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ABSTRACT

Ranking and Selection has acquired an important role in the Simulation-Optimization field, where the
different alternatives can be evaluated by discrete event simulation (DES). Black box approaches have
dominated the literature by interpreting the DES as an oracle providing i.i.d. observations. Another relevant
family of algorithms, instead, runs each simulator once and observes time series. This paper focuses on
such a method, Time Dilation with Optimal Computing Budget Allocation (TD-OCBA), recently developed
by the authors. One critical aspect of TD-OCBA is estimating the response given correlated observations.
In this paper, we are specifically concerned with the estimator of the variance of the response which plays
a crucial role in simulation budget allocation. We propose an empirical analysis over the performance
impact on TD-OCBA of several variance estimators involved in resource allocation. Their performances
are discussed in the typical probability of correct selection (PCS) framework.

1 INTRODUCTION

In this paper, we are interested in the sequential stochastic selection methods (S3M) which optimize the
Probability of Correct Selection (PCS). We assume that the number of candidate configurations is finite and
the one with best expected performance is to be identified. S3M has been widely applied as an optimization
technique in presence of few number of discrete possible solutions in a stochastic environment.
In many applications, discrete event simulation (DES) models, as a major tool to provide prediction of
system performance, are used as oracle in R&S techniques to evaluate the system behaviour. DES models
are utilized mainly in two different ways: the output is taken either while the simulation is running a single
long replication, or from multiple shorter replications once they are completed.
The issues posed by these two families of algorithms are very different. In a multiple replication case
the length of the replication and the number of replications is a relevant decision, whereas in the single
run case, we need to consider the correlation between observation. In fact, single–run simulation outputs
a time series of realizations of performance indicator; while multiple replications provide a sequence of
independent realizations of the output. As a result, the output analysis for these two families of algorithms
is remarkably different (Schruben 1983).

S3Ms algorithms based on independent multiple replications make use of simulation allocation rules
in order to determine the number of simulations to allocate to each of the systems. Optimal Computing
Budget Allocation is one of the most known procedures for budget allocation (Chen and Lee 2010). OCBA
optimizes the probability of correct selection (i.e., the probability that the system estimated as the best
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at the end of the procedure is the true best system) by allocating different number of replications to the
candidate solutions. Similar to most of the developed S3M procedures, OCBA treats the simulator as a
black box not to be accessed while it is running.

Time Dilation (TD) falls in the family of single run S3Ms. Specifically, multiple configurations are
concurrently simulated in a unique run and time series observations are used to allocate computational
resource to the different candidates (Schruben 1997). In its original version, TD does not have a fixed
rule of budget allocation which is instead taylored to the specific applications. Realizing the potential of
TD, authors recently developed TD-OCBA, which integrates TD and OCBA. As suggested in Pedrielli,
Zhu, and Lee (2015), the output from a single–run simulation does not necessarily follow i.i.d. assumption
required by OCBA. If a sample variance estimator is used for a non i.i.d. series, the bias will be significant
and the OCBA rule will be severely impacted by the variance estimation. Hence, the variance estimator
used in TD-OCBA becomes critical for the overall performance.

The estimation of the variance from simulation output has received a remarkable attention in the
OR literature, for the purpose of point and confidence interval estimation. Goldsman and Nelson (2006)
and the related literature provides estimators for correlated output such as non-overlapping/overlapping
Batched Means, Standardized Time Series Area Estimators, and Cramer-von Mises estimators. While these
estimators are asymptotically unbiased, we are interested in the behavior of the estimators given limited
output length when used for optimization purposes and not only for estimation.

In order to investigate these properties, in this paper we focus on the study of the variance estimators
and their influence on the TD-OCBA performance. Batch mean estimator, weighted area estimator and
weighted Cramer-von Mises estimators have been studied and the experimental results for their performance
in the typical PCS framework are shown and discussed.

The remainder of the paper is organized as follows: section 2 summarizes the main background of the
paper. Section 3 details the problem of interest. Candidate estimators’ performance are studied in section
4 for a theoretical case with known output distribution. Finally, section 5 closes the paper.

2 BACKGROUND

We would like to first introduce the notation used throughout the paper:

Table 1: Notations.

k total number of systems
T total budget, in number of replications(OCBA) or observations (TD-OCBA)
Ni budget assigned to system i
v, vi time scale, time scale for system i
σi standard deviation for system i
σ̂i standard deviation estimation for system i
m batch size
Bi total number of batches for system i
Yi, j jth observation from system i
Ȳi sample mean performance of system i, Ȳi = ∑

Ni
j=1Yi, j

Ȳi, j mean of jth batch of system i, 1
m ∑

m
l=1Yi,( j−1)m+l

Ȳi, j,l mean of first l observation in jth batch of system i, 1
l ∑

l
p=1Yi,( j−1)m+p

b index of best performing system
δb,i performance difference between system i and best performing system, Ȳb− Ȳi

Time Dilation grounds in the idea of redefining simulation experiments to include both the models and
the systems being simulated. As a result of this, the simulation experimental unit of effort is rethought
as real time, rather than discrete runs, batches, regenerative cycles, etc. (Schruben et al. 2003, Swisher
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et al. 2000). This has far–reaching implications. In an integrated simulation experiment, each point in the
experiment does not need to use the same units to measure the simulated time (say, hours or minutes), nor
do the time scales need to be constant (Schruben 2010, Schruben 2013).
Hence, systems that are performing better can have their simulated time scales contracted. The result is
that less simulation work is spent simulating the poorer performing systems; the better performing systems
are simulated longer during the same interval of real time. This general idea has been called time dilation
(Schruben 1997, Hyden et al. 2001, Hyden and Schruben 2000).
The clocks for design points that are performing relatively poorly can have their time scales dilated
(increased), decreasing the relative numbers of events that are executed for that design point. More effort
is spent simulating the winners than losers.

(1/λi) · vi [GTU ] = 1/λi [LTU ] (1)

Equation (1), formalizes the time–scale update. If 1/λi represents the inter–arrival time and the global
time unit (i.e., GTU) is [hours], we might want to move the time unit of a good system to minutes by
multiplying the inter–arrival by the conversion factor vi =

[LTU ]
[GTU ] , i.e., the time scale, with vi = 1/60 in this

example. By doing so, the simulator with associated time scale vi = 1/60 will execute events 60-times
faster than the candidates with associated time scale v j = 1. This is the basic idea of time dilation and
is the mechanism we exploit to differentiate computational budget among different solutions, instead of
choosing the number of replications. Mapping time–dilated performance back to global simulated time is
done simply by dividing each inter–event interval by the time–scale used simulating each point during that
interval.

Sequential techniques that change the probability of where to run the next simulation appear to be
well–suited for adaptation to the experimental unit of run time. In fact, the allocation ratio generated by a
simulation allocation rule can be used to modify the time scale assigned to a specific simulation experiment.
Optimal Computing Budget Allocation (OCBA) is one of the most successful techniques in the field of
stochastic assignment of simulation budget (Chen and Lee 2010). OCBA formulates the allocation decision
as a constrained maximization problem of the Probability of Correct Selection (PCS) subject to the total
budget limitation:

max
N1,...,Nk

PCS

s.t. N1 +N2 + ...+Nk = T.

Ni ∈ N, i = 1, ...,k.

(2)

where PCS is the probability that the observed best system is the system with best expected performance.
We can solve the aforementioned problem and derive the following allocation (Chen and Lee 2010):

Ni

N j
=

(
σi/δb,i

σ j/δb, j

)2

, i, j ∈ 1,2, ...,k,and i 6= j 6= b,

Nb = σb

√√√√ k

∑
i=1,i6=b

N2
i

σ2
i

(3)

In order to fully utilize advantages from both TD and OCBA, in Pedrielli, Zhu, and Lee (2015), we
employ the rule from OCBA to update the time scale in time-dilation. In order to do so, we need to compute
the time scale ratio instead of reasoning in terms of number of replications as in equation (3). If we refer
to αi as the ratio of computational budget allocated to system i, i.e., αi =

Ni
T , we can reformulate equation

(3) as:
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αi

α j
=

(
σi/δb,i

σ j/δb, j

)2

, i, j ∈ 1,2, ...,k,and i 6= j 6= b,

αb = σb

√√√√ k

∑
i=1,i 6=b

α2
i

σ2
i
,

k

∑
p=1

αp = 1.

(4)

and we put forward a more general single–run ordinal optimization procedure, TD-OCBA, integrating TD
and OCBA.
In order to implement TD-OCBA, each system is simulated according to a local clock and the overall
simulation has a shared clock (global clock). Initial events for all systems are scheduled at the same time.
And subsequent events will be scheduled to a common clock time stamp, by adding, timespan to wait
for next event in local clock times the time scale, to the current common clock time stamp. The overall
simulation always execute the event with earlier common clock time stamp. Update for the time scales
happens firstly when each of the candidates has generated at least one batch of output data. Then the update
will happen whenever there is a system that outputs m new observations. Finally the procedure will stop
when total number of observations for all systems reaches T . The system with best observed performance
will be selected. As previously highlighted, if a system is allocated a larger time scale vi, the time between
events will be increased (dilated) as well. As a result, being all systems subject to the same global time
clock, larger time scale configurations will be simulating less events given a fixed simulation interval.

Algorithm 1: Time Dilated Optimization & OCBA (TD-OCBA).

Initialization: Set the total budget T (number of observations);
l = 0,νi← ν0,di = 0;
while ∑

k
i=1 Ni ≤ T do

for i = 1, ...,k (parallel loop) do
Observe the sequence {Yi,dim+1,Yi,dim+2, ...,Yi,dim+m} ;
Update: Ȳi = ∑

dim+m
j=1

Yi, j
dim+m ;

σ̂i←
√

variance estimation for system i ;
Ni← Ni +m;
di← di +1;

end
Choose b s.t. b ∈ argmini=1,...,k Ȳi;
vi← αb/αi, i = 1, ...,k, determined in (4);

end

This procedure has been shown to have better performance than original TD and it can be applied to
more general problems. At this point, we want to further develop the TD-OCBA procedure to improve the
efficiency.

In order for the time scales to be correctly assigned, performance of the variance estimation is critical.
For single–run simulations, the assumption of i.i.d. on the observations is not valid for most cases. Thus
variance estimators that do not assume correlation structure are more suitable to be employed in the
TD-OCBA procedure. To the best of authors’ knowledge, Conway (1963) first concerned about variance
estimation for simulation and since then it has been an interest field of statistical analysis. With techniques
of batching and overlapping, several estimators have been developed in Schmeiser (1982), Goldsman et al.
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Figure 1: Flow chart for Algorithm 1.

(1990), Goldsman et al. (1999), Alexopoulos et al. (2007). While the asymptotic consistency of these
estimators has been well studied, yet what affect the performance of TD-OCBA is the accuracy of the
estimator. Intuitively, given same budget, TD-OCBA running with estimator of more accurate estimation
should produce higher PCS. We are interested in this argument and thus this is the focus for this study.

3 VARIANCE ESTIMATION IN SINGLE RUN SIMULATION OPTIMIZATION

The interest of further studying the TD-OCBA lies in improving convergence rate of PCS. It is realized
that this problem can be decomposed into 2 layers. The first layer problem is the allocation rule. We have
not confirmed that use of original OCBA ratio guarantees optimized allocation for PCS. The optimization
can be formulated as:

max
α1,...,αk

PCS

s.t. α1 +α2 + ...+αk = 1.

αi > 0, i = 1, ...,k.

(5)

The second layer problem is concerned with the estimation for the variance associated to the simulation
output since we do not know the correlation structure of the time series output generated by the simulator.
Arguably, the more accurate the estimator is, the closer the time scale allocation is to the asymptotic optimal
allocation.
While we need to use an asymptotically consistent indicator, we are also interested in the variance associated
to this estimator. The first is a well studied problem, and several consistent estimators have been proposed.
Alexopoulos et al. (2007) notes 3 aspects to assess the performance of variance estimator, namely: (1)
bias, (2) variance, and (3) MSE (sum of variance and the square of bias).
The main control parameters to estimate the variance from a series of observations are:

• B indicating the number of batches;
• m indicating the batch size;
• ρ indicating the overlapping ratio, i.e., the portion of observations from the previous batch, which

are re-used to form current batch;
• E = {1,2, . . . ,5} the estimator type, chosen among the available estimators and applied to all

systems.

Now the second layer problem becomes, assigned the budget from level one, how to set the aforementioned
parameters in order to minimize the estimated MSE associated with the output, namely, for each system
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i = 1, . . . ,k:

Pi : min
Bi,mi,ρi,Ei

ˆMSE
(
σ̂

2
i
)

(6)

If the bias has been widely analyzed, the variance of such indicators has not been fully studied, however
it impacts on the optimization performance. Indeed, given the limited budget of observations, TD-OCBA
is sensitive to the accuracy of the estimators.

In this paper we investigate the effect of the bias and the variance of the estimators on the performance
of TD-OCBA, which represent our second layer problem.

In this work. we choose estimators with known bias and variance are valuable for the assessment. In
the search in literature, three families of estimators, namely batch mean estimator, weighted area estimator
and CvM estimator and their overlapped form appear to be of particular interest.

3.1 Batch Mean Estimator

Non–overlapping Batch Mean (NBM) estimator was first discussed in Schmeiser (1982). Instead of using
the standard variance estimator, the author groups observations into batches and estimates the variance
of the sequence using the variances of the sample average computed for each batch. For each system
configuration i, the estimator takes the following form:

σ̂
2
i =

m
Bi−1

Bi

∑
k=1

(Ȳi,k−
1
Bi

Bi

∑
l=1

Ȳi,l)
2. (7)

This estimator represents the intuitive extension of the sample variance were the i.i.d. observations are
replaced by the means of the different batches and the sample average is still the average of all the
observations. We will refer to match mean estimator as N .

3.2 Standardized Time Series

Schruben (1983) proposes the concept of standardized time series. For each system, the standardization
involves converting the time series Yi,1, ...,Yi,n into B batches with m outputs (Yi,1, ...,Yi,m),(Yi,m+1, ...,Yi,2m),...,
(Yi,(Bi−1)m+1, ...,Yi,Bim) and performing the following transformation:

Ti, j(t)≡
bmtc(Ȳi, j,bmtc− Ȳi, j,m)

σ
√

m
(8)

for 0≤ t ≤ 1 and j = 1,2, ...,Bi, where

Ȳi, j,l ≡
1
l

l

∑
g=1

Yi,( j−1)m+g

Based on this revolutionary idea, several estimators for the variance of time series observations have been
proposed. We focus on two particular estimators: (1) the Weighted Area Estimator in section 3.3 and the
Batched Cramer Von Mises Estimator presented in section 3.4.

3.3 Weighted Area Estimator

Goldsman et al. (1990) introduced the Batched area estimator (BAE) with the following form:

σ̂
2
i =

1
Bi

Bi

∑
j=1

{
1
m

m

∑
h=1

(
f
(

h
m

)
h√
m

(
1
h

h

∑
l=1

Yi,( j−1)m+l−
1
m

m

∑
l=1

Yi,( j−1)m+l

))}2

. (9)
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where f is the weighting function that satisfies: f (t) is continuous on interval [0,1] and normalized so that
Var(

∫ 1
0 f (t)σB0(t)dt) = 1. B0 is a Brownian bridge process on [0,1].

We will refer to BAE taking f (t) =
√

12 as A ( f0).

3.4 CvM Estimator

Batched CvM estimator(CvM) has been introduced in Goldsman, Kang, and Seila (1999). It takes the
following form:

σ̂
2
i =

1
Bi

Bi

∑
j=1

 1
m

m

∑
h=1

g
(

h
m

)(
h√
m

(
1
h

h

∑
l=1

Yi,( j−1)m+l−
1
m

m

∑
l=1

Yi,( j−1)m+l

))2
 . (10)

where g is the weighting function that satisfies: g has a continuous and bounded second derivative on [0,1]
and is normalized so that E[

∫ 1
0 g(t)σ2B2

0(t)dt] = σ2.
We will refer to CvM taking g(t) = 6 as C (g0).

3.5 Overlapping Estimators

As the name suggests, these estimators involve overlapping of the batches. For non-overlapping estimators,
batches are formed by each m new observations. In Alexopoulos et al. (2007), batches for overlapping
estimators consist of m− 1 observations from the most recent batch and only 1 observation is added to
form a new batch.

In the TD-OCBA approach, such an update would require an excessive computational load. Therefore,
we assume that the overlapping is determined by a ratio that the user (or the algorithm itself) can set
statically or dynamically.
Hence, we introduce the overlapping ratio parameter o. Differently from the approach proposed in
Alexopoulos et al. (2007), a new batch is formed from bomc new outputs and d(1− o)me from the last
batch. The overlapping ratio proposed in Alexopoulos et al. (2007) is m−1

m .
All the estimators presented in the previous sections can be applied to overlapped batches without any

modification in the formulation.
While all the presented estimators are asymptotically unbiased, their bias terms and variance terms

differ. Table 2 is taken from Alexopoulos et al. (2007). These estimators are chosen as they have exact
approximate bias and variance.

Table 2: Approximate asymptotic bias and variance for estimators.

Nonoverlapping (m/γ) Bias (b/σ4) Var Overlapping ratio = m−1
m (m/γ) Bias (b/σ4) Var

N 1 2 N 1 1.333
A ( f0) 3 2 A ( f0) 3 0.686
C (g0) 5 0.8 C (g0) 5 0.419

From Table 2, we can observe that for N , A ( f0) and C (g0), both approximated bias and variance are
provided. Hence they are chosen to be incorporated in the TD-OCBA procedure to check the procedure
performance (required budget) against (m/γ) Bias and (b/σ4) Var. The batch size m is also varied as we
are interested to see its effect on the budget.

4 NUMERICAL EXPERIMENTS & RESULTS

In this section, we use theoretical problems (i.e., problems for which we know the optimum as well as
the true variance of the output for each candidate solution) to test the performance of the estimators. In
particular, we generate two set of auto-regressive time series:
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s1: Yi,t+1 = ci +0.5Yi,t +N(0,3), where ci = i, i = 1, ...,10.

s2: Yi,t+1 = ci +0.5Yi,t +N(0,6), where ci = i, i = 1, ...,10.

where the first group is considered to have small noise and second to have large noise.
The time series with smallest asymptotic mean is to be selected. The performance of an estimators is

assessed by looking at the budget required to reach a fixed PCS level.
The statistic of the PCS is obtained out of 1000 macro-replications of the TD-OCBA algorithm. In the
experiments, we observed that additional computational time required for the time scale update computation
is negligible. This is particularly true when the simulation is significantly slow (i.e., the largest part of
the computational time is required by the simulator itself). Hence, we can empirically conclude that the
computation of estimator does not represent a computational burden in a realistic simulation optimization
problem (realistic in terms of computational effort required by the simulation).
In the results, the budget reported is the average of the observations required for each of the macro-
replications required to obtain a threshold PCS level. In the experiments we study the effect of the variance
estimators and the batch size as well as the overlapping ratio (refer to Problem (6)).

Tables 3 and 4 show the results of the relative experiments.

Table 3: Budget for PCS to reach 0.95 for series 1.

Nonoverlapping Overlapping ratio = 0.2 Overlapping ratio = 0.5 Overlapping ratio = 0.8
m N A ( f0) C (g0) N A ( f0) C (g0) N A ( f0) C (g0) N A ( f0) C (g0)

5 357.2 215.2 209.5 367.1 216.7 207.4 361.6 213.3 209.1 341.3 211.3 206.1∗

10 239.4 229.1 212.9 230.0 226.7 212.3 234.1 224.5 211.2 221.5 216.8 209.0+

20 278.6 296.3 278.9 277.2 292.5 278.4 281.5 291.7 275.7 281.6 284.4 274.2+

50 505.5 505.4 504.9 505.2 505.8 507.0 506.1 506.7 505.0 505.8 504.7+ 506.7

Table 4: Budget for PCS to reach 0.90 for series 2.

Nonoverlapping Overlapping ratio = 0.2 Overlapping ratio = 0.5 Overlapping ratio = 0.8
m N A ( f0) C (g0) N A ( f0) C (g0) N A ( f0) C (g0) N A ( f0) C (g0)

5 1670.5 783.4 590.1+ 2037.4 913.5 623.0 2983.2 985.0 664.1 2984.9 882.7 648.8
10 785.8 680.7 506.7 738.3 672.2 499.1 793.2 641.3 488.8∗ 836.3 593.9 490.8
20 587.6 631.2 513.0 560.8 633.2 505.0 595.6 602.3 501.7 603.9 565.4 498.0+

50 690.6 743.5 695.7 677.3+ 740.0 688.7 688.8 731.7 686.6 700.8 722.1 677.8

In Table 3 and 4, highlighted cell contains the best performer of the 3 estimators for the same batch size and
overlapping ratio. Non-overlapping can be inferred as having o = 0. + indicates the best performance in
one row, thus for same batch size, comparing both overlapping and non-overlapping ratio cases. ∗ denotes
the overall best performance both in the row and table, i.e., comparing against all the parameters.
Similar experiments have been conducted for the original TD-OCBA in (Pedrielli et al. 2015) that uses
the sample variance as estimator. In the original settings, the time scales are updated at each observation
and no batching is adopted. In this setup, the original algorithm required an average budget of 248.2
observations to achieve a PCS of 0.95 for the case of time series 1, and an average budget of 881.3 to
achieve a PCS level of 0.90 for the case of time series 2. It is noteworthy that, even though the original
algorithm has an updating frequency about 1 order of magnitude larger than the batch-based algorithm,
the original TD-OCBA with sample variance estimator is outperformed by TD-OCBA with C (g0) when
a proper batch size is chosen.

Further observations comparing the selected estimators can be drawn from the results.
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The first is that the budget to reach fixed PCS is indeed related to the variance estimator. It is found
that budget requirement varies by quite much using different estimator. From highlights and marks, it is
noticed that C (g0) performs better then N and A ( f0) in most cases.

The interesting part is that, according to the theoretical results presented in (Alexopoulos, Argon,
Goldsman, Tokol, and Wilson 2007), C (g0) has the largest Bias (m/γ) and the lowest variance ((b/σ4)).

In other words we observe a positive relationship between the required budget and the variance of the
indicator, whereas the bias does not seem to influence the performance.

By comparing the performance of overlapping and non-overlapping estimators, the overlapping version
performs better most of the times. The overlapping coefficient impacts TD-OCBA in two ways: (1) the
frequency at which the time scale is updated. From the description of the TD-OCBA procedure, it is known
that time scales gets updated as soon as one new batch is formed, which results in the change in variance
estimation. So for experiments using overlapping estimators, the time scale get updated more often; (2)
overlapping estimators have lower associated variance than their non-overlapping counterpart and this may
contribute to the difference in efficiency.

Lastly, the batch size is affecting the performance as well. The impact of the batch size can be well
understood as it does not only affect the number of batches for each estimator, but it contributes to affect the
frequency as which time scales are affected. Nevertheless, the budget to reach fixed PCS is not monotonic
with the batch size. Though the estimator converges to true variance given infinitely large batch size, larger
batch size results in less number of update of time scale for limited budget. In other words given finite
budget, we have to trade off the batch estimator precision with the number of batch observations that can
be obtained.

5 CONCLUTIONS & FUTURE WORK

Ranking and Selection has acquired an important role in the Simulation-Optimization field, where the
different alternatives can be evaluated by discrete event simulation (DES). In fact, black box approaches
have dominated the literature by interpreting the DES as an oracle providing i.i.d. observations.

Another relevant family of algorithms, instead, considers an oracle which produces time series ob-
servations as each simulator is ran only once (i.e., no multiple replicates are performed). In this paper,
we focus on a specific single run sequential stochastic selection method (S3M) recently developed by the
authors, Time Dilation with Optimal Computing Budget Allocation (TD–OCBA).

As a single run approach, one of the most critical aspects of TD–OCBA is to deal with the estimate of the
response given a series of correlated observations. In fact, in this paper, we derive a two-stage optimization
structure for the class of single-run R&S algorithms. In particular, at a first stage we choose how to allocate
the simulation budget to each candidate solution while at the second stage we want to minimize the MSE of
the variance estimator playing with the estimator type the batch size and the overlapping ratio. Due to the
difficulty in the estimation of the MSE, in this manuscript, we study the empirical performance of several
variance estimators, different batch sizes as well as overlapping ratios in order to enhance the TD-OCBA
procedure.

We propose an autoregressive process as case study and we observe a positive relationship between
the asymptotic variance of the estimators and the required budget to reach fixed PCS values.

Also, generally, the overlapped estimators perform better than the non-overlapping counterpart. This is
due to the fact that, given the same budget, more observations are available to the optimization procedure
and this results in a positive effect in the search algorithm.

The required budget is, instead, non-monotonic in the batch size m. This is due to the fact that if,
on the one hand larger batch size reduce the variance of the estimator, they also reduce the number of
observations available in the scope of the search procedure, thus giving issues to the optimization.

Current work is focusing on the formulation of the second stage problem in order to enhance the TD-
OCBA through an automated procedure that checks the MSE and returns a dynamic value for overlapping
ratio and batch size.
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Also, TD-OCBA opens to alternative first level problem formulation: since single-run procedures are
easier to control in terms of running time, whereas the number of observations produces in a certain interval
is typically a random variable. In such a setting, in addition to the probability of correct selection, we
would like to formulate the problem in the framework of regret due to the fact that we do not know how
many iterations the algorithm will produce in a specific run-time. As a result, we want to guarantee a good
solution at any point in time.
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