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ABSTRACT

We study the empirical likelihood method in constructing statistically accurate confidence bounds for
stochastic simulation under nonparametric input uncertainty. The approach is based on positing a pair of
distributionally robust optimization, with a suitably averaged divergence constraint over the uncertain input
distributions, and calibrated with a χ2-quantile to provide asymptotic coverage guarantees. We present the
theory giving rise to the constraint and the calibration. We also analyze the performance of our stochastic
optimization algorithm. We numerically compare our approach with existing standard methods such as the
bootstrap.

1 INTRODUCTION

Stochastic simulation often relies on input distributions that are not fully known but only observed via a finite
sample of input data. The quantification of the errors in performance analyses due to the misspecification
of input models is known as input uncertainty. This paper focuses particularly on situations where there are
no specific assumptions on the parametric form of the input models, or nonparametric input uncertainty.
One major goal in this context is to construct confidence interval (CI) for the target performance measure
that accounts for input model errors on top of simulation errors.

This paper proposes an optimization-based method to construct such a CI. The upper and lower bounds
of the CI are obtained as the optimal values of a pair of optimization programs posited over the space of
input probability distributions. These programs can be interpreted as finding the upper and lower worst-case
performance measures, subject to a constraint on the unknown input distributions within a neighborhood of
the empirical distributions. We show that, by choosing the right size of this neighborhood and the appropriate
nonparametric distance to measure its size, these worst-case optimizations lead to asymptotically exact
confidence bounds for covering the true performance measure. We develop these statistical guarantees
by using the empirical likelihood (EL) method, which can be viewed as a nonparametric analog of the
maximum likelihood theory.

Our approach resembles, but also should be contrasted with, the literature of distributionally robust
optimization (DRO) (e.g., Delage and Ye 2010, Ben-Tal et al. 2013, Goh and Sim 2010). This literature aims
to find worst-case stochastic performance measures (or optimizes decisions over the worst-case) subject
to so-called uncertainty sets that represent the information or uncertainty about an underlying probability
distribution. One common constraint is a nonparametric neighborhood ball around a baseline model,
typically corresponding to the modeler’s best guess of the truth, measured by some nonparametric distance
such as φ -divergence (Pardo 2005). When this ball contains the true distribution, the optimal values of the
worst-case optimizations will cover the true measure. Thus, it is argued that one should calibrate the ball
size by estimating the divergence between the data and the baseline distribution, and consequently translate
the confidence of this estimation into a confidence bound for the performance measure. In practice, this
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implies calibration using a goodness-of-fit χ2-quantile, with the degree of freedom corresponding to the
effective number of categories in a discrete distribution, or divergence estimation that involves estimating
a functional of density. These methods could run into the statistical challenges in divergence estimation,
and also potentially a loss of coverage accuracy in translating the uncertainty set into a CI.

One main contribution of this paper is thus a new way of interpreting these DROs via the EL method.
Through this connection we locate the precise nonparametric distance one should use in constructing valid
CIs under nonparametric input uncertainty. Our distance deviates from those in the literature as it consists
of a weighted average of a collection of divergences, each applied on an independent input model needed in
the simulation. We also show that the size of the nonparametric neighborhood can be taken as a χ2-quantile,
with degree of freedom exactly one, independent of the number of input models and the continuity of these
random variates. This is in sharp contrast with the proposed calibration methods in the DRO literature.

In general, the optimization programs we impose is simulation-based. As another contribution, we
investigate the properties of mirror descent stochastic approximation (MDSA) (Nemirovski et al. 2009)
used to locally solve these programs. This simulation-based optimization framework provides an alternate
approach to quantifying nonparametric input uncertainty compared to the current major technique of bootstrap
resampling. The latter is a sampling approach that repeatedly generates new empirical distributions to drive
the simulation runs. On a high level, our approach trades the computational load in resampling with the
optimization routine needed in the iteration of the SA algorithm. We investigate this tradeoff, and compare
the performances of the obtained CIs and their vulnerability to the simulation noise.

The rest of this paper is organized as follows. Section 2 lays out our optimization programs and explains
them using the EL method. Section 3 presents and analyzes our MDSA algorithm. Section 4 show some
numerical results and comparison with the bootstrap.

2 EMPIRICAL-LIKELIHOOD-BASED CONFIDENCE INTERVAL

We consider a performance measure in the form

Z(P1, . . . ,Pm) = EP1,...,Pm [h(X1, . . . ,Xm)] , (1)

where each Xi = (Xi(1), . . . ,Xi(Ti)) is a sequence of Ti i.i.d. random variables under an independent input
model (or distribution) Pi, and Ti is a deterministic run length. The function h mapping from XT1

1 ×·· ·×XTm
m

to R is assumed computable given the inputs Xi’s.
Our premise is that each Pi is unknown but ni i.i.d. data Xi,1, . . . ,Xi,ni are available. The true value of

(1) is therefore unknown even under abundant simulation runs. Our goal is to find a (1−α) level CI for
the true performance measure.

Our approach is the following. For model i, we consider the probability simplex of the weights
wi = (wi,1, . . . ,wi,ni) over the support set {Xi,1, . . . ,Xi,ni}. We consider the pair of optimization programs

Lα/Uα :=min/max Z(w1, . . . ,wm)

subject to −2
m

∑
i=1

ni

∑
j=1

logniwi, j ≤X 2
1,1−α

ni

∑
j=1

wi, j = 1, for all i

wi, j ≥ 0, for all i, j

(2)

where X 2
1,1−α

is the 1−α quantile of the chi-square distribution with degree of freedom one, and each wi

in Z(w1, . . . ,wm) should be interpreted as the distribution putting weight wi, j on Xi, j, for j = 1, . . . ,ni.
The formulation (2) can be interpreted as the worst-case optimizations over the m independent input

distributions subject to a weighted-averaged divergence. Note that the quantity −(1/ni)∑
ni
j=1 logniwi, j is
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the Burg-entropy divergence (Ben-Tal et al. 2013) between the probability weights wi and the uniform
weights. Thus, letting n = ∑

m
i=1 ni be the total sample size, we have

−1
n

m

∑
i=1

ni

∑
j=1

logniwi, j =
m

∑
i=1

ni

n

(
− 1

ni

ni

∑
j=1

logniwi, j

)
which can be viewed as a weighted average of the individual Burg-entropy divergences imposed on different
input models, each weight being ni/n. The first constraint in (2) imposes a bound X 2

1,1−α
/(2n) on this

averaged divergence.

2.1 Empirical Likelihood Theory for Sum of Means

We justify the formulation (2) using the EL method. First proposed by Owen (1988), this method can be
viewed as a nonparametric counterpart of maximum likelihood theory. Analogous to Wilks’ Theorem (Cox
and Hinkley 1979) in maximum likelihood theory that states the convergence of the so-called logarithmic
likelihood ratio to a χ2-distribution, the nonparametric profile likelihood ratio in EL converges similarly.
This will be the key to obtaining our formulation (2).

We describe the EL method. Given m independent sets of data {Xi,1, . . . ,Xi,ni}, we define the nonpara-
metric likelihood, in terms of the probability weights wi for the i-th input model, to be ∏

ni
j=1 wi, j. The

multi-sample likelihood is ∏
m
i=1 ∏

ni
j=1 wi, j. It can be shown, by a simple convexity argument, that uniform

weights wi, j = 1/ni for each model maximize ∏
m
i=1(1/ni)

ni . Moreover, uniform weights still maximize
even if one allows putting weights outside the support of data, in which case ∑

ni
j=1 wi, j < 1 for some i,

making ∏
m
i=1 ∏

ni
j=1 wi, j even smaller. Therefore, ∏

m
i=1(1/ni)

ni can be viewed as the nonparametric maximum
likelihood estimate.

To proceed, we need to define a parameter of interest that is determined by the input models. Inference
about this parameter is carried out based on the so-called profile nonparametric likelihood ratio, which is
the maximum likelihood ratio between all weights that empirically produce a given value of the parameter,
and the uniform weights (i.e. the MLE). In our case the parameter of interest is the performance measure
Z(P1, . . . ,Pm), which is however possibly nonlinear in Pi’s and hence not easy to work with. Fortunately, it
turns out that there isn’t much loss to deal with the special case h(X1, . . . ,Xm) = ∑

m
i=1 hi(Xi(1)) for some

hi : R→R and Ti = 1 for all i, i.e. the parameter of interest is simply the sum of means of random variables
hi(Xi(1)). We will focus on this case for now. To simplify further, let us consider estimating ∑

m
i=1EXi,

where for convenience we write Xi in place of Xi(1). The profile nonparametric likelihood ratio is defined
as

R(µ) = max

{
m

∏
i=1

ni

∏
j=1

niwi, j

∣∣∣∣ m

∑
i=1

ni

∑
j=1

wi, jXi, j = µ,
ni

∑
j=1

wi, j = 1,wi, j ≥ 0, for all i, j

}
, (3)

and is defined to be 0 if the optimization problem in (3) is infeasible.
Before getting into details of the asymptotic theory, we note that usually the logarithmic profile

nonparametric likelihood ratio at the true value, i.e. −2logR(∑m
i=1EXi(1)), asymptotically follows some chi-

square distribution whose degree of freedom is equal to the number of non-probability-simplex constraints,
e.g. ∑

m
i=1 ∑

ni
j=1 wi, jXi, j = µ in (3). As another interpretation, treating the weights wi as parameters, the

degree of freedom is the difference in dimensions of the full and constrained parameter space, and typically
d constraints result in a loss of d dimensions of the parameter space.

Now we state our theorem.
Theorem 1 Let Xi be a random variable distributed under Pi. Assume 0<∑

m
i=1 Var(Xi)<∞, and mini∈I ni≥

c∑i∈I ni always holds for some constant c> 0, where I = {i|Var(Xi)> 0}. Then−2logR(∑m
i=1EXi) converges

in distribution to X 2
1 , the chi-squared distribution with degree of freedom one, as ni→ ∞ for i ∈ I.

In this theorem only sample sizes of those having positive variance are required to grow to infinity. To
see the reason for this, note that data of inputs with zero variance are always equal to the true mean so we
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can always assign them the uniform weights in (3). Other than these zero-variance inputs, the condition
mini∈I ni ≥ c∑i∈I ni basically forces the sample sizes to grow at the same rate. Theorem 1 is a multi-sample
generalization of the well known empirical likelihood theorem for single-sample mean, which can be found
in Chapter 2 of Owen (2001). We state it as a special case where m = 1.
Theorem 2 Let Y1,Y2, . . . ,Yn be i.i.d. random variables distributed under some distribution P, 0<Var(Y1)<
∞. Then −2logR(EY1) converges in distribution to X 2

1 , as n→ ∞. The function R(·) here is the same as
that in (3) with m = 1,n1 = n,X1, j = Yj.

2.2 Empirical-likelihood-based Confidence Interval

We discuss how to construct confidence interval for the quantity Z(P1, . . . ,Pm) based on the EL theory
presented in the last section, and thus justify the validity of the formulation (2). We will first study the
linear output case, and then discuss the general performance measure in (1).

As pointed out in the last section, linear output takes the form h(X1, . . . ,Xm) = ∑
m
i=1 hi(Xi), where Xi

is distributed under Pi. For output of this particular form, Theorem 1 implies that the optimization pair (2)
gives an asymptotically correct confidence interval with coverage probability 1−α , namely
Theorem 3 Assume 0 < ∑

m
i=1 Var(hi(Xi)) < ∞, and mini∈I ni ≥ c∑i∈I ni for some constant c > 0, where

I = {i|Var(hi(Xi))> 0}. Then

P

(
Lα ≤

m

∑
i=1

Ehi(Xi)≤Uα

)
→ 1−α, as ni→ ∞ for i ∈ I,

where

Lα/Uα :=min/max
m

∑
i=1

ni

∑
j=1

wi, jhi(Xi, j)

subject to −2
m

∑
i=1

ni

∑
j=1

logniwi, j ≤X 2
1,1−α

ni

∑
j=1

wi, j = 1, for all i

wi, j ≥ 0, for all i, j

(4)

and X 2
1,1−α

is the 1−α quantile of X 2
1 .

Proof. By applying Theorem 1 to hi(Xi, j), we know that the set {µ ∈R|−2logR(µ)≤X 2
1,1−α

} contains
the true sum ∑

m
i=1Ehi(Xi) with probability 1−α asymptotically. Note that this set can be identified as

U =

{
m

∑
i=1

ni

∑
j=1

wi, jhi(Xi, j)

∣∣∣∣−2
m

∑
i=1

ni

∑
j=1

logniwi, j ≤X 2
1,1−α ,

ni

∑
j=1

wi, j = 1,wi, j ≥ 0

}
.

It is obvious that Lα/Uα = min/max{µ|µ ∈ U}. So if the set U is convex, then U = [Lα ,Uα ], and we
conclude the theorem. To show convexity, it’s enough to notice that the feasible set of (4) is convex, and
the objective is linear in wi, j.

We now extend our result to the general performance measure (1). We show that, by decomposing
Z(w1, . . . ,wm) into linear and nonlinear parts via a Taylor-like expansion, applying Theorem 3 to the linear
part, and controlling the magnitude of the nonlinear part, we can construct a CI that has an asymptotic
guarantee similar to Theorem 3. We assume that
Assumption 1 ∑

m
i=1 Var(Gi(Xi))> 0, where Gi(x) = ∑

Ti
j=1EP1,...,Pm [h(X1, . . . ,Xm)|Xi( j) = x].
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Assumption 2 Denote the index Ii =(Ii(1), . . . , Ii(Ti))∈{1,2, . . . ,Ti}Ti , and Xi,Ii =(Xi(Ii(1)), . . . ,Xi(Ii(Ti))).
Assume that there exists some positive integer k such that h(X1,I1 , . . . ,Xm,Im) has finite 2k-th moment for
all possible choices of Ii’s.

It is not difficult to see that Assumption 1 is the counterpart of the condition ∑
m
i=1 Var(hi(Xi))> 0 in

Theorem 3, which is needed in dealing with the linear part of Z(w1, . . . ,wm), and Assumption 2 is used
for controlling the nonlinear part. We state our result for the general performance measure below.
Theorem 4 If Assumptions 1, 2 hold, and mini ni ≥ c∑

m
i=1 ni always holds for some constant c > 0, then

P
(

Lα +Op

(
1

n
k−1

k

)
≤ Z(P1, . . . ,Pm)≤Uα +Op

(
1

n
k−1

k

))
→ 1−α, as ni→ ∞,

where n = ∑
m
i=1 ni and Lα ,Uα are defined as in (2).

This theorem shows that if at least sixth moments (k≥ 3) of the function h are finite, then the difference
Op(1/n

k−1
k ) is asymptotically negligible compared with Op(1/

√
n), the length of the CI. This holds trivially

if, for instance, h is a bounded function.

3 MIRROR DESCENT STOCHASTIC APPROXIMATION

This section focuses on solving optimization problem (2), using the mirror descent (MD) algorithm. The
MD algorithm was first proposed by Nemirovsky et al. (1982) for deterministic convex optimization in
general normed space, motivated by the challenge that the standard gradient descent in the Euclidean
space may not generally make sense because the primal space, where the solution lies on, can be different
from its dual, where the gradient is defined on. It resolves the issue by mapping the solution to the dual
space and conducts gradient descent therein. For optimizations in Rn, one does not necessarily need to
use MD since the primal and the dual space are the same. However, with a given set of constraints, a
judicious choice of a primal-dual map can result in iteration subroutine that is computationally efficient.
Such observations extend to the setting where gradient can only be simulated. In this case, the algorithm
becomes a constrained SA procedure, and leads to MDSA.

Here we outline the MDSA procedure for the following generic version of problem (2) with η > 0

min Z(w1, . . . ,wm)

subject to −2
m

∑
i=1

ni

∑
j=1

logniwi, j ≤ η

ni

∑
j=1

wi, j = 1, for all i

wi, j ≥ 0, for all i, j

(5)

The feasible set here, denoted by A , is convex and satisfies A ⊂∏
m
i=1 Pni ⊂Rn, where Pni denotes the

probability simplex associated with a support set of size ni, and n = ∑
m
i=1 ni. The norm on Rn is chosen to

be the 1-norm ‖(w1, . . . ,wm)‖1 = ∑
m
i=1 ∑

ni
j=1|wi, j|. First we take the entropy distance generating function

ω on ∏
m
i=1 Pni (used in the so-called entropic descent algorithm (Beck and Teboulle 2003))

ω(w1, . . . ,wm) =
m

∑
i=1

ni

∑
j=1

wi, j logwi, j.

Strong convexity of ω is guaranteed by the following proposition, whose proof is similar to that of the
special case m = 1 in Nemirovski et al. (2009).
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Proposition 1 ω(w1, . . . ,wm) is strongly convex with parameter 1/m w.r.t. 1-norm in the relative interior
of ∏

m
i=1 Pni , i.e.

ω(u1, . . . ,um)−ω(w1, . . . ,wm)≥
m

∑
i=1

ni

∑
j=1

∂ω

∂wi, j

∣∣∣∣
(w1,...,wm)

(ui, j−wi, j)+
1

2m

(
m

∑
i=1
‖ui−wi‖1

)2

.

Corresponding to ω is the prox-function responsible for projecting the solution back to the primal
decision space

V (u1, . . . ,um;w1, . . . ,wm) = ω(u1, . . . ,um)−ω(w1, . . . ,wm)−
m

∑
i=1

ni

∑
j=1

∂ω

∂wi, j

∣∣∣∣
(w1,...,wm)

(ui, j−wi, j)

=
m

∑
i=1

ni

∑
j=1

wi, j log
wi, j

ui, j
.

In each step of MDSA, the current solution (wk
1, . . . ,w

k
m) is updated via the prox-mapping

prox(wk
1, . . . ,w

k
m) = argmin(w1,...,wm)∈A γk ∑

i, j

∂̂Z
∂wi, j

(wi, j−wk
i, j)+V (wk

1, . . . ,w
k
m;w1, . . . ,wm), (6)

where γk is the step size, and ̂∂Z/∂wi, j is an estimate for each component of the gradient.

3.1 Gradient Estimation

Here we discuss how to estimate the gradient of the objective Z(w1, . . . ,wm), which is needed in the
prox-mapping (6). It is not hard to see that Z(w1, . . . ,wm) is a multivariate polynomial in wi, j, and hence
its gradient is also a polynomial. However, a closer examination reveals that the number of terms in this
polynomial grows as fast as nT , where n is the order of the sample size and T the time horizon. Thus
it is generally impossible to compute the gradient by naively summing up all the terms, and simulation
is needed. We adopt the proposal by Ghosh and Lam (2015a) and Ghosh and Lam (2015b) of using the
directional derivative ψi, j =

d
dε

Z(w1, . . . ,(1− ε)wi + εei, j, . . . ,wm)|ε=0 instead of the standard derivative
∂Z/∂wi, j, where ei, j is the j-th coordinate vector of Rni . It’s shown that substituting ψi, j in place of
∂Z/∂wi, j retains all properties needed in the prox-mapping (6), and appealingly ψi, j is simulable. Here is
an extension of their result.
Proposition 2 For any (w1, . . . ,wm) ∈ ∏

m
i=1 Pni with each wi, j > 0, let ψi, j =

d
dε

Z(w1, . . . ,(1− ε)wi +
εei, j, . . . ,wm)|ε=0, and ∂Z/∂wi, j be the standard derivative. Then

m

∑
i=1

ni

∑
j=1

ψi, j(ui, j−wi, j) =
m

∑
i=1

ni

∑
j=1

∂Z
∂wi, j

(ui, j−wi, j), for any (u1, . . . ,um) ∈
m

∏
i=1

Pni

and
ψi, j = Ew1,...,wm [h(X1, . . . ,Xm)Si, j(Xi)] ,

where

Si, j(Xi) =
Ti

∑
t=1

1
{

Xi(t) = Xi, j
}

wi, j
−Ti.

This proposition suggests the following unbiased estimator for ψi, j

ψ̂i, j =
1
R

R

∑
r=1

h(Xr
1, . . . ,X

r
m)Si, j(Xr

i ), (7)

where Xr
1, . . . ,Xr

m,r = 1, . . . ,R are R independent replications of the m input processes generated under
weights (w1, . . . ,wm), and are used simultaneously in all ψ̂i, j’s.
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3.2 Computing the Prox-mapping

We discuss how to solve the minimization problem in prox-mapping (6) with ̂∂Z/∂wi, j replaced by ψ̂i, j.
Let’s work with the generic form

min
m

∑
i=1

ni

∑
j=1

ξi, jwi, j +V (u1, . . . ,um;w1, . . . ,wm)

subject to −2
m

∑
i=1

ni

∑
j=1

logniwi, j ≤ η

ni

∑
j=1

wi, j = 1, for all i

wi, j ≥ 0, for all i, j.

(8)

where ξi, j’s are put in place of the gradient estimators. Seeing that the decision space of (8) has dimension
∑

m
i=1 ni, which can be significantly larger than the number of functional constraints m+1, our strategy is to

first solve the Lagrangian dual problem, then use the dual optimal solution to recover the primal optimal
solution.

Consider the Lagrangian

L(w1, . . . ,wm,λλλ ,β )

=
m

∑
i=1

[
ni

∑
j=1

(
ξi, jwi, j +wi, j log

wi, j

ui, j

)
+λi

(
ni

∑
j=1

wi, j−1

)]
−β

(
2

m

∑
i=1

ni

∑
j=1

logniwi, j +η

)

The dual function defined for λλλ ∈ Rm,β ≥ 0 is

g(λλλ ,β ) = min
w1,...,wm≥0

L(w1, . . . ,wm,λλλ ,β )

=
m

∑
i=1

ni

∑
j=1

min
wi, j≥0

(
(ξi, j +λi)wi, j +wi, j log

wi, j

ui, j
−2β logniwi, j

)
−

m

∑
i=1

λi−βη (9)

=
m

∑
i=1

ni

∑
j=1

(
(ξi, j +λi)w̃i, j + w̃i, j log

w̃i, j

ui, j
−2β logniw̃i, j

)
−

m

∑
i=1

λi−βη , (10)

where w̃i, j is the minimizer of the inner optimization in (9). This inner optimization can be solved efficiently
using Newton’s method. In other words, g(λλλ ,β ) = L(w̃1, . . . , w̃m,λλλ ,β ) can be easily evaluated. Moreover,
it can be shown that w̃i, j is always strictly positive, hence ∂L/∂wi, j

∣∣
wi, j=w̃i, j

= 0. By this observation and
the chain rule, the first derivatives of the dual function are

∂g
∂λi

=
ni

∑
j=1

w̃i, j−1,
∂g
∂β

=−2
m

∑
i=1

ni

∑
j=1

logniw̃i, j−η . (11)

To obtain the second derivatives, note that w̃i, j is determined by ξi, j +λi + log w̃i, j
µi, j

+1− 2β

w̃i, j
= 0. Implicit

differentiation gives

∂ w̃i, j

∂λi
=
−w̃2

i, j

w̃i, j +2β
,

∂ w̃i, j

∂λs
= 0, for s 6= i,

∂ w̃i, j

∂β
=

2w̃i, j

w̃i, j +2β
.
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So the second derivatives are

∂ 2g
∂λ 2

i
=

ni

∑
j=1

−w̃2
i, j

w̃i, j +2β
,

∂ 2g
∂β 2 =

m

∑
i=1

ni

∑
j=1

−4
w̃i, j +2β

,

∂ 2g
∂λi∂λs

= 0 for s 6= i,
∂ 2g

∂λi∂β
=

ni

∑
j=1

2w̃i, j

w̃i, j +2β
.

(12)

Therefore we have shown in (10), (11) and (12) that the dual function g(λλλ ,β ), its gradient and its Hessian
can all be efficiently evaluated. This allows us to solve the dual problem

max
λλλ ,β

g(λλλ ,β )

subject to λλλ = (λ1, . . . ,λm) ∈ Rm,β ≥ 0
(13)

efficiently using, e.g., the Interior Point method. The following proposition helps justify our proposal of
solving the dual (13) instead.
Proposition 3 There is a unique optimal solution (λ ∗1 , . . . ,λ

∗
m,β

∗) to the dual (13). Moreover, the primal
optimal solution w∗i, j to (8) can be obtained by solving

ξi, j +λ
∗
i + log

w∗i, j
ui, j

+1− 2β ∗

w∗i, j
= 0, i = 1, . . . ,m, j = 1, . . . ,ni.

The full MDSA algorithm is described in Algorithm 1, which possesses the following convergence
guarantee.
Theorem 5 Suppose there exists a unique optimal solution (w∗1, . . . ,w∗m) for (5) such that for any (w1, . . . ,wm)
in the feasible set

m

∑
i=1

ni

∑
j=1

∂Z
∂wi, j

(w1, . . . ,wm)(wi, j−w∗i, j) = 0 if and only if wi = w∗i for all i. (14)

Then the sequence
(
wk

1, . . . ,w
k
m
)

generated by Algorithm 1 with step size γk such that

∞

∑
k=1

γk = ∞,
∞

∑
k=1

γ
2
k < ∞,

converges to (w∗1, . . . ,w∗m) almost surely.
It is easy to verify that the condition (14) must hold if the objective is convex, provided the optimal

solution is unique. Besides convexity, condition (14) also applies to objectives that along any ray starting
from the optimal solution is a strictly increasing function.

4 NUMERICAL EXPERIMENT

In this section we present some simulation study on the validity of the proposed method, and compare our
method with bootstrap resampling (Barton and Schruben 1993, Barton and Schruben 2001). We will show
that our method produces statistically valid CIs that have similar coverage, and in some sense are more
stable compared with the bootstrap.

We consider the canonical M/M/1 queue with arrival rate 0.8 and service rate 1. The system is empty
when the first customer comes in. We are interested in the probability that the 20-th customer waits for
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Algorithm 1 MDSA for solving (5)
Input: a parameter η > 0, an initial feasible solution (w1

1, . . . ,w1
m), a step size sequence γk, and number

of replications per iteration R.
Iteration: set k = 1

1. Estimate ψ̂k
i, j = ψ̂i, j(wk

1, . . . ,w
k
m), i = 1, . . . ,m, j = 1, . . . ,ni using

ψ̂
k
i, j =

1
R

R

∑
r=1

h(Xr
1, . . . ,X

r
m)Si, j(Xr

i )

where Xr
1, . . . ,Xr

m,r = 1, . . . ,R are R independent replications of the m input processes under distributions
(wk

1, . . . ,w
k
m)

2. Compute the optimal solution (λ k+1
1 , . . . ,λ k+1

m ,β k+1) to

max g(λλλ ,β )

subject to λλλ = (λ1, . . . ,λm) ∈ Rm,β ≥ 0

as discussed in Section 3.2, with ξi, j = γkψ̂k
i, j,ui, j = wk

i, j.
3. Solve the equations

γkψ̂
k
i, j +λ

k+1
i + log

wk+1
i, j

wk
i, j

+1− 2β k+1

wk+1
i, j

= 0

for (wk+1
1 , . . . ,wk+1

m ), then go back to 1.

longer than 2 units of time to get served. To put it in the form of (1), let At be the inter-arrival time between
the t-th and (t +1)-th customers, St be the service time of the t-th customer, and

h(A1,A2, . . . ,A19,S1,S2, . . . ,S19) = 1{W20>2}, (15)

where the waiting time W20 is calculated via the Lindley recursion

W1 = 0,Wt+1 = max{Wt +St −At ,0}, for t = 1, . . . ,19. (16)

To test the method, we pretend that both the inter-arrival time distribution and service time distribution are
unknown, but data for both inputs are accessible. Specifically, we generate two samples of size n1 and n2
from exponential distribution with rate 0.8 and 1 respectively, and plug in the data into (2) to compute a
95% CI using Algorithm 1.

The parameters of Algorithm 1 are empirically chosen based on several test runs. In all the following
experiments, the step size is set to be γk = 1/(2

√
n1k), and the number of replications for gradient estimation

R = 30. The algorithm is terminated if the difference measured in 1-norm between the average of the last
50 iterates and that of the last 51 to 100 iterates is less than some small ε > 0, which shall be specified
in each of the experiments below. The average of the last 50 iterates also serves as the final output of the
algorithm.

Apart from the stochastic nature of the algorithm, another source of uncertainty that affects the CI is
the final evaluation of the objective at the confidence bounds, i.e. computing Lα ,Uα . The bounds are
computed by taking the average of a number of replications, called Re, of (15). Since the length of the CI
with only input uncertainty is of order 1/

√
n1, to make the stochastic error negligible, Re is chosen to be

moderately larger than n1,n2. The value of Re for each experiments is also to be specified below.
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4.1 Accuracy of the EL confidence interval

We draw 100 samples of sizes n1 = n2 = 30,n1 = n2 = 50,n1 = n2 = 100, respectively, and construct one
CI based on each sample. Table 1 shows that the CIs have accurate coverage probabilities among all the
considered sample sizes, and can be computed in a reasonably short time. Here Re = 1000 is large enough
because the sample size is no more than 100. To verify that the algorithm has indeed converged under
these stopping criteria ε , trace plots of components of the weight vector are extracted. See Figure 1 for
some of them.

Table 1: Performance of EL method under various sample sizes. # of replications for final evaluation
Re = 1000 for all, stopping criterion parameter ε are specified in each case.

Sample size 30,ε = 0.0073 50,ε = 0.0057 100,ε = 0.0040
Run time per CI(seconds) 15.1 18.1 22.7
Coverage probability estimate 0.94 0.92 0.94
95% CI for coverage probability [0.893,0.987] [0.867,0.973] [0.893,0.987]
# of replications of h per CI 2.7×104 3.4×104 4.5×104

# of iterations per CI(min+max) 837 1058 1430
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Figure 1: Trace plot of the first component of the weight vectors for inter-arrival time and service time.

4.2 Comparison with bootstrap resampling

The bootstrap has been widely used to approximate sampling distribution of a statistic from which CIs can be
constructed. One method of constructing CIs using the bootstrap is the percentile bootstrap used in Barton
and Schruben (1993) and Barton and Schruben (2001). Given a pair of samples, A1,A2, . . . ,An1 for the
inter-arrival time and S1,S2, . . . ,Sn2 for the service time, the percentile bootstrap proceeds as follows. First
choose B, the number of bootstrap samples and N, the number of simulation replications for each bootstrap
sample. Then for each b = 1,2, . . . ,B, (1) draw a simple random sample of size n1 with replacement
from {A1, . . . ,An1} and a sample of size n2 from {S1, . . . ,Sn2}, denoted by {A1

b, . . . ,A
n1
b }, and {S1

b, . . . ,S
n2
b }

respectively; (2) generate N replications of h with the inter-arrival distribution being uniform over A1
b, . . . ,A

n1
b

and the service time distribution being uniform over S1
b, . . . ,S

n2
b , and take the average Zb as the estimate of

Eh. Finally output the 0.025(B+1)-th and 0.975(B+1)-th order statistics of {Zb}B
b=1, Z(b0.025(B+1)c) and

Z(b0.975(B+1)c), as the lower and upper limits of the CI.
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To compare our method with bootstrap resampling, we study two cases. In the first case (Table 2), we
draw 100 samples of size n1 = n2 = 50, and compute CIs for each of them. In the second case (Table 3),
we draw only one sample of size n1 = n2 = 50, and repeat computing 50 CIs based on a single sample.
To make the comparison fair, we appropriately set the parameters B,N for the bootstrap method, and ε,Re
for the EL method so that the run times are comparable. The result shows that the EL method generates
comparable but slightly narrower CIs than the bootstrap, while still keeps similar coverage probabilities. In
the first case, most of the uncertainty in either method comes from the input data, so the CIs they generate
exhibit similar variation. In the second case, the input data is fixed, and hence the fluctuations of the CIs are
solely due to the resampling and the stochastic noises. Table 3 shows that the EL method gives more stable
CIs than the bootstrap, meaning that the EL is less vulnerable to these noises. This can be attributed to the
fact that EL is an optimization-based method and hence does not succumb to the additional resampling
noise introduced in the bootstrap.

Table 2: EL method versus bootstrap, 100 confidence intervals for 100 samples.

Bootstrap EL method
B = 1000,N = 500 B = 500,N = 1000 ε = 0.0057,Re = 500

Run time per CI(seconds) 17.4 17.4 18.1
Coverage probability estimate 0.90 0.94 0.93
95% CI for coverage probability [0.841,0.959] [0.893,0.987] [0.880,0.980]
Mean CI length 0.595 0.606 0.536
Standard deviation of CI length 0.094 0.086 0.080
Mean lower limit 0.166 0.155 0.196
Standard deviation of lower limit 0.121 0.093 0.105
Mean upper limit 0.761 0.760 0.733
Standard deviation of upper limit 0.157 0.142 0.133
# replications of h per CI 5×105 5×105 3.3×104

Table 3: EL method versus bootstrap, 50 replications of confidence intervals for a single sample.

Bootstrap,B = 500,N = 1000 EL,ε = 0.0064,Re = 2×105

Run time per CI(seconds) 17.2 18.9
Standard deviation of CI length 0.0233 0.0053
Standard deviation of lower limit 0.0106 0.0038
Standard deviation of upper limit 0.0213 0.0030
# replications of h per CI 5×105 4.3×105

5 CONCLUSION

We have proposed an optimization-based method to quantify nonparametric input uncertainty for simulation
performance measures. The method computes CIs that account for input errors by positing a pair of
optimizations subject to a weighted average of Burg-entropy divergence constraints on the collection of
empirical input models. We have argued the statistical accuracy of these optimizations via the EL method.
We have also investigated an MDSA algorithm to locally solve the optimizations, and compared its numerical
performances with bootstrap resampling. In future work, we will investigate the generalization of this
approach to other types of performance measures, and more efficient algorithms to solve the involved class
of optimizations.
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