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ABSTRACT

We consider the resolution of the structured stochastic convex program: min E[ f̃ (x,ξ )]+E[g̃(y,ξ )] such
that Ax+By = b. To exploit problem structure and allow for developing distributed schemes, we propose an
inexact stochastic generalization in which the subproblems are solved inexactly via stochastic approximation
schemes. Based on this framework, we prove the following: (i) when the inexactness sequence satisfies
suitable summability properties, the proposed stochastic inexact ADMM (SI-ADMM) scheme produces a
sequence that converges to the unique solution almost surely; (ii) if the inexactness is driven to zero at a
polynomial (geometric) rate, the sequence converges to the unique solution in a mean-squared sense at a
prescribed polynomial (geometric) rate.

1 INTRODUCTION

In the context of large datasets, it has become increasingly important to process the data in a parallel
and decentralized fashion. Therefore, distributed optimization is often considered an option, and a simple
yet powerful algorithm of this kind is the alternating direction method of multipliers (ADMM). ADMM
schemes may be traced to mid-70s to the work by Glowinski and Marroco (1975) and subsequently Gabay
and Mercier (1976). It has grown immensely in popularity and has been utilized for resolving a host of
structured machine learning and image processing problems such as image recovery (Afonso, Bioucas-Dias,
and Figueiredo 2010), robust PCA (Lin, Chen, and Ma 2010), low-rank representation (Lin, Liu, and Su
2011); see Boyd, Parikh, Chu, Peleato, and Eckstein (2011) for a comprehensive review. Typically, ADMM
is applied towards structured deterministic convex optimization problems of the form:

min
x,y

f (x)+g(y)

subject to Ax+By = b,
(1)

We consider a stochastic generalization leading to a structured stochastic convex program:

min
x,y

E[ f̃ (x,ξ )]+E[g̃(y,ξ )]

subject to Ax+By = b,
(SOpt)

where ξ : Ω→Rd , f̃ : Rn×Rd→R, g̃ : Rm×Rd→R, A∈Rp×n, B∈Rp×m, b∈Rp, and (Ω,F ,P) denotes
the probability space. Furthermore, we assume that f̃ (.,ξ ) and g̃(.,ξ ) are convex in (.) for every ξ ∈ Ξ.

A rather popular approach for the solution of (SOpt) is by utilizing Monte-Carlo sampling schemes,
such as sample-average approximation (see Shapiro, Dentcheva, and Ruszczyński (2009)) or stochastic
approximation schemes (Robbins and Monro 1951). In fact, over the last decade, there has been significant
study of stochastic approximation schemes, particularly from the standpoint of the tuning of steplengths
(Nemirovski, Juditsky, Lan, and Shapiro (2009); Yousefian, Nedić, and Shanbhag (2012)), the resolution
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of stochastic variational inequality problems (Koshal, Nedić, and Shanbhag (2013)), amongst others. We
also note that recent work by Pasupathy et al. (2014) considers sequential sampling concerns, an issue that
assumes relevance in this paper. The present work considers addressing (SOpt) by adapting the existing
ADMM architecture to the stochastic setting, and is characterized by the following benefits: (1) ADMM
schemes display strong theoretical properties and computational performance in the resolution of structured
constrained optimization problems (see Boyd et al. (2011)); (2) this avenue allows for problem structure
to be exploited via distributed computation.

It is noteworthy that alternative stochastic generalizations of ADMM were studied by Wang and Banerjee
(2013); Ouyang, He, Tran, and Gray (2013). They considered the following problem:

min
x∈X ,y∈Y

{
Eξ [θ1(x,ξ )]+θ2(y) : Ax+By = b

}
.

This problem can be regarded as minimizing regularized expected risk function where E[θ1(x,ξ )] denotes
the expected loss function while θ2(y) represents the regularizer. In order to solve this problem, Wang and
Banerjee (2013) considered a scheme, referred to as online ADMM (or OADMM), in which Eξ [θ1(x,ξ )]
is substituted by the sampled function θ1(x,ξk) to compute the x update at the kth iterate. Ouyang, He,
Tran, and Gray (2013) extended this scheme to the inexact regime and showed that the convergence rates
in terms of sub-optimality and infeasibility are O(1/

√
T ) and O(1/T ) for convex and strongly convex

functions, respectively, where T denotes the iteration index.
The problem (SOpt) considered here can be viewed as a generalization of the problem considered

by Wang and Banerjee (2013) in the sense that θ1 and θ2 are both expected-value functions. To solve
this (SOpt), we extend a generalized ADMM scheme proposed by Deng and Yin (2012). Their scheme
was shown to generate a sequence of iterates that converge at a linear rate on suitable strong convexity
assumptions. Notably, their scheme can be reduced to a prox-linear ADMM (cf. Lin, Liu, and Su (2011))
as well as a gradient-descent ADMM (cf. Ouyang, He, Tran, and Gray (2013)). We modify their scheme
to an implementable one for (SOpt) that requires computing inexact solutions to the x and y update in each
iteration. In fact, since each subproblem is a stochastic optimization problem, each update requires a finite
(but) increasing number of gradient steps (assuming the use of stochastic approximation). Based on such
a framework, we make the following contributions:

(i) a.s. convergence: It is shown that under suitable summability assumptions on the inexactness
sequence ηk, the sequence of iterates converges almost surely to the unique solution of the problem.

(ii) Convergence of mean error at polynomial rate: It is demonstrated that when the inexactness
sequence is driven to zero at a polynomial rate given by

√
ηk = k−α , the mean-squared error

diminishes to zero at a rate K(α)/kα where K(α) is a specified constant.
(iii) Convergence of mean error at geometric rate: When the inexactness sequence is driven to zero

at a geometric rate, the mean-squared error diminishes to zero at a prescribed geometric rate.

The remainder of the paper is organized into three sections. In Section 2, we introduce the stochastic
ADMM framework. In section 3, the asymptotic convergence is analyzed and the associated rate statements
are obtained. We conclude with a short summary in Section 4.

2 A STOCHASTIC ADMM SCHEME

In this section, we begin by providing an introduction in Section 2.1 to some recent linear convergence
statements for a deterministic ADMM scheme. Unfortunately, direct application of this scheme to the
stochastic regime requires exact resolution of stochastic optimization subproblems. To obviate this challenge,
in Section 2.2, we present an implementable generalization allows for accommodating this stochastic
generalization, referred to as stochastic inexact ADMM (SI-ADMM).
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2.1 A Generalized ADMM Scheme

A generalized ADMM scheme (Algorithm 1) that can resolve (SOpt) was suggested by Deng and Yin
(2012) where the augmented Lagrangian function LA(x,y,λ ) is defined as

LA(x,y,λ ), f (x)+g(y)−λ
T (Ax+By−b)+ 1

2 ρ‖Ax+By−b‖2, (2)

where f (x), E[ f̃ (x,ξ )] and g(y), E[g̃(y,ξ )], both of which are assumed to be convex throughout this
paper. Moreover, we make the following two assumptions, both of which are necessary for global linear

Algorithm 1 g-ADMM: Generalized ADMM scheme
(0) Choose matrices P,Q and let k = 0;
(1) Given x0,y0,λ0,ρ > 0, γ > 0;
(2) Let xk+1,yk+1,λk+1 be given by the following:

yk+1 := argmin
y

(
LA(xk,y,λk)+

1
2(y− yk)

T Q(y− yk)
)

(yexact)

xk+1 := argmin
x

(
LA(x,yk+1,λk)+

1
2(x− xk)

T P(x− xk)
)

(xexact)

λk+1 := λk− γρ(Axk+1 +Byk+1−b). (λ exact)

(3) k := k+1; If k < K, return to (1); else STOP.

convergence property of the sequence of iterates produced by Algorithm 1. Of these, the first pertains to
the existence of a KKT point to the original optimization problem:
Assumption 1 There exists a KKT point u∗ = (x∗,y∗,λ ∗) to problem (SOpt); i.e., {x∗,y∗,λ ∗} satisfies the
KKT conditions:

AT
λ
∗ ∈ ∂ f (x∗),

BT
λ
∗ ∈ ∂g(y∗),

Ax∗+By∗−b = 0.

The second assumption imposes suitable convexity and Lipschitzian assumptions about f and g as well
as suitable rank assumptions about P and Q:
Assumption 2 ρ is a positive scalar. Q and P̂= P+ρAT A are symmetric and positive semidefinite matrices.
Additionally, either (a) or (b) holds:
(a): The function f (x) is strongly convex in x with a Lipschitz continuous gradient. Additionally, A has
full row rank, B has full column rank, and Q is a positive definite matrix.
(b): The functions f and g are strongly convex in x and y respectively, ∇x f is Lipschitz continuous in x,
and A has full row rank.

Next we provide the main convergence statement presented by Deng and Yin (2012).
Theorem 1 (Theorem 3.4, 3.5 (Deng and Yin 2012)) Suppose Assumptions 1 and 2 hold. In addition,
suppose γ satisfies one of following: (i) P 6= 0 and (2− γ)P� (γ−1)ρAT A; and (ii) P = 0 and γ = 1. If
sequence {uk} generated by Algorithm 1 is bounded, then ‖uk−u∗‖G→ 0 as k→ ∞. Furthermore, there
exists a constant δ > 0 such that

‖uk+1−u∗‖2
G ≤

1
1+δ

‖uk−u∗‖2
G, (3)

716



Xie and Shanbhag

where uk , (xk,yk,λk), and u∗ , (x∗,y∗,λ ∗) denotes a KKT point of (SOpt), ‖z‖G ,
√

zT Gz,

G0 ,

In

Im

γIp

 ,G1 ,

P+ρAT A
Q

1/ρIp

 , and G , G−1
0 G1 =

P+ρAT A
Q

1
ργ

Ip

 .

Note that if Q and P̂ are chosen to be positive definite, then ‖•‖G reduces to a norm, rather than a
semi-norm. A map Γ∗ is defined as follows:

Γ
∗(u) =

 yexact(x,λ )
xexact(ỹexact,λ )

λ exact(x̃exact, ỹexact)

 , (4)

where u , (x,y,λ ), ỹexact , yexact(x,λ ) and x̃exact , xexact(ỹexact,λ ). Furthermore, on Assumption 2, it can
be seen that y update and x update in Algorithm 1 have unique solutions. Thus, for each given input uk,
each iteration of algorithm 1 provides a unique output, denoted as u∗k+1, i.e.

u∗k+1 := Γ
∗(uk).

Thus, the map Γ∗(•) is a well-defined single-valued map and u∗ is a fixed-point of this map or u∗ = Γ∗(u∗).
Unfortunately, when the expectation E[•] is over a general measure space, the ADMM scheme is not
practically implementable since the x and y updates require exact solutions of stochastic optimization
problems. This motivates an implementable stochastic generalization of this scheme.

2.2 Stochastic ADMM Scheme

Since xexact and yexact in Algorithm 1 necessitate exact solutions impossible to obtain in stochastic regimes, we
propose a stochastic inexact extension of the generalized ADMM scheme. In this framework, the sequence
of iterates generated by the scheme are random variables and require taking a finite (but) increasing number
of (stochastic) gradient steps. To formally define this stochastic ADMM scheme, we denote the history of
the process as follows. First, F0 , {x0,y0,λ0}. Then at the (k+1)th epoch, F y

k+1 , Fk∪{ξ y
k,1, . . . ,ξ

y
k,Ny

k
}

where the union is taken with the previous history Fk and the samples generated for the y−update. Similarly,
Fk+1 = F y

k+1 ∪{ξ x
k,1, . . . ,ξ

x
k,Nx

k
}. Note that Nx

k and Ny
k denote the number of samples generated within

the x and y updates to ensure meeting a suitable error criterion. The stochastic ADMM scheme is then
defined in algorithm 2 and referred to as stochastic inexact ADMM (SI-ADMM). Note that the sequence of
iterates uk = (xk,yk,λk) are inexact in that their mean-squared error with respect to their exact counterpart is
bounded by ηk. Such an inexact solution is obtainable by using standard stochastic approximation schemes.
In fact, we may define a map Γk(u), akin to the map Γ∗(u) specified in (4).

Γk(u) ,

 ys−inex
k (x,λ )

xs−inex
k (ys−inex

k ,λ )

λ
s−inex
k (xs−inex

k ,ys−inex
k )

 , (5)

where ys−inex
k (x,λ ) is any solution to the ys−inex

k update while xs−inex
k (ys−inex

k ,λ ) is any solution to the xs−inex
k

update. Consequently, Γk(u) is a well-defined single-valued map. To ensure convergence of this sequence,
we make the following assumption about f and g.
Assumption 3 The functions f and g are both differentiable and strongly convex in their respective
arguments with constants µ and σ , respectively. Furthermore, the matrix [A B] has full row rank.
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Algorithm 2 SI-ADMM: A stochastic inexact ADMM scheme
(0) Choose Q and P, k = 0, choose the inexactness sequence ηi, for i ∈ N;
(1) Given x0,y0,λ0,ρ > 0, γ > 0;
(2) Let xk+1,yk+1,λk+1 be given by the following:

E[‖yk+1− y∗k+1‖2 |Fk]≤ ηk+1 (ys−inex
k+1 )

where y∗k+1 := argmin
y

(
LA(xk,y,λk)+

1
2(y− yk)

T Q(y− yk)
)

E[‖xk+1− x̃∗k+1‖2 |F y
k+1]≤ ηk+1 (xs−inex

k+1 )

where x̃∗k+1 := argmin
x

(
LA(x,yk+1,λk)+

1
2(x− xk)

T P(x− xk)
)

λk+1 := λk− γρ(Axk+1 +Byk+1−b). (λ s−inex
k+1 )

(3) k := k+1; If k < K, return to (1); else STOP.

Remark: Assumption 3 is sufficient to claim that there exist only one triple (x∗,y∗,λ ∗) that satisfies the
KKT conditions:

AT
λ
∗ = ∇ f (x∗)

BT
λ
∗ = ∇g(y∗)

Ax∗+By∗−b = 0.

In fact, since f and g are strongly convex, problem (SOpt) has a unique primal optimal solution. Furthermore,
the KKT conditions are necessary and sufficient. This indicates that KKT conditions admit a unique pair
(x∗,y∗). Since [A B] has linearly independent rows, λ ∗ is uniquely determined by (x∗,y∗). As a matter of
fact, Assumptions 2 and 3 share a significant overlap. If g is differentiable, then Assumption 2 implies
Assumption 3.

2.3 Inexact Solutions of Subproblems

The x and y updates in Algorithm 2 requires computing inexact solutions to stochastic problems. Consider
the problem in the y−update of k+1th iteration (discussion for x−update is similar thus omitted):

min
y

h(y;xk,yk,λk),
[
E[g̃(y;ξ )]−λ

T
k (Axk +By−b)+ 1

2 ρ‖Axk +By−b‖2 + 1
2(y− yk)Q(y− yk)

]
. (6)

Recall that g(·) = E[g̃(·,ξ )] is a strongly convex objective, implying that h(y;xk,yk,λk) is strongly convex
in y for any given xk,yk and λk, with a parameter σ that is not related to xk,yk or λk. Suppose that ∇yg(.) is
also Lipschitz continuous in y with constant Ly. Then it indicates that ∇yh(x;xk,yk) is Lipschitz continuous
in y. This can be seen to hold by noting the following:

∇yh(y;xk,yk,λk) = ∇yg(y)−BT
λk +ρBT (Axk +By−b)+Q(y− yk).

This implies that

‖∇yh(y1;xk,yk,λk)−∇yh(y2;xk,yk,λk)‖ ≤ ‖∇yg(y1)−∇yg(y2)‖+(ρ‖B‖2 +‖Q‖)‖y1− y2‖
≤ (Ly +ρ‖B‖2 +‖Q‖)‖y1− y2‖,

for any y1,y2. It follows that the ∇yh(y;xk,yk,λk) is Lipschitz continuous in y for any xk,yk and λk with a
constant L = Ly +ρ‖B‖2 +‖Q‖. Based on the Lipschitz continuity of the expected gradient and the strong
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convexity of the objective, a recursive relationship (7) holds when a stochastic approximation scheme like
the following is applied to the resolution of (6): given a z1,

zt+1 = zt − γt∇zh̃(zt ,ξt ;xk,yk,λk), t ≥ 1, (SA)

where ∇zh̃(zt ,ξt ;xk,yk,λk) refers to the sampled gradient associated with the tth sample. Let wt =
∇zh̃(zt ,ξt ;xk,yk,λk)−E[∇zh̃(zt ,ξ ;xk,yk,λk)], and assume that E[wt | Ft−1] = 0 and E[‖wt‖2 | Ft−1] ≤
ν2, ∀zt ∈ Rm. Next, we provide a rate statement from stochastic approximation schemes for strongly
convex stochastic optimization.
Lemma 1 Consider the application of a stochastic approximation scheme given by (SA) on the stochastic
optimization problem (6): minz∈Rn h(z;xk,yk,λk), where h(z;xk,yk,λk) , E[h̃(z,ξ ;xk,yk,λk)]. Suppose
h(z;xk,yk,λk) is a strongly convex function with convexity constant σ > 0 and has Lipschitz continuous
gradients with constant L. Suppose γt = θ/t and θ > 1/2σ , z∗ is the optimal solution of (6). Then the
following holds for any t ≥ 1:

E[‖zt+1− z∗‖2]≤ (1−2σθ/t)E[‖zt − z∗‖2]+ (L+ν
2)θ 2/t2, (7)

Furthermore

E[‖zt − z∗‖2]≤
max

{
(L+ν2)θ 2

2σθ−1 ,E[‖z1− z∗‖2]
}

t
. (8)

Proof sketch: Expression 7 can be derived from (Yousefian, Nedić, and Shanbhag 2012) (See expres-
sion (7)). Then by invoking the inductive argument in (Shapiro, Dentcheva, and Ruszczyński 2009) (See
expression (5.291)), the bound (8) follows.

Remark:

1. Based on Lemma 1, we may derive the number of gradient steps T y
k and T x

k at the kth step required
to achieve a mean-squared error of ηk for first two subproblems at the kth iteration. Note that
parameters L,ν ,θ ,σ do not depend on iterates.

2. Any solution produced by this stochastic approximation scheme uses samples ξk,1, . . . ,ξk,Nk and is
a random variable. In fact, even the function h(z;xk,yk,λk) is a random function since xk,yk and λk
are random variables. This provides a basis for why the update rule uses a conditional expectation
rather than an unconditional expectation.

3. In effect, the scheme requires a finite but increasing number of gradient steps at each epoch.
4. We assume that we have an M such thatE[‖x0−x∗‖2]≤M,E[‖y0−y∗‖2]≤M andE[‖λ0−λ ∗‖2]≤M.

This bound is then employed to construct similar bounds E[‖z1− z∗‖2] at the kth iterate which will
then be used to derive T y

k and T x
k .

3 CONVERGENCE ANALYSIS

In this section, we examine the convergence of the (random) sequence {uk} generated by (SI-ADMM),
both from an asymptotic and a rate standpoint, based on the choice of the inexactness sequence {ηk}. In
Section 3.1, it is proven that the sequence {uk} converges almost surely to the unique solution for suitable
choices of {ηk}. Then in Sections 3.2 and 3.3, asymptotics and rate statements are derived when ηk decays
polynomially and geometrically.

3.1 Almost Sure Convergence of {uk}

The sequence {uk} created by Algorithm 2 has the following relationship:

uk+1 := Γk+1(uk), (9)
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where Γk(•) is defined in (5). Prior to proceeding, we state the supermartingale convergence lemma from
(Polyak 1987) for the proof of almost sure convergence of SI-ADMM.
Lemma 2 (Lemma 10, pg. 49 (Polyak 1987)) Let {νk} be a sequence of nonnegative random variables,
where E[ν0]< ∞, and let {uk} and {µk} be deterministic scalar sequences such that:

E[νk+1 | ν0, . . . ,νk]≤ (1−uk)νk +µk, a.s. ∀k ≥ 0,

0≤ uk ≤ 1, µk ≥ 0, ∀k ≥ 0,
∞

∑
k=0

uk = ∞,
∞

∑
k=0

µk < ∞, lim
k→∞

µk

uk
= 0.

Then νk→ 0 almost surely as k→ ∞.
Based on the above lemma, we would obtain almost sure convergence if the error bound ηk in each

iteration is properly chosen.
Theorem 2 (a.s. convergence) Consider Algorithm 2. Suppose assumptions in theorem 1 and Assumption 3
hold and P� 0,Q� 0, ∑

∞
k=1
√

ηk < ∞. Then ‖uk−u∗‖G→ 0 almost surely as k→ ∞.

Proof. We begin by developing a bound on the (conditional) expectation of the error between uk+1 and
its exact counterpart or E[‖Γk+1(uk)−Γ∗(uk)‖G |Fk]:

E[‖Γk+1(uk)−Γ
∗(uk)‖G |Fk] = E

[√
(uk+1−u∗k+1)

T G(uk+1−u∗k+1)

∣∣∣∣Fk

]
(by the definition of G)

= E

[√
‖xk+1− x∗k+1‖2

P̂
+‖yk+1− y∗k+1‖2

Q +
1

ργ
‖λk+1−λ ∗k+1‖2

∣∣∣∣Fk

]
. (10)

By invoking Jensen’s inequality, the concavity of
√
•, and the definition of P̂ and Q, (10) may be bounded

as follows:

E

[√
‖xk+1− x∗k+1‖2

P̂
+‖yk+1− y∗k+1‖2

Q +
1

ργ
‖λk+1−λ ∗k+1‖2

∣∣∣∣Fk

]

≤

√
E
[
‖xk+1− x∗k+1‖2

P̂
+‖yk+1− y∗k+1‖2

Q +
1

ργ
‖λk+1−λ ∗k+1‖2|Fk

]

≤

√
ΛP̂E

[
‖xk+1− x∗k+1‖2|Fk

]
+ΛQE

[
‖yk+1− y∗k+1‖2|Fk

]
+

1
ργ

E
[
‖λk+1−λ ∗k+1‖2|Fk

]
,

where ΛP̂ and ΛQ are the maximimum eigenvalues of P̂ and Q, respectively. From the definition of the
updates in x, in Algorithm 1 and 2, the gradient of the augmented Lagrangian is given by the following:

∇xLA(x∗k+1,y
∗
k+1,λk) = ∇ f (x∗k+1)−AT

λk +ρAT (Ax∗k+1 +By∗k+1−b)+P(x∗k+1− xk) = 0, (11)

∇xLA(x̃∗k+1,yk+1,λk) = ∇ f (x̃∗k+1)−AT
λk +ρAT (Ax̃∗k+1 +Byk+1−b)+P(x̃∗k+1− xk) = 0. (12)

Recall from Assumption 3 that f is strongly convex with parameter µ; therefore, so is L (•,y,λ ) implying:

µ‖x̃∗k+1− x∗k+1‖2 ≤
〈
x̃∗k+1− x∗k+1,∇xL (x̃∗k+1,yk+1,λk)−∇xL (x∗k+1,yk+1,λk)

〉
⇒ µ‖x̃∗k+1− x∗k+1‖2 ≤ ‖x̃∗k+1− x∗k+1‖‖−ρAT B(yk+1− y∗k+1)‖
⇒ µ‖x̃∗k+1− x∗k+1‖ ≤ ρ‖AT B‖‖yk+1− y∗k+1‖

⇒ E[‖x̃∗k+1− x∗k+1‖2 |Fk]≤
(

ρ

µ
‖AT B‖

)2

E[‖yk+1− y∗k+1‖2 |Fk]≤
(

ρ

µ
‖AT B‖

)2

ηk+1.
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Then, we have that the following holds:

E[‖xk+1− x∗k+1‖2 |Fk]≤ E[2‖xk+1− x̃∗k+1‖2 +2‖x∗k+1− x̃∗k+1‖2 |Fk]

≤ 2E[E[‖xk+1− x̃∗k+1‖2 |F y
k+1] |Fk]+2E[‖x∗k+1− x̃∗k+1‖2 |Fk]

≤

(
2+2

(
ρ

µ
‖AT B‖

)2
)

ηk+1 = τηk+1, where τ ,

(
2+2

(
ρ

µ
‖AT B‖

)2
)
.

We recall that λ ∗k+1 is denoted by λ ∗k+1 = λk− γρ(Ax∗k+1 +By∗k+1−b), implying that

E[‖λ ∗k+1−λk+1‖2|Fk]≤ 2γ
2
ρ

2 (E[‖A‖2‖x∗k+1− xk+1‖2|Fk]+E[‖B‖2‖yk+1− y∗k+1‖2|Fk]
)

≤ 2γ
2
ρ

2 (‖A‖2
τ +‖B‖2)

ηk+1.

Therefore,

E[‖Γk+1(uk)−Γ
∗(uk)‖G |Fk]

≤

√
ΛP̂E[‖xk+1− x∗k+1‖2|Fk]+ΛQE[‖yk+1− y∗k+1‖2|Fk]+

1
ργ

E[‖λk+1−λ ∗k+1‖2|Fk]

=
√

ΛP̂τηk+1 +ΛQηk+1 +2ργ(‖A‖2τ +‖B‖2)ηk+1 =C
√

ηk+1, (13)

where C ,
√

ΛP̂τ +ΛQ +2ργ(‖A‖2τ +‖B‖2). Suppose νk , ‖uk−u∗‖G. Then

E[νk+1 |Fk] = E[‖uk+1−u∗‖G |Fk]

= E[‖Γk+1(uk)−u∗‖G |Fk]

= E[‖Γk+1(uk)−Γ
∗(uk)+Γ

∗(uk)−Γ
∗(u∗)‖G |Fk]

≤ E[‖Γk+1(uk)−Γ
∗(uk)‖G |Fk]+E[‖Γ∗(uk)−Γ

∗(u∗)‖G |Fk]

≤ E[‖Γk+1(uk)−Γ
∗(uk)‖G |Fk]+ (1/

√
1+δ )E[‖uk−u∗‖G |Fk].

where the second inequality follows from the property u∗ = Γ∗(u∗) and inequality (3). It follows that

E[vk+1 |Fk]≤C
√

ηk+1 +(1/
√

1+δ )νk, (14)

by inequality (13). Since ∑
∞
k=0(1− 1√

1+δ
) = ∞ and ∑

∞
k=1C

√
ηk < ∞ by assumption, we have that ηk→ 0.

Therefore
√

ηk/(1− 1√
1+δ

)→ 0 as k→ ∞. Finally, by invoking the supermartingale convergence lemma
(Lemma 2), νk = ‖uk−u∗‖G→ 0 almost surely as k→ ∞.

Next, we provide a simple result that is a consequence of Theorem 2 and finds usage in the subsequent
results.
Lemma 3 Consider Algorithm 2. Suppose assumptions in theorem 1 and Assumption 3 hold. Then the
following holds for any iterate uk:

E[‖uk+1−u∗‖G]≤ aE[‖uk−u∗‖G]+C
√

ηk+1, (15)

where C ,
√

ΛP̂τ +ΛQ +2ργ(‖A‖2τ +‖B‖2),τ ,

(
2+2

(
ρ

µ
‖AT B‖

)2
)

, µ is the strongly convex constant

of f (x), a , (1/
√

1+δ ), and ΛP̂ and ΛQ are the maximimum eigenvalues of P̂ and Q, respectively.

Proof. By invoking the definition of uk+1 in (9) and by taking unconditional expectations on both sides
of (14), we obtain the result.

Now we are ready to investigate how the choice of ηk affects the rate of convergence of the iterates
to the unique solution.
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3.2 Rate Analysis for Polynomial Decay of
√

ηk

First consider the case when
√

ηk =
1

kα ,α > 0. Based on the inequality (15), we have the following results:
Theorem 3 (Rate of convergence under polynomial decay of ηk) Consider Algorithm 2. Suppose (15)
holds and

√
ηk =

1
kα where α > 0. Let K(α) and r0 be defined as follows:

K(α), max

{(
C

1−a
+ar0

)(
2a−1/α −1
a−1/α −1

)α

,
C

1−a2(2a−1/α −1)α

}
and r0 = E[‖u0−u∗‖G].

Then for every k > 0, we have that E[‖uk−u∗‖G]≤ K(α)
kα . Furthermore, E[‖uk−u∗‖G]→ 0 as k→ ∞.

Proof. Let rk = E[‖uk−u∗‖G] and let k∗ ,
⌈

1
a−1/α−1

⌉
+1. We prove the result by considering two cases:

(i) k ≤ k∗ : Then, from (15), we have for k ∈ {1, . . . ,k∗}:

rk ≤C
k−1

∑
i=0

ai(k− i)−α +akr0 ≤C
k−1

∑
i=0

ai +akr0

≤C
(

1−ak

1−a

)
+ar0 ≤

C
1−a

+ar0 ≤
(

C
1−a

+ar0

)(
k∗

k

)α

,

since k ≤ k∗ and α > 0. Consequently, the right-hand side of the above inequality can be further
bounded as follows by invoking the definition of k∗:(

C
1−a

+ar0

)(
k∗

k

)α

≤
(

C
1−a

+ar0

)(
1

a−
1
α −1

+2
)α(1

k

)α

≤ K(α)

kα
.

(ii) k > k∗ : We begin by noting that K(α) is bounded from below as follows:

K(α)≥ C
1−a2(2a−1/α −1)α

=
C

1−a(2− 1
a−1/α

)α
=

C

1−a(1+ a−1/α−1
a−1/α

)α
. (16)

Next by recalling that C,α > 0, the following set of statements are equivalent:

k∗ ≥ 1

a−
1
α −1

+1 =
a−

1
α

a−
1
α −1

⇔ 1+
1
k∗
≤ 1+

a−
1
α −1

a−
1
α

⇔ 1−a
(

1+
1
k∗

)α

≥ 1−a

(
1+

a−
1
α −1

a−
1
α

)α

⇔ C

1−a
(
1+ 1

k∗
)α ≤

C

1−a
(

1+ a−
1
α −1

a−
1
α

)α (17)

Then by utilizing the inequality (17) to bound the right hand side of (16), we obtain the following:

C

1−a(1+ a−1/α−1
a−1/α

)α
≥ C

1−a(1+ 1
k∗ )

α
≥ C

1−a(1+ 1
k )

α
, (18)
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where the second inequality follows from k > k∗. As a result, combining (16) and (18) leads to the
following:

C ≤ K(α)−a
(

1+
1
k

)α

K(α)⇒C+a
(

1+
1
k

)α

K(α)≤ K(α). (19)

We inductively prove the remainder of this result. For any k≤ k∗, we have rk ≤ K(α)
kα as shown in

(i). This forms the inductive hypothesis. Then, from (15), we have that ∀k ≥ k∗,

rk+1 ≤
C

(k+1)α
+ark ≤

C
(k+1)α

+a
K(α)

kα
=

C+a(1+ 1
k )

αK(α)

(k+1)α
≤ K(α)

(k+1)α
.

where the second inequality is a consequence of the inductive hypothesis and the third inequality
arises from (19). The result follows.

The convergence of E[‖uk−u∗‖2
G] follows immediately when α > 0 is fixed.

Remark: Several points require emphasis. Note that K(α) is a function of α . In fact, K(α) is an
increasing function of α and 1≤ k < k∗ =

⌈
1

a−
1
α −1

⌉
+1, K(α)/kα can be bounded from below as follows:

K(α)

kα
≥
(

C
1−a

+ar0

)(
2a−1/α −1
a−1/α −1

)α(
1
k

)α

≥
(

C
1−a

+ar0

)(
2a−1/α −1
a−1/α −1

)α(
a−1/α −1

a−1/α

)α

=

(
C

1−a
+ar0

)(
2−a1/α

)α

︸ ︷︷ ︸
,h(α)

≥
(

C
1−a

+ar0

)
,

where the last inequality follows from the fact that h(α) is a concave increasing function over α ≥ 0
and limα→0 h(α) = C

1−a +ar0. Consequently, we see that when k < k∗, one cannot accrue arbitrarily large
benefit in terms of the error bound by increasing α .

3.3 Rate of Convergence for Geometric Decay of
√

ηk

Next we consider the case when ηk decreases geometrically and prove that the mean error converges to
zero as k→∞ and does so at a geometric rate. We start by restating the following Lemma recently proved
in prior work in (Ahmadi 2016).
Lemma 4 Given a function zcz where c < 1. Then for all z≥ 0, we have that

zcz < Dqz, where c < q < 1 and D >
1

ln(q/c)e .

Proof. Consider a function Dqz where D > 0 and q < 1. Then zcz cannot be bounded by Dqz if Dqz−zcz

has a real positive root. Specifically, we have that any root has to satisfy

h(z) = ln(D)+ z ln(q/c)− ln(z) = 0.

We note that h′(z) = ln(q/c)−1/z, h′′(z) = 1/z2 > 0 for z ∈ [0,∞) implying that h is a convez function.
Furthermore, h(0) = +∞ and the minimizer zmin ∈ (0,∞) where h′(zmin) = 0 or

+ ln(q/c) = 1/zmin =⇒ zmin = 1/ ln(q/c).
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If q > c, then zmin > 0 and h(zmin) is given by

h(zmin) = ln(D)+
1

ln(q/c)
ln(q/c)− ln(1/ ln(q/c)) = 1+ ln(D)+ ln(ln(q/c)).

It suffices that h(zmin)> 0 since the function h(z) increases in z for z≥ zmin and there can be no real root.
Consequently, if 1 > q > c and D is chosen such that ln(D) > −1− ln(ln(q/c), then Dqz = zcz does not
have a root. Equivalently, we have that

D > e−1−ln(ln(q/c)) =
1
e
(ln(q/c))−1 =

1
ln(q/c)e .

Since h(0)> 0, it follows that h(z)> 0 for all z≥ 0

Based on this lemma, the following statement holds:
Theorem 4 (Rate of convergence under geometric decay of ηk) Consider Algorithm 2. Suppose (15) holds
and suppose

√
ηk = ηk for some 0< η < 1. Then for every k > 0, we have that E[‖uk−u∗‖G]≤ (CD+r0)qk,

where q > b , max{a,η} and D is chosen such that D > 1
e ln(q/b) . Furthemore, E[‖uk−u∗‖G]→ 0 as k→∞.

Proof. Let rk = E[‖uk− u∗‖G]. Since
√

ηk = ηk where η < 1, we have the following sequence of
inequalities based on (15).

rk+1 ≤ ark +Cη
k+1 ≤ a2rk−1 +aCη

k +Cη
k+1

...

≤ ak+1r0 +C
k

∑
j=0

ak− j
η

j+1 ≤ bk+1r0 +C

(
k

∑
j=0

bk+1

)
= (r0 +(k+1)C)bk+1

⇒ rk ≤ (r0 + kC)bk.

From Lemma 4, it can be shown that there exist scalars q and D satisfying q ∈ (b,1) and D > 1/ ln((q/b)e)
such that rk ≤ r0bk +Ckbk < r0bk +CDqk < (r0 +CD)qk. Finally, since q < 1, it follows that as k→ ∞,
E[‖uk−u∗‖2

G]→ 0.

4 CONCLUDING REMARKS

We consider a structured stochastic convex optimization problem where standard stochastic approximation
schemes appear inadvisable. Instead, we develop an implementable stochastic inexact ADMM scheme and
provide almost sure convergence statements and rate guarantee on suitable assumptions about the decay
rates of the inexactness sequence. In future work, we intend to analyze the overall iteration complexity
and perform extensive numerical studies.
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