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ABSTRACT

We propose a computing budget allocation scheme for feasibility determination in a stochastic setting. More
formally, we propose a Bayesian approach to determine whether a system belongs to a given set based on
performance measures estimated through Monte Carlo simulation. We introduce two adaptive approaches
in the sense that the computational budget is allocated dynamically based on the samples obtained thus far.
The first approach determines the number of additional samples required so that the posterior probability
that a system’s mean performance is correctly classified is at least 1−δ in expectation, while the second
approach determines the number of additional samples so that the posterior probability that the system
mean lies inside or outside of the feasible region is at least 1−δ with a desired probability. Preliminary
numerical experiments are reported.

1 INTRODUCTION

We consider r systems, each with unknown performance measure µ1, . . . ,µr ∈ Rc. We assume a normal
prior structure, whereby the prior of each µi, i = 1, . . . ,r, is normal, and the analyst can draw samples
Yi,1,Yi,2, . . . , that are normally distributed around µi. Given a set Γ⊆ Rc, system i is said to be in Γ if the
posterior probability that µi (given the samples Yi,1, . . . ,Yi,ni) is in Γ is larger than some threshold 1−δ ,
and not in Γ if the posterior probability that µi is not in Γ is at least 1−δ . The goal is to allocate a budget
of N total simulation replications in order to classify as many systems as possible.

An interesting problem in its own right, feasibility determination has recently attracted much attention
within the context of ranking and selection (R&S) in the presence of stochastic constraints. Traditionally,
the overwhelming majority of the R&S research focuses on a single unconstrained performance measure.
To the best of our knowledge, Santner and Tamhane (1984) were the first authors to propose a two-stage
procedure with a constraint on variance. In a setting where R&S is based on a primary performance measure
subject to the feasibility of a (possibly correlated) secondary performance measure, Andradottir, Goldsman,
and Kim (2005) and Andradottir and Kim (2010) propose a two-phase approach whereby phase I identifies
feasible systems while phase II selects the best one among them. With the objective of accelerating the
first phase, Batur and Kim (2010) have introduced procedures for finding a set of feasible or near-feasible
systems in the presence of orthant constraints. Under the assumption of normality, Lee et al. (2012) have
extended the OCBA approach to the selection of the best design under stochastic constraints. Hunter and
Pasupathy (2012) have addressed the problem of selecting an optimal system in the presence of stochastic
constraints using large deviations theory under the assumption that the underlying distributional family
of the simulation estimator is known or assumed. Szechtman and Yücesan (2008) relax this assumption
by estimating the large deviations rate function on the fly. Pasupathy et al. (2014) also offer a tractable
instance of a bi-level optimization problem to solve the constrained R&S problems efficiently.
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Another approach is to maximize the number of correctly classified systems given a budget constraint.
However, this problem is intractable even in the simple case when Γ is defined by linear inequalities (Powell
and Ryzhov (2012)). An alternative approach proposed here is a class of heuristics for allocating a budget
of N replications to sample from the r systems in such a way that, any system that is classified as in Γ or
not in Γ, is classified with a user-specified level of confidence, 1−δ , using an adaptive budget allocation
algorithm, which can be outlined as follows:

Step 0. Perform some initial number of simulation replications, ni, for each system i and
compute the posterior distribution for µi.

Step 1. For each system i that has not yet been classified, use the estimates from the
simulations to decide whether this system can be declared as in Γ or not in Γ with
confidence 1−δ . If so, eliminate this system from further budget considerations.

Step 2. If the budget is depleted, stop the algorithm after classifying any remaining un-
classified system, noting that these systems are not classified at the desired level
of confidence.

Step 3. For each unclassified system i, decide how many additional simulation replications,
mi, would be required to classify it. Decide which systems to sample from, and
return to Step 1.

The specific algorithms proposed here are based on a Bayesian approach, which requires a prior µi ∼
N(µi,0,Σi,0), where µi,0 ∈ Rc and Σi,0 is a (c×c) diagonal covariance matrix with its j’th diagonal element
equal to σ2

i, j,0; the independence assumption will be subsequently relaxed. Furthermore, using simulation,
assume that we can draw i.i.d. samples Yi,1,Yi,2, . . . from N(µi,Σi), where Σi is a diagonal matrix with
diagonal elements σ2

i,1, . . . ,σ
2
i,c. In settings where variances are known, we have that, after ni samples are

drawn from system i, µi, j|Yi, j,1,Yi, j,2, . . . ,Yi, j,ni also is normally distributed.
Using the posterior distribution, we introduce two adaptive methods through which, in Step 3, the

computational budget is allocated dynamically based on the samples obtained thus far. The first approach
(introduced in Section 3) determines the number of additional samples required so that the posterior
probability that a system’s mean performance is correctly classified to be inside or outside of Γ is at least
1-δ , in expectation. The second approach (introduced in Section 5) determines the number of additional
samples so that the posterior probability that the system mean lies inside or outside of Γ is at least 1−δ

with probability 1−η , for 0 < η < 1. In either procedure, the system that requires the fewest additional
samples for classification is selected for sampling. Preliminary numerical illustrations are presented for
both approaches.

2 THE FRAMEWORK

Let Γ = {y ∈ Rc : y≤ b}, where b ∈ Rc. Using the constraint structure, we get for system i that

P(µi ∈ Γ|Yi,1, . . . ,Yi,ni) = P(∩c
j=1µi, j ≤ b j|Yi,1, . . . ,Yi,ni)≤ min

j=1,...,c
P(µi, j ≤ b j|Yi, j,1, . . . ,Yi, j,ni),

and

P(µi 6∈ Γ|Yi,1, . . . ,Yi,ni) = P(∪c
j=1µ j > b j|Yi,1, . . . ,Yi,ni)

≤ c max
j=1,...,c

P(µi, j > b j|Yi, j,1, . . . ,Yi, j,ni)

= c(1− min
j=1,...,c

P(µi, j ≤ b j|Yi, j,1, . . . ,Yi, j,ni)).

For some δ ∈ (0,1/2), we declare system i not in Γ if P(µi ∈ Γ|Yi,1, . . . ,Yi,ni)≤ δ and declare the system
in Γ if P(µi 6∈ Γ|Yi,1, . . . ,Yi,ni) ≤ δ ; otherwise, we continue sampling the system. From the equations
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above, we declare system i not in Γ if min j P(µi, j ≤ b j|Yi, j,1, . . . ,Yi, j,ni) ≤ δ , declare the system in Γ if
min j P(µi, j ≤ b j|Yi, j,1, . . . ,Yi, j,ni)≥ 1−δ/c, or continue sampling if δ < min j P(µi, j ≤ b j|Yi, j,1, . . . ,Yi, j,ni)<
1−δ/c. Remark that δ ∈ (0,1/2) ensures that δ < 1−δ/c for c≥ 1. The upper bound can be made less
conservative by using the bound P(∪ jµi, j > b j|Yi,1, . . . ,Yi,ni) ≤ ∑

c
j=1 P(µi, j > b j|Yi, j,1, . . . ,Yi, j,ni), but this

makes the developments of Sections 3 and 5 less tractable. If follows from these developments that each
system will be correctly classified with confidence 1−δ .

A benefit of this procedure is that it does not follow a “worst case” configuration approach; instead
the constraint that makes it most likely to make a misclassification dictates when the analyst can stop
sampling. Other performance measures, such as maximizing the probability of classifying k systems, for
k ∈ {1, . . . ,r}, also are of interest and will be treated elsewhere.

In Step 3 of our adaptive budget allocation algorithm, a greedy type of policy selects to sample from
the system that increases the most the probability of classification, among those that remain unclassified;
i.e., that pushes min j P(µi, j ≤ b j|Yi, j,1, . . . ,Yi, j,ni+m) the most to either exit threshold after drawing m
extra samples, among the systems with δ < min j P(µi, j ≤ b j|Yi, j,1, . . . ,Yi, j,ni) < 1− δ/c. Since P(µi, j ≤
b j|Yi, j,1, . . . ,Yi, j,ni+m) is random given the samples Yi, j,1, . . . ,Yi, j,ni , we present two approaches, one dealing
with its mean (in Sections 3 and 4) and another with a percentile (in Sections 5 and 6).

3 STEP 3: NUMBER OF SAMPLES TO CLASSIFY A SYSTEM ON AVERAGE

In order to understand how P(µ j ≤ b j|Yj,1, . . . ,Yj,n) changes for each constraint j after drawing a new
sample for a given system, we develop an expression for EYj,n+1|Y j,1,...,Y j,n [P(µ j ≤ b j|Yj,1, . . . ,Yj,n,Yj,n+1)]. In
this and the next sections, we consider an arbitrary system, and drop the i index to simplify the notation.

Recall that there is a prior µ j ∼ N(µ j,0,σ
2
j,0) and that the samples Yj,1,Yj,2, . . . , conditional on µ j, are

distributed as N(µ j,σ
2
j ). It is well known (see Gelman et al. (2013)), that, given n+1 observations, the

posterior mean µ j,n+1 is distributed as

µ j,n+1|Yj,1, . . . ,Yj,n,Yj,n+1 ∼ N

 µ j,0

σ2
j,0
+

nȲj(n)+Y j,n+1

σ2
j

1/σ2
j,0 +(n+1)/σ2

j
,

1
1/σ2

j,0 +(n+1)/σ2
j

 ,

and Yj,n+1|Yj,1, . . . ,Yj,n ∼ N(α j,n,β
2
j,n), with

α j,n =
µ j,0/σ2

j,0 +nȲj(n)/σ2
j

1/σ2
j,0 +n/σ2

j
and β

2
j,n = σ

2
j +

1
1/σ2

j,0 +n/σ2
j
. (1)

Then,

EY j,n+1|Yj,1,...,Yj,n [P(µ j ≤ b j|Yj,1, . . . ,Yj,n,Yj,n+1)]

=
∫

P(µ j ≤ b j|Yj,1, . . . ,Yj,n,Yj,n+1)× p(Yj,n+1|Yj,1, . . . ,Yj,n)

= EZ

Φ


b j−

µ j,0/σ2
j,0 +

nȲ j(n)+α j,n+β j,nZ
σ2

j

1/σ2
j,0 +(n+1)/σ2

j

(1/σ
2
j,0 +(n+1)/σ

2
j )

1/2




= EZ

[
Φ

((
b j−µ j,0

σ2
j,0

+
(n+1)b j−nȲj(n)−α j,n−β j,nZ

σ2
j

)
1

(1/σ2
j,0 +(n+1)/σ2

j )
1/2

)]
(2)

= Φ

 b j−µ j,0

σ2
j,0

+
(n+1)b j−nȲ j(n)−α j,n

σ2
j(

1/σ2
j,0 +(n+1)/σ2

j +β 2
j,n/σ4

j

)1/2

 , (3)
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where Φ(·) is the cdf of Z ∼ N(0,1).

The same approach applies if the analyst adds m new samples Yj,n+1, . . . ,Yj,n+m, resulting in

EYj,n+1,...,Yj,n+m|Y j,1,...,Y j,n [P(µ j ≤ b j|Yj,1, . . . ,Yj,n,Yj,n+1, . . . ,Yj,n+m)]

= Φ

 b j−µ j,0

σ2
j,0

+
(n+m)b j−nȲ j(n)−mα j,n

σ2
j(

1/σ2
j,0 +(n+m)σ2

j +mβ 2
j,n/σ4

j

)1/2

 . (4)

If the system is unclassified after n samples, the analyst finds the smallest number of samples m such
that

min
j

Φ

 b j−µ j,0

σ2
j,0

+
(n+m)b j−nȲj(n)−mα j,n

σ2
j(

1/σ2
j,0 +(n+m)σ2

j +mβ 2
j,n/σ4

j

)1/2

≤ δ

or

min
j

Φ

 b j−µ j,0

σ2
j,0

+
(n+m)b j−nȲj(n)−mα j,n

σ2
j(

1/σ2
j,0 +(n+m)σ2

j +mβ 2
j,n/σ4

j

)1/2

≥ 1−δ/c.

The interpretation is that m is the number of samples required until the system is classified, on average.
A greedy algorithm selects the system with the smallest m to sample from. Starting from somewhere in
(δ ,1−δ/c), the expression inside the parenthesis of (4) is of order

√
m, and thus goes to ±∞ as m gets

large. Hence, it must hit Φ−1(1− δ/c) or Φ−1(δ ) for some m > 0. Solving for m leads to a quadratic
equation of the form

(
b j−α j,n

σ2
j

)2

︸ ︷︷ ︸
A j

m2 +

[
2

(
b j−ν j,n

σ2
j

)(
n(b j− Ȳj(n))

σ2
j

+
b j−µ j,0

σ2
j,0

)
−Φ

−1(·)2× (σ2
j +β

2
j,n/σ

4
j )

]
︸ ︷︷ ︸

B j(·)

m

+

(
n(b j− Ȳj(n))

σ2
j

+
b j−µ j,0

σ2
j,0

)2

−Φ
−1(·)2

(
1

σ2
j,0

+nσ
2
j

)
︸ ︷︷ ︸

C j(·)

= 0, (5)

where · equals δ or 1−δ/c. Let m j(·) be the smallest positive root of (5), with m j(·) = ∞ if the root is not
real (i.e., B2

j(·)< 4A jC j(·)). Hence, m j(δ ) is the number of additional samples required for constraint j to
exit through δ , and m j(1−δ/c) is the number of extra samples required for constraint j to exit through
1−δ/c. Let

m =

{
min j{m j(δ )} if m j(δ )< m j(1−δ/c)≤ ∞ for some j,
max j{m j(1−δ/c)} otherwise.

Thus, in the top case m is the number of additional samples required to have EY j,n+1,...,Yj,n+m|Y j,1,...,Y j,n [P(µ j ≤
b j|Yj,1, . . . ,Yj,n,Yj,n+1, . . . ,Yj,n+m)] = δ for at least one constraint j, while in the bottom case m is the number
of extra samples to have EYj,n+1,...,Yj,n+m|Yj,1,...,Yj,n [P(µ j ≤ b j|Yj,1, . . . ,Yj,n,Yj,n+1, . . . ,Yj,n+m)] = 1−δ/c for all
constraints j.
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4 NUMERICAL ILLUSTRATION I

We illustrate the first algorithm by determining whether the ten systems whose parameter values are given
in Table 1 are feasible, i.e., we wish to determine whether µ j ≤ γ for j = 1,2, . . . ,10. µ j is the (unknown)
mean system performance estimated through simulation and γ = 0 is the threshold of the feasible region.
We assume that µ j ∼N(µ j,0,σ

2
j,0), where µ j,0 and σ2

j,0 are the prior values of the system mean and variance,
respectively. We further assume that the true values of σ2

j are known.
Figure 1 shows the results of 30 independent experiments where the x-axis shows the values of the

prior as a percentage of the true mean, µ j. In particular, a value of 1 implies that the prior is exactly equal
to the true mean while a value of -1 implies that, while the value of the prior is equal to the true mean,
its sign is wrong. The y-axis reflects the proportion of the time the systems are classified correctly in our
experiments. As reflected by the figure, the algorithm’s ability to correctly classify the systems is largely
driven by the value of the prior for µ j. When the prior is close to the true value, the performance of the
algorithm is very good. On the other hand, when the prior is far from the true mean, its performance is
quite poor. This is indeed a well-known challenge (Shen and Wasserman (2001)) with various proposed
solutions (Kass and Wasserman (1996)).

Table 1: Parameter values of the systems.

System, j µ j σ2
j µ j,0 σ2

j,0

1 1 1 0.5 10
2 -1 1 -0.5 10
3 2 1 1.5 10
4 -2 1 -1.5 10
5 3 1 2.5 10
6 -3 1 -2.5 10
7 5 1 5.5 10
8 -5 1 -5.5 10
9 10 1 9.0 10
10 -10 1 -9.0 10

5 STEP 3: NUMBER OF SAMPLES TO CLASSIFY A SYSTEM WITH PROBABILITY 1−η

The approach of Section 3 finds the number of samples required so that the posterior probability that the
system mean lies inside or outside of Γ is at least 1−δ , on average. An alternative approach is to determine
the number of samples so that the posterior probability that the system mean lies inside or outside of Γ is
at least 1−δ with (say) probability 1−η , for 0 < η < 1. That is, starting from

δ < P(µ j < b j|Yj,1, . . . ,Yj,n)< 1−δ/c,

the problem is to find the number of additional samples m≥ 1 such that

PYj,n+1,...,Y j,n+m|Yj,1,...,Yj,n((min
j

P(µ j < b j|Yj,1, . . . ,Yj,n+m)≤ δ )∪(min
j

P(µ j < b j|Yj,1, . . . ,Yj,n+m)≥ 1−δ/c))

≥ 1−η , (6)

so that a system is classified with probability 1−η after drawing m new samples. As before, if after
drawing the m new samples min j P(µ j < b j|Yj,1, . . . ,Yj,n+m)≤ δ then the system is declared not in Γ, and
if min j P(µ j < b j|Yj,1, . . . ,Yj,n+m)≥ 1−δ/c then the system is declared in Γ.
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Figure 1: Correct Classification of Alternative Systems.

To wit, from (2) we have P(µ j < b j|Yj,1, . . . ,Yj,n+1)≤ δ if and only if

Φ

((
b j−µ j,0

σ2
j,0

+
(n+1)b j−nȲj(n)−α j,n−β j,nZ

σ2
j

)
1

(1/σ2
j,0 +(n+1)/σ2

j )
1/2

)
≤ δ

⇐⇒
b j−µ j,0

σ2
j,0

+
(n+1)b j−nȲj(n)−α j,n−β j,nZ

σ2
j

≤Φ
−1(δ )(σ2

j,0 +(n+1)/σ
2
j )

1/2,

where Z ∼ N(0,1), and α j,n and β j,n are as in (1). Likewise, P(µ j < b j|Yj,1, . . . ,Yj,n+1)≥ 1−δ/c if and
only if

b j−µ j,0

σ2
j,0

+
(n+1)b j−nȲj(n)−α j,n−β j,nZ

σ2
j

≥Φ
−1(1−δ/c)(σ2

j,0 +(n+1)/σ
2
j )

1/2.

Hence

PYj,n+1|Yj,1,...,Yj,n(min
j
(P(µ j < b j|Yj,1, . . . ,Yj,n+1)≤ δ )∪ (min

j
P(µ j < b j|Yj,1, . . . ,Yj,n+1)≥ 1−δ/c))

= 1−Φ

(
min

j

σ2
j

β j,n

(
−Φ

−1(δ )(σ2
j,0 +(n+1)/σ

2
j )

1/2 +
b j−µ j,0

σ2
j,0

+
(n+1)b j−nȲj(n)−α j,n

σ2
j

))

+Φ

(
min

j

σ2
j

β j,n

(
−Φ

−1(1−δ/c)(σ2
j,0 +(n+1)/σ

2
j )

1/2 +
b j−µ j,0

σ2
j,0

+
(n+1)b j−nȲj(n)−α j,n

σ2
j

))
. (7)
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Using (7), Eq. (6) is the same as

Φ

(
min

j

σ2
j

mβ j,n

(
−Φ

−1(δ )(σ2
j,0 +(n+m)/σ

2
j )

1/2 +
b j−µ j,0

σ2
j,0

+
(n+m)b j−nȲj(n)−mα j,n

σ2
j

))

−Φ

(
min

j

σ2
j

mβ j,n

(
−Φ

−1(1−δ/c)(σ2
j,0 +(n+m)/σ

2
j )

1/2 +
b j−µ j,0

σ2
j,0

+
(n+m)b j−nȲj(n)−mα j,n

σ2
j

))
≤ η . (8)

The left-hand side in (8) approaches zero as m increases because the dominant term inside each Φ(·) is
min j(b j−α j,n)/β j,n. Hence, there is a positive solution of

Φ

(
min

j

σ2
j

mβ j,n

(
Φ
−1(1−δ )(σ2

j,0 +(n+m)/σ
2
j )

1/2 +
b j−µ j,0

σ2
j,0

+
(n+m)b j−nȲj(n)−mα j,n

σ2
j

))

−Φ

(
min

j

σ2
j

mβ j,n

(
Φ
−1(δ/c)(σ2

j,0 +(n+m)/σ
2
j )

1/2 +
b j−µ j,0

σ2
j,0

+
(n+m)b j−nȲj(n)−mα j,n

σ2
j

))
= η ,

which can be found numerically for m.

6 NUMERICAL ILLUSTRATION II

We illustrate the second algorithm by determining whether the ten systems whose parameter values are
given in Table 2 are feasible, i.e., we wish to determine whether µ j ≤ γ for j = 1,2, . . . ,10. µ j ∈ R2 is the
(unknown) mean system performance estimated through simulation and γ = (0,0) is the threshold of the
feasible region. We assume that µ j ∼ N(µ j,0,σ

2
j,0), where µ j,0 and σ2

j,0 are the prior values of the system
mean and variance, respectively.

In this case, the algorithm’s ability to correctly classify the systems is largely driven by the value of
the prior for σ j. Figure 2 shows the results of 100 independent experiments. Panels (a) and (b) show that
the required sample size to achieve a desired probability of correct classification (η = 0.90) increases as
the system variance increases. Panel (c) further shows that as the prior values for the system variance
increase, it becomes increasingly costly, in terms of the required number of samples, to achieve the desired
probability of correct classification.

Table 2: Parameter values of the systems.

System, j µ j,0 σ2
j σ2

j,0

1 -0.11,-0.12 10,20 3,4
2 -0.23,-0.24 10,20 3,4
3 -0.35,-0.35 10,20 3,4
4 0.41,0.42 10,20 3,4
5 0.50,0.50 10,20 3,4
6 -1.00,-1.00 10,20 3,4
7 1.00,1.00 10,20 3,4
8 -2.00,-2.00 10,20 3,4
9 -0.75,-0.75 10,20 3,4
10 0.75,0.85 10,20 3,4
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Figure 2: Probability of Correct Classification of Alternative Systems.

7 CONCLUDING COMMENTS

We consider a Bayesian approach to determine whether a system belongs to a given set Γ⊆ Rc based on
performance measures estimated through Monte Carlo simulation. In particular, Γ is assumed to be defined
by linear constraints that form an orthant. Within this setting, we introduce two adaptive procedures. The
first approach determines the number of additional samples required so that the posterior probability that a
system’s mean performance is correctly classified to be inside or outside of Γ is at least 1-δ , in expectation.
The second method determines the number of additional samples so that the posterior probability that the
system mean lies inside or outside of Γ is at least 1−δ with probability 1−η , for 0 < η < 1. In either
approach, the system that requires the fewest additional samples for classification is selected for sampling.
Preliminary numerical experiments show that the algorithms do not converge rapidly if the prior mean is
far away from the true (unknown) mean. In other words, the number of iterations needed to get a certain
probability of correct classification grows with the distance of the prior sample to the prior mean. Current
work is focused on formally characterizing this growth rate, and at extending the proposed approaches to
settings with unknown variances.
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ENVER YÜCESAN is a Professor of Operations Management at INSEAD. He holds a Ph.D. in Operations
Research from Cornell University. His research interests include stochastic simulation optimization, with
applications in supply chain and risk management. His email address is enver.yucesan@insead.edu.

790


