -0.9953 -0.9941 -0.999 
Avg. performance -0.9934 -0.9975 -9998 -0.9997 -1 
Std. of all runs 0.0144 0.006 0.00086444 0.0011 0.000039466 

 
The convergence plots of GA and GAOT for Paciorek function with  different correlation are shown in 

Figures 6 and 7. GAOT is also easier to get away from local optimum in this function. Using low-fidelity 
model can help GA to explore high-fidelity solutions. The scale of improvement depends on the 
population size of low-fidelity and the quality of low-fidelity model. 
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Figure 7: Results of GA and GAOT under  higher correlation for Paciorek function. 

4.2 Simultaneous Scheduling Problem  

We test GAOT and GA on another problem, which is a simultaneous scheduling problem in the flexible 
manufacturing system (FMS). 

 

 
Figure 8: An illustration of FMS. 

Simultaneous scheduling problem in FMS is to consider both machines and automatic guided 
vehicles (AGVs) to determine the starting and completion times of each job for given production 
sequences and the dispatching of transportation vehicles. The objective of this problem is to minimize the 
makes-pan. The production environment of the FMS consists of a group of computer numerically 
controlled (CNC) machines, AGVs, and a computer control system; these devices are connected to 
process different products. An example of an FMS is presented in Figure 8. There is a load/unload (L/U) 
station, two AGVs, and four workstations, and local buffers of each workstation.  

We consider two fidelities in simultaneous scheduling problem which are alternative machine and 
zone control of preventing vehicles deadlock. Alternative machine means if a job cannot be processed 
because the original machine is unavailable, an alternative machine can be used to process the job for 
reducing the waiting time. Zone control is a technique applied to prevent deadlock of vehicles. With zone-
control the system guide path is broken into discrete regions where vehicle deadlocks are avoided by 
allowing only a single vehicle into a control zone at any given time These two fidelities will significantly 
impact system performance and the schedule whether a feasible solution in practice. There are many 
interactions among jobs sequence, alternative machines, and AGVs behavior. Hence, this problem is 
high-dimension, large design space, and complexity.  
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In this study, alternative machine in the first fidelity model and the zone control of vehicle 
transportation in the second fidelity model. The third fidelity model, which is the model with the highest 
fidelity, considers both alternative machine and zone control of the vehicles routing. The correlation of 
low-fidelity 1 and 2 is 0.9613 and 0.4358, respectively. 

The data set is adapted from a literature (Kumar et al., 2011). There are five jobs, four machines, one 
load/unload station and two identical AGVs in this problem. The speed of AGVs is one meter per second. 
This problem is implemented by using discrete-event simulation model. This programming was 
developed using Siemens plant simulation ™.  

The population size of high-fidelity in simultaneous scheduling problem for GA and GAOT are set to 
20. In GAOT, the population size of using low-fidelity is set to 50, 100 and 200. 

 

 
Figure 9: Results of the simultaneous scheduling problem with low-fidelity 1. 

 
Figure 10: Results of the simultaneous scheduling problem with low-fidelity 2. 

Figures 9 and 10 plot the performance of the best solution found by GAOT and GA under different 
low-fidelity models. All results show using low-fidelity can improve the converge speed of GA and the 
algorithm can find better solutions by GAOT. Overall, the results indicate that using more population of the 
low-fidelity can provide more information to find the better solutions and the higher correlation between 
high-fidelity and using the low-fidelity can enhance searching efficiency of GAOT.   

These experiments confirm that GAOT achieves further improving in performance and searching 
efficiency by using more low-fidelity solutions and higher correlation of low-fidelity model in large 
design space with multiple fidelity problem. 
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5 CONCLUSIONS 

In this paper, we propose an approach of using multi-fidelity models to improve the efficiency of 
evolutionary algorithms for solving large-scale optimization problems. We theoretically prove the 
improvement on the best solutions found by using models with multiple fidelity levels. An algorithm 
named as GAOT is provided as an example of the basic framework of using multi-fidelity models in 
evolutionary algorithms.  GAOT is applied in two extent problems which are function optimization 
problem and the simultaneous scheduling problem in FMS. The numerical result of GAOT shows that 
using multi-fidelity models obviously improve the efficiency of GA in solving large scale optimization 
problems. 
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