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ABSTRACT

Given a sampling budget M, stochastic approximation (SA) schemes for constrained stochastic convex
programs generally utilize a single sample for each projection, requiring an effort of M projection operations,
each of possibly significant complexity. We present an extragradient-based variable sample-size SA scheme
(eg-VSSA) that uses Nk samples at step k where ∑k Nk ≤M. We make the following contributions: (i) In
strongly convex regimes, the expected error decays linearly in the number of projection steps; (ii) In convex
settings, if the sample-size is increased at suitable rates and the steplength is optimally chosen, the error
diminishes at O(1/K1−δ1) and O(1/

√
M), requiring O(M1/(2−δ2)) steps, where K denotes the number of

steps and δ1,δ2 > 0 can be made arbitrarily small. Preliminary numerics reveal that increasing sample-size
schemes provide solutions of similar accuracy to SA schemes but with effort reduced by factors as high
as 20.

1 INTRODUCTION

In this paper, we consider the solution of the following constrained convex stochastic optimization problem:

min
x∈X

E[ f (x,ξ (ω))], (Opt)

where X ⊆Rn, ξ : Ω→Rd , f : Rn×Rd →R and (Ω,F ,P) denotes the associated probability space, and
E[•] denotes the expectation with respect to the probability measure P. Stochastic approximation schemes
(cf. Robbins and Monro (1951), Spall (2003)) have been useful in solving a large class of stochastic
optimization problems. However, in constrained settings, traditional approaches utilize a single sample at
every step, requiring as many projection steps as the sampling budget. In settings where the constraint set
is not simple, computing estimators via such an approach proves to be computationally intensive.

We pursue an alternate approach building on prior work by Shanbhag and Blanchet (2015) on variable
sample-size stochastic approximation schemes for strongly convex optimization. This avenue prescribed
rules under which the sample-size can be increased in the presence of both constant and diminishing
steplength sequences so as to recover linear convergence in terms of the number of projection steps. In this
paper, extending the framework presented by Shanbhag and Blanchet (2015), we construct an extragradient
Variable Sample-size Stochastic Approximation scheme (eg-VSSA) scheme in which given a random x1 ∈X ,
Nk samples are utilized at the kth iterate in computing iterates yk+1 and xk+1 for k ≥ 1:

yk+1 := ΠX(xk− γk(∇x f (xk)+w′k,Nk
)),

xk+1 := ΠX(xk− γk(∇x f (yk+1)+wk,Nk)),
(eg-VSSA)

where ΠX(y) denotes the projection of y onto X , γk denotes the steplength, ω j,• = {ω j,1, . . . ,ω j,N j}, w′Nk
,

∑
Nk
j=1(∇x f (xk,ω

′
k, j)−∇x f (xk))/Nk,wNk ,∑

Nk
j=1(∇x f (yk+1,ωk, j)−∇x f (yk+1))/Nk, F ′

k , {x1,ω
′
1,•, . . . ,ω

′
k,•}
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and Fk , {ω1,•, . . . ,ωk,•}. The scheme terminates after K steps where K is the largest integer satisfying
∑

K
k=1 Nk ≤M. Note that extragradient schemes require two projections per step but we consider it a single

projection requiring twice the effort.
Research on SA schemes has considered exploring various extensions of the vanilla scheme from

several standpoints: (i) Choice of steplength sequences: In this context, there has been an effort to develop
optimal constant steplength schemes by Nemirovski et al. (2009) while self-tuned steplength rules that adapt
to problem parameters have been presented by Yousefian, Nedić, and Shanbhag (2012); (ii) Sample-size
choices: An error analysis for varying sample-size mini-batch schemes was provided by Ghadimi et al. (2016)
when sampling budget was infinite. Techniques for increasing sample-sizes were examined by Friedlander
and Schmidt (2012) and So and Zhou (2013) while Pasupathy et al. (2014) examined rates at which
sample sizes should be raised to obtain rates of convergence in line with their deterministic counterparts.
Recent work by Byrd et al. (2012) considers two-stage rules for determining sample sizes; (iii) Extensions:
There have been a host of extensions of standard stochastic approximation schemes that have incorporated
averaging (cf. Polyak and Juditsky (1992)), addressed nonsmoothness (cf. Yousefian, Nedić, and Shanbhag
(2012)), variational inequality problems (cf. Juditsky et al. (2011)), and Nash gtames (cf. Koshal, Nedić,
and Shanbhag (2013)). We extend extragradient methods, first presented by Korpolevich (1976, 1983), to
a stochastic regime reliant on increasing or constant sample sizes. When Nk = ∞, we recover deterministic
extragradient schemes while Nk = 1 leads to standard stochastic extragradient schemes (see Juditsky et
al. (2011) and Yousefian, Nedić, and Shanbhag (2014)). Next, we outline the contributions in our paper.
(i) Strongly convex stochastic optimization: In Section 2, we propose precise update rules for sample sizes
in the face of a finite budget M and derive finite-sample error bounds. Importantly, we show that the error
decays geometrically (linearly) in terms of projection steps under these rules, akin to the result provided
by Shanbhag and Blanchet (2015) for standard stochastic approximation.
(ii) Convex stochastic optimization: In section 3, we consider merely convex programs and derive error
bounds for the expected sub-optimality of the averaged sequence in terms of M for constant and increasing
sample sizes with either constant or diminishing steplength sequences. In particular, we observe that when
Nk = N0ka and γk = γ for all k ≥ 1, a ∈ [0,1), and γ is optimally chosen, then the expected sub-optimality
diminishes at O(1/K(a+1)/2). In fact, when a→ 1, this rate tends to the canonical deterministic unaccelerated
rate of convergence in terms of projection steps. Furthermore, the expected sub-optimality decays at the rate of
O(
√

N0/
√
(1+a)M), (canonical rate in terms of sample-size) but requires approximately ((1+a)M)1/(1+a)

steps in contrast with M steps required by standard SA schemes. In Section 4, we draw further insights and
discuss trade-offs between theoretical bounds on accuracy and computational complexity. Notably, naive
naive batching schemes with Nk = N lead to a degradation in the worst-case error by

√
N.

(iii) Numerics: Preliminary numerics discussed in Section 4 suggest promise; while standard schemes
produce solutions with an empirical accuracy of 0.0058 in 1000 steps, increasing sample-size schemes
produce solutions with accuracies of approximately 0.001 for both constant and diminishing steplengths
in 54 steps. Notably, batching schemes display significantly poorer performance; with batch sizes of 10
and 100, such schemes produce solutions with error 0.12 and 0.011 in 100 and 10 steps, respectively.

2 STRONGLY CONVEX STOCHASTIC OPTIMIZATION

In this section, we show that in strongly convex regimes, we show that the mean-squared error diminishes
at a geometric rate with the number of projection steps. Throughout, we employ the following assumptions.
Assumption 1
(a) The function f (x) is continuously differentiable on an open set containing X , strongly convex with

constant η , with a Lipschitz continuous gradient with constant L.
(b) For some ν ,ν ′ ∈ (0,∞), E[wk |Fk−1∪F ′

k] = 0, E[w′k |Fk−1∪F ′
k−1] = 0, E[‖wk‖2|Fk−1∪F ′

k]≤
ν2

Nk
,

and E[‖w′k‖2 |Fk−1∪F ′
k−1]≤

(ν ′)2

Nk
.

(c) There exists positive scalar C such that for all k ≥ 1, ‖xk− x∗‖ ≤C.
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In our analysis we exploit Lemma 1 for projection mappings.
Lemma 1 (Bertsekas 2003) Let X ⊆ Rn be a nonempty closed and convex set. Then the following hold:
(a) ‖ΠX [u]−ΠX [v]‖ ≤ ‖u− v‖ for all u,v ∈ Rn; (b)(ΠX [u]−u)T (x−ΠX [u])≥ 0 for all u ∈ Rn and x ∈ X .

The following result is specialized from Lemma 3 in (Yousefian, Nedić, and Shanbhag 2014).
Lemma 2 Consider the eg-VSSA scheme. Then we have the following for any y ∈ X and for all k ≥ 1.

‖xk+1− y‖2 ≤ ‖xk− y‖2− (1−3L2
γ

2
k )‖yk+1− xk‖2

+2γk(∇x f (yk+1)+wk,Nk)
T (y− yk+1)+3γ

2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2). (1)

Proof. Choose y ∈ X and an arbitrary index k ≥ 1. Hence, we have the following:

‖xk+1− y‖2 = ‖xk+1− xk + xk− y‖2 = ‖xk+1− xk‖2 +‖xk− y‖2 +2(xk+1− xk)
T (xk− y).

By adding and subtracting xk+1, we obtain the following:

‖xk+1− y‖2 = ‖xk+1− xk‖2 +‖xk− y‖2 +2(xk+1− xk)
T (xk− xk+1)+2(xk+1− xk)

T (xk+1− y)

= ‖xk− y‖2−‖xk+1− xk‖2 +2(xk+1− xk)
T (xk+1− y)︸ ︷︷ ︸

Term (a)

. (2)

Since xk+1 = ΠX(xk− γk(∇x f (yk+1)+wk,Nk)), by Lemma 1(b), the following holds:

0≤ (xk+1− (xk− γk(∇x f (yk+1)+wk,Nk)))
T (y− xk+1)

= (xk+1− xk)
T (y− xk+1)+ γk(∇x f (yk+1)+wk,Nk)

T (y− xk+1), for all y ∈ X . (3)

This implies that term (a) can be written as (xk+1− xk)
T (xk+1− y) ≤ γk(∇x f (yk+1)+wk,Nk)

T (y− xk+1).
Therefore, (2) can be expressed as follows:

‖xk+1− y‖2 ≤ ‖xk− y‖2−‖xk+1− xk‖2 +2γk(∇x f (yk+1)+wk,Nk)
T (y− xk+1)

= ‖xk− y‖2−‖xk+1− xk + yk+1− yk+1‖2 +2γk(∇x f (yk+1)+wk,Nk)
T (y− xk+1)

= ‖xk− y‖2−‖xk+1− yk+1‖2−‖yk+1− xk‖2

−2(xk+1− yk+1)
T (yk+1− xk)︸ ︷︷ ︸

Term (b)

+2γk(∇x f (yk+1)+wk,Nk)
T (y− xk+1). (4)

Since yk+1 = ΠX(xk−γk(∇x f (xk)+w′k,Nk
)), by invoking Lemma 1(b), Term (b) can be bounded as follows:

0≤ (yk+1− (xk− γk(∇x f (xk)+w′k,Nk
)))T (xk+1− yk+1)

= (yk+1− xk)
T (xk+1− yk+1)+ γk(∇x f (xk)+w′k,Nk

)T (xk+1− yk+1).

This implies that term (b) can be bounded as−(xk+1−yk+1)
T (yk+1−xk)≤ γk(∇x f (xk)+w′k,Nk

)T (xk+1−yk+1),
allowing for the rewriting of (4):

‖xk+1− y‖2 ≤ ‖xk− y‖2−‖xk+1− yk+1‖2−‖yk+1− xk‖2 +2γk(∇x f (xk)+w′k,Nk
)T (xk+1− yk+1)

+2γk(∇k f (yk+1)+wk,Nk)
T (y− xk+1)

= ‖xk− y‖2−‖xk+1− yk+1‖2−‖yk+1− xk‖2 +2γk(∇x f (yk+1)+wk,Nk)
T (y− yk+1) (5)

+2γk((∇x f (xk)+w′k,Nk
)− (∇x f (yk+1 +wk,Nk))

T (xk+1− yk+1),
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where the equality follows from adding and subtracting yk+1. Then by employing 2aT b−‖a‖2≤‖b‖2 for any
a,b ∈Rn for a =−(xk+1−yk+1) and 2aT b = 2γk((∇x f (xk)+w′k,Nk

)− (∇x f (yk+1)+wk,Nk))
T (xk+1−yk+1),

we obtain the following by using the triangle inequality:

‖xk+1− y‖2 ≤ ‖xk− y‖2−‖yk+1− xk‖2 +2γk(∇x f (yk+1)+wk,Nk)
T (y− yk+1) (6)

+ γ
2
k ‖∇x f (yk+1)+wk,Nk −∇x f (xk)+w′k,Nk

‖2

≤ ‖xk− y‖2−‖yk+1− xk‖2 +2γk(∇x f (yk+1)+wk,Nk)
T (y− yk+1)

+ γ
2
k (‖∇x f (yk+1)−∇x f (xk)‖+‖wk,Nk‖+‖w

′
k,Nk
‖)2.

By using the Lipschitz continuity of ∇ f (x) and by recalling that for any a1, . . . ,am ∈ R and any integer
m≥ 2, we have (a1 + . . .+am)

2 ≤ m(a2
1 + . . .+a2

m), the required result follows.

‖xk+1− y‖2 ≤ ‖xk− y‖2−‖yk+1− xk‖2 +2γk(∇x f (yk+1)+wk,Nk)
T (y− yk+1)

+ γ
2
k
(
3L2‖yk+1− xk‖2 +3‖wk,Nk‖

2 +3‖w′k,Nk
‖2)

= ‖xk− y‖2− (1−3L2
γ

2
k )‖yk+1− xk‖2 +2γk(∇x f (yk+1)+wk,Nk)

T (y− yk+1)

+3γ
2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2).

Lemma 3 Consider the eg-VSSA scheme. Suppose that Assumption 1 holds. Then, for all k ≥ 1,
E‖xk+1− x∗‖2 ≤ qkE‖x∗− xk‖2 +3γ2

k

(
ν2+(ν ′)2

Nk

)
where γk and qk satisfy the following:

γk ≤min

{
1
η
,
−η +

√
η2 +3L2

3L2

}
and qk , (1− γkη). (7)

Proof. By the strong monotonicity of the gradient map ∇x f (x) over X , we have:

∇x f (yk+1)
T (x∗− yk+1) = (∇x f (yk+1)−∇x f (x∗)+∇x f (x∗))T (x∗− yk+1)

≤−η‖yk+1− x∗‖2 +∇ f (x∗)T (x∗− yk+1).

From the optimality of x∗, we have that ∇ f (x∗)T (x∗−yk+1)≤ 0, inequality (1) in Lemma 2 may be rewritten
as follows, where y is chosen as x∗:

‖xk+1− x∗‖2 ≤ ‖xk− x∗‖2− (1−3γ
2
k L2)‖yk+1− xk‖2−2γkη‖yk+1− x∗‖2

+2γkwT
k,Nk

(x∗− yk+1)+3γ
2
k (‖wk,Nk‖

2 +‖wk,Nk‖
2). (8)

By recalling that (a1 + . . .+am)
2 ≤m(a2

1 + . . .+a2
m) for m≥ 2, 2(‖yk+1−x∗‖2 +‖xk−yk+1‖2)≥ (‖yk+1−

x∗‖+‖xk−yk+1‖)2. By the triangle inequality, (‖yk+1−x∗‖+‖xk−yk+1‖)2 ≥ (‖x∗−xk‖)2, implying that
‖yk+1− x∗‖2 ≥ 1

2‖x
∗− xk‖2−‖yk+1− xk‖2 and (8) reduces to

‖xk+1− x∗‖2 ≤ (1− γkη)‖x∗− xk‖2 +(2γkη−1+3γ
2
k L2)‖yk+1− xk‖2

+2γkwT
k,Nk

(x∗− yk+1)+3γ
2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2).

By invoking (7), taking conditional expectations and applying Assumption 1 (b) on the conditional first
and second moments, we obtain

E[‖xk+1− x∗‖2|Fk−1∪F ′
k]≤ qk‖x∗− xk‖2 +3γ

2
k

(
ν2 +(ν ′)2

Nk

)
.

The result follows by taking unconditional expectations on both sides.
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Under assumptions of either constant or increasing sample size, we now show that the mean-squared
error diminishes at a linear rate.
Theorem 1 (Linear convergence in K) Suppose Assumption 1 holds and consider the eg-VSSA scheme.
(i) Suppose K is given and Nk = N where N is defined as follows:

N :=

{
dβKq−Ke, where βK , (M

K −1)qK , γk , γ

dβKq−K
K e. where βK , (M

K −1)qK
K , γk ,

θ

k

Then the following holds for all k ≤ K̄:

E[‖xk+1− x∗‖]2 ≤

qk
(

C+3
min{K̄,(1−q)−1}γ2(ν2+(ν ′)2)

βK̄

)
, γ ≤ 1/η ,q = (1− γη)

qk
K̄

(
C+3 π2θ 2(ν2+(ν ′)2)

6βK̄

)
, γk ≤ θ/k,θ ≤ 1/η ,qk = (1−ηγk).

.

(ii) Suppose K is given and Nk is defined as follows:

Nk :=


dβKq−ke if βK , M−K

∑
K
k=1 q−k , γk := γ

d βK

∏
k
k=1 q j
e if βK , M−K

∑
K
k=1

1
∏

k
j=1 q j

, γk := θ

k .

Then the following holds for all k ≤ K̄:

E[‖xk+1− x∗‖]2 ≤

qk
(

D+3 γ2(ν2+(ν ′)2)K̄
βK̄

)
, q = (1− γη),γ < 1/η .

qk
K̄

(
D+3 π2θ 2(ν2+(ν ′)2)

6βK̄

)
, γk = θ/k,θ < 1/η ,q = (1− γkη).

Remark 1 This result demonstrates that the expected error decays at a suitably defined linear rate in terms
of projection steps, akin to gradient schemes for deterministic strongly convex optimization. We omit this
proof, given its similarity to the result provided for standard SA by Shanbhag and Blanchet (2015).

3 CONVEX STOCHASTIC OPTIMIZATION

In this section we assume that the function f (x) is continuously differentiable and convex but not strongly
convex (which we refer to as Assumption 1(a′)). We proceed to derive error bounds in terms of number
of projection steps and sample complexity when sample size is either constant or increasing with either
constant or diminishing steplengths.
Lemma 4 Consider the eg-VSSA scheme and suppose Assumption 1(a′,b,c) hold. Assume that γk ≤ 1√

3L

and suppose ȳK , ∑
K
k=1 γkyk+1

∑
K
k=1 γk

. Then for all K ≥ 1, we have the following:

E[( f (ȳK)− f (x∗))]≤ C2

2∑
K
k=1 γk

+3
∑

K
k=1 γ2

k

(
ν2+(ν ′)2

Nk

)
2∑

K
k=1 γk

. (9)

Proof. Recall that we have the following for any y ∈ X :

‖xk+1− y‖2 ≤ ‖xk− y‖2− (1−3L2
γ

2
k )‖yk+1− xk‖2 +2γk(∇x f (yk+1)+wk,Nk)

T (y− yk+1)

+3γ
2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2).
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Consequently, this holds for an optimal solution x∗.

‖xk+1− x∗‖2 ≤ ‖xk− x∗‖2− (1−3L2
γ

2
k )‖yk+1− xk‖2 +2γk(∇x f (yk+1)+wk,Nk)

T (x∗− yk+1)

+3γ
2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2)

= ‖xk− x∗‖2− (1−3L2
γ

2
k )‖yk+1− xk‖2 +2γk∇x f (yk+1)

T (x∗− yk+1)+2γkwT
k,Nk

(x∗− yk+1)

+3γ
2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2).

By convexity, we have that

2γk∇x f (yk+1)
T (x∗− yk+1)≤ 2γk( f (x∗)− f (yk+1)),

implying that

‖xk+1− x∗‖2 ≤ ‖xk− x∗‖2− (1−3L2
γ

2
k )‖yk+1− xk‖2 +2γk( f (x∗)− f (yk+1))+2γkwT

k,Nk
(x∗− yk+1)

+3γ
2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2).

But this implies that

2γk( f (yk+1)− f (x∗))≤ ‖xk− x∗‖2−‖xk+1− x∗‖2− (1−3L2
γ

2
k )‖yk+1− xk‖2 +2γkwT

k,Nk
(x∗− yk+1)

+3γ
2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2).

If γk ≤ 1/(
√

3L), we have that

2γk( f (yk+1)− f (x∗))≤ ‖xk− x∗‖2−‖xk+1− x∗‖2 +2γkwT
k,Nk

(x∗− yk+1)+3γ
2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2).

=⇒
K

∑
k=1

2γk( f (yk+1)− f (x∗))≤ ‖x1− x∗‖2−‖xK+1− x∗‖2

+
K

∑
k=1

(
2γkwT

k,Nk
(x∗− yk+1)+3γ

2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2)
)
,

where the second inequality follows from summing from k = 1 to K. If ȳK , ∑
K
k=1 γkyk+1

∑
K
k=1

, by convexity, we

have
(
∑

K
k=1 γk

)
( f (ȳK)− f (x∗))≤ ∑

K
k=1 γk( f (yk+1)− f (x∗)). It follows that(

2
K

∑
k=1

γk

)
( f (ȳK)− f (x∗))≤ ‖x1− x∗‖2−‖xK+1− x∗‖2

+
K

∑
k=1

(
2γkwT

k,Nk
(x∗− yk+1)+3γ

2
k (‖wk,Nk‖

2 +‖w′k,Nk
‖2)
)

=⇒ E[( f (ȳK)− f (x∗))]≤ E[‖x1− x∗‖2]−E[‖xK+1− x∗‖2]

2∑
K
k=1 γk

+
∑

K
k=1 2γkE[wT

k,Nk
(x∗− yk+1)]

2∑
K
k=1 γk︸ ︷︷ ︸
=0

+
3∑

K
k=1 γ2

k (E[‖wk,Nk‖2 +‖w′k,Nk
‖2])

2∑
K
k=1 γk

≤ E[‖x1− x∗‖2]

2∑
K
k=1 γk

+
3∑

K
k=1 γ2

k (E[‖wk,Nk‖2 +‖w′k,Nk
‖2])

2∑
K
k=1 γk

≤ C2

2∑
K
k=1 γk

+3
∑

K
k=1 γ2

k (
ν2+(ν ′)2)

Nk

2∑
K
k=1 γk

.
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We now refine this result through four corollaries, one for each specialization of our eg-VSSA scheme.

Corollary 2 (Constant sample size and steplength) Consider the eg-VSSA scheme. Suppose As-
sumption 1(a′,b,c) holds and for all k ≥ 1, Nk = N, and γk = γ ≤ 1/

√
3L. Then we have the following:

(i) If Nk = 1 and γk = γ , E [ f (ȳK)− f (x∗)]≤ C2L
√

3√
K

= C2L
√

3√
M

for all K ≥ 1.

(ii) If Nk = N ≥ ν2+(ν ′)2

L2C2 and γk = γ , E [ f (ȳK)− f (x∗)]≤ C2L
√

3√
K
≤ C2L

√
3N√

M
for all K ≥ 1.

Proof. We omit the proof of (i) and only prove part (ii). By setting Nk = N and γk = γ in inequality (9)
and assuming that β satisfies β ≥max(1, L2C2N

(ν2+(ν ′)2)
), we obtain:

E [ f (ȳK)− f (x∗)]≤ C2

2Kγ
+

3(ν2 +(ν ′)2)γ

2N
≤ C2

2Kγ
+

3β (ν2 +(ν ′)2)γ

2N
. (10)

Minimizing the right hand side in γ , we obtain

γ
∗ =

CN1/2√
3βK(ν2 +(ν ′)2)

where γ∗≤ 1√
3L

by choice of β . Now by substituting γ∗ in (10) and using the fact that K = d(M/N)e ≥M/N,
we obtain the desired result.

Next, we assume that Nk is an increasing sequence and the steplength is constant; specifically, let
Nk = N0ka and γk = γ for all k.
Corollary 3 (Increasing sample size and constant steplength) Consider the eg-VSSA scheme. Suppose
Assumption 1(a′,b,c) holds and for all k, Nk = N0ka and γk = γ ≤ 1/

√
3L, where a∈ [0,1). If N0 ≥ ν2+(ν ′)2

C2L2(1−a) ,
then we have the following for all K ≥ 1:

E [ f (ȳK)− f (x∗)] ≤ C2L
√

3

K( 1+a
2 )
≤ C2L

√
3N0√

M(1+a)
. (11)

Proof. By letting Nk = N0ka and γk = γ in (9) we obtain:

E [ f (ȳK)− f (x∗)]≤ C2

2Kγ
+

3γ(ν2 +(ν ′)2)∑
K
k=1 k−a

2KN0
≤ C2

2Kγ
+

3βγ(ν2 +(ν ′)2)K−a

2N0(1−a)
, (12)

where the second inequality follows by noting that ∑
K
k=1 k−a ≤

∫ K
0 k−adk and by choosing β = L2C2N0(1−a)

(ν2+(ν ′)2)
.

Note that β ≥ 1 based on our assumption on N0. The minimal value of the right-hand side is at

γ
∗ =

√
C2N0(1−a)

3βK(1−a)(ν2 +(ν ′)2)
,

where γ∗ ≤ 1/(
√

3L) by choice of β and N0. Now by substituting γ∗ and β into (12) we obtain the
desired result in terms of K. Since K is the largest integer such that ∑

K
k=1 N0ka ≤ M we conclude that

M ≤ ∑
K+1
k=1 N0ka. By using the inequality ∑

K+1
k=1 N0ka ≤

∫ K+2
k=0 N0xadx, we obtain that

K ≥ (M(a+1))
1

a+1

N
1

a+1
0

.

By substituting the aforementioned inequality in (12), we obtain the bound in terms of M.
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Next, we consider a setting where γk = γ0k−b, b∈ [0,1/2) and the sample-size is either constant (Cor. 4)
or increasing (Cor. 5).
Corollary 4 (Constant sample size and diminishing steplength) Consider the eg-VSSA scheme. Suppose
Assumption 1(a′,b,c) holds and for k ≥ 1, Nk = N, and γk = γ0k−b where γ0 ≤ 1/

√
3L and b ∈ [0,1/2). If

N ≥ ν2+(ν ′)2

C2L2(1−2b) , then the following holds for all K ≥ 1:

E [ f (ȳK)− f (x∗)]≤ C2L
√

3(1−b)K
1
2−b

((1+K)(1−b)−1)
≤ C2L

√
3(1−b)(

(M
N +1)

1
2 − (M

N +1)b− 1
2

) . (13)

Proof. In inequality (9) let Nk = N and γk = γ0k−b. Consequently we have that

E [ f (ȳK)− f (x∗)]≤ C2

2γ0 ∑
K
k=1 k−b

+3
(ν2 +(ν ′)2)γ0 ∑

K
k=1 k−2b

2N ∑
K
k=1 k−b

≤ C2(1−b)
2γ0((1+K)(1−b)−1)

+
3βγ0(ν

2 +(ν ′)2)(1−b)K(1−2b)

2(1−2b)N((1+K)(1−b)−1)
, (14)

where ∑
K
k=1 k−b ≥

∫ K+1
1 x−bdx, ∑

K
k=1 k−2b ≤

∫ K
0 x−2bdx and β =C2L2(1−2b)N/(ν2+(ν ′)2)≥ 1 by choice

of N. The optimal value of γ0 follows by minimizing the right hand side in γ0, leading to

γ
∗
0 =

√
C2(1−2b)N

3β (ν2 +(ν ′)2)K(1−2b)
,

where γ∗ ≤ 1√
3L

by choice of β and Nk = N ≥ ν2+(ν ′)2

C2L2(1−2b) . By substituting γ∗0 and β , the right hand side of
(14) can be optimized as follows:

E [ f (ȳK)− f (x∗)]≤ C2L
√

3(1−b)K
1
2−b

((1+K)(1−b)−1)
.

Then by noting that K = dM/Ne ≥M/N, our result follows with a little algebra as seen next.

C2L
√

3(1−b)K
1
2−b

((1+K)(1−b)−1)
≤

C2L
√

3(1−b)(M
N +1)

1
2−b

((M
N +1)1−b−1))

=
C2L
√

3(1−b)(
(M

N +1)
1
2 − (M

N +1)b− 1
2

) .

Corollary 5 (Increasing sample size and diminishing steplength) Consider the eg-VSSA scheme.
Suppose Assumption 1(a′,b,c) holds and for k ≥ 1, Nk = N0ka and γk = γ0k−b≤ 1/

√
3L where a ∈ [0,1)

and b ∈ [0,1/2). Then if 2b+a < 1 and N0 ≥ ν2+(ν ′)2

C2L2(1−2b−a) , then we have the following for K ≥ 1:

E [ f (ȳK)− f (x∗)]≤ C2L(1−b)
√

3

((K +1)(
1
2+

a
2 )− (K +1)(b+

a
2−

1
2 ))

(15)

≤ C2L(1−b)
√

3(
(M(a+1)

N0
)

1
a+1 −1

)( 1
2+

a
2 )−

(
(M(a+1)

N0
)

1
a+1 +1

)(b+ a
2−

1
2 )
. (16)
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Proof. First, we let Nk = N0ka and γk = γ0k−b in inequality (9) and obtain the following:

E [ f (ȳK)− f (x∗)]≤ C2

2γ0 ∑
K
k=1 k−b

+
3γ0(ν

2 +(ν ′)2)∑
K
k=1 k−2b−a

2N0 ∑
K
k=1 k−b

.

We know that ∑
K
k=1 k−b ≥

∫ K+1
1 x−bdx and ∑

K
k=1 k(−2b−a) ≤

∫ K
0 x(−2b−a)dx. Therefore,

E [ f (ȳK)− f (x∗)]≤ C2(1−b)
2γ0((K +1)(1−b)−1)

+
3βγ0(ν

2 +(ν ′)2)(1−b)(K +1)(1−2b−a)

2N0((K +1)(1−b)−1)(1−2b−a)
. (17)

By optimizing the right hand side over γ0, we obtain γ∗0 =
√

1
3L2(K+1)(1−2b−a) ≤ 1√

3L
by choosing β =

C2L2N0(1−2b−a)
ν2+(ν ′)2 . By substituting γ∗0 in (17), we obtain the following:

E [ f (ȳK)− f (x∗)]≤
C2L(1−b)

√
3(K +1)(1−2b−a)

((K +1)(1−b)−1)
=

C2L(1−b)
√

3

((K +1)(
1
2+

a
2 )− (K +1)(b+

a
2−

1
2 ))

. (18)

To obtain an error bound in terms of M, we derive lower and upper bounds for K:∫ K

k=0
N0kadk ≤

K

∑
k=1

N0ka ≤M ≤
K+1

∑
k=1

N0ka ≤
∫ K+2

k=0
N0kadk

=⇒ (M(a+1))
1

a+1

N
1

a+1
0

−2≤ K ≤ (M(a+1))
1

a+1

N
1

a+1
0

. (19)

Now by substituting (19) in (18), the required bound in terms of M can be seen to be (16).

4 INSIGHTS AND TRADE-OFFS

In this section, we provide some insights regarding the rate statements in the previous section and conclude
with a trade-off analysis between computational and sample complexity.

(i) Constant sample size and steplength: As captured by Corollary 2, we observe that the theoretical
bound deteriorates by

√
N in comparison with case for standard stochastic approximation with N = 1 (See

Nemirovski et al. (2009)) but provides a solution in d(M/N)e projection steps.

(ii) Increasing sample size and constant steplength: As seen in Corollary 3, while the rate in terms
of sample-complexity stays the same, if N0 ≤ (1+a), the theoretical bound actually improves by a con-
stant factor of

√
N0/(1+a) in comparison with the standard case with N = 1 and an optimal steplength

where the sample-size sequence is Nk = N0ka and N0/(1+a) ≤ 1. Specifically if N0 = 1,a = 1− ε , and
(ν2 +(ν ′)2)/(L2C2ε)≤ 1, the improvement will be

√
1/(2− ε) but requires no more than O(1/K1+ε/2)

projection steps. In fact, we see that the rate tends to the optimal non-accelerated rate for standard gradient
methods in terms of projection steps as ε → 0. It is also worth emphasizing that standard stochastic ap-
proximation schemes utilize M projection steps while the proposed scheme requires only ((2−ε)M)1/(2−ε)

projection steps.

(iii) Constant sample size and diminishing steplength: This scheme is captured by Corollary 4 and when
γk = γ0k−b if b = 1

2 and Nk = N, the expected sub-optimality can be bounded as follows:

C2L
√

3(1−b)(
(M

N +1)
1
2 − (M

N +1)b− 1
2

) =
C2L
√

3

2
(
(M

N +1)
1
2 −1

) ≤ C2L
√

3
√

N

2
(

M
1
2 −
√

N
) .
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In effect, similar to (i), we obtain an approximate degradation of
√

N in the bound but the rate appears to
be close to the canonical rate.

(iv) Increasing sample size and diminishing steplength: Finally, by Corollary 5, when Nk = N0ka and
γk = γ0k−b, if 2b+a < 1, a = 1 and b = ε , then one attains close to the optimal rate:

C2L(1− ε)
√

3
(
√

2M−1)− (
√

2M+1)ε
,

but at a computational cost of
√

M steps rather than M steps for standard SA schemes.

Trade-off analysis between sample and computational complexity: Traditional implementations of
stochastic approximation with Nk = 1 lead to a worst-case error of O(M−1/2) and require M projection
steps. Consider a setting where γk = γ and Nk = N0ka:

N0 = 1,a ∈ [0,(1− ε)]: Based on Corollary 3, when N0 = 1, we note that the empirical error decays at
O(M−1/2)when a varies from 0 to 1−ε while the computational effort changes from M to ((2−ε)M)1/(2−ε).
In effect, an optimal empirical error is guaranteed with far less computational effort.

N0 ∈ {1, . . . ,bM1−δ c},a constant: From Table 1, we see a degradation in worst-case error when N0 is
raised for constant a. For instance, when N0 = 1, we recover the canical result for stochastic approximation,
leading to accuracy of M−0.5 with a computational complexity of M projection steps. If N0 is increased to√

M and a = 1−ε , the resulting computational complexity reduces to (
√

M)1/(2−ε)(2−ε)1/(2−ε) (approx.
M1/4) with an error of M−1/4(2− ε)−0.5. For instance, if M = 1e6 and ε = 0.01, N0 =

√
M reduces the

computational complexity from 1e6 to approximately 46 projection steps while the accuracy worsens from
1e-3 to 1.4e-(3/2).

Table 1: Constant sample complexity with Nk = N0ka.
N0 Samp-complex Comp-complex ε

1 M M M−0.5

M0.125 M (M0.875)
1

a+1 (a+1)
1

a+1 M−0.4375(1+a)−0.5

M0.25 M (M0.75)
1

a+1 (a+1)
1

a+1 M−0.375(1+a)−0.5

M0.5 M (M0.5)
1

a+1 (a+1)
1

a+1 M−0.25(1+a)−0.5

M1−δ M (Mδ )
1

a+1 (a+1)
1

a+1 M−δ/2(1+a)−0.5

5 NUMERICAL EXAMPLES

Next, we apply the proposed schemes on an example where empirical and theoretical error as well as CPU
time are compared for different choices of a and b. Consider a stochastic network utility problem with a
network with N users, having r resources with finite capacity where c j is capacity of jth resource and matrix
A ∈ {0,1}r×N is the network adjacent matrix. We assume that each user can utilize a subset of resources
and the resulting optimization problem is as follows: minAx≤cE

[
−∑

N
i=1 ki(ξi) log(1+ xi)+‖Ax‖2

]
where

ki(ξi) is an uncertain parameter. Here, c = (0.1,0.15,0.2,0.1,0.15,0.2,0.2,0.15,0.25),x≥ 0,n = 5,ki(ξi)
has an uniform distribution U(0.2,1) for all i, and M = 1000.

Table 2: Constant sample size and steplengths.
N ‖ f (x)− f (x∗)‖ # iteration Theor. bound CPU Time

100 1.230e-01 11 4.490e+01 2.611e-01
10 1.149e-02 101 1.420e+01 2.613e+00
1 5.785e-03 1000 4.490e+00 2.592e+01
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Figure 1: Comparison across schemes: Number of iterations vs empirical error.

Constant sample-size schemes with constant steplength: Table 2 compares eg-VSSA schemes when
N = 1 with settings of N = 10 and 100 with optimally chosen steplengths. Note that when N = 1, the
scheme requires M projection steps. It can be seen that schemes with N = 1 take about 100 times more
than schemes with N = 100 while N = 1 provides an expected sub-optimality error of about 0.0058 in
comparison with about 0.123 for N = 100. In short, naive batching schemes perform poorly in terms of
empirical error, corresponding well with the degradation suggested by theory.

Increasing sample-size schemes: In Table 3, with γk = γ (optimally chosen) and Nk = ka, we notice that
the scheme performs well for diverse choices of a compared with standard SA schemes. As seen in Table 2,
when Nk = 1, we obtain an empirical accuracy of 0.0058 and require 1000 projection steps. In comparison,
if a = 0.5, the empirical accuracy improves to 0.00336 (improvement by 42%) and requires approximately
132 projection steps (7.7 times less effort). When a = 0.9, we observe that empirical accuracy drops to
0.00105 (an improvement of 82%) and requires 54 steps (an improvement by a factor of 19) as seen in
Table 3. Similarly, as seen in Table 4, when γk is a diminishing sequence, we notice for the same level
of a, we see slight improvements in the empirical accuracy. Figure 1 provides a graphical comparison of
how the three implementations compare in terms of trajectories.

Table 3: Nk = N0ka,γk = γ .
a b ‖ f (x)− f (x∗)‖ # iteration Theor. bound CPU Time

1.0e-01 0 5.474e-03 529 2.473e+00 1.357e+01
2.0e-01 0 5.036e-03 369 2.369e+00 9.435e+00
3.0e-01 0 4.520e-03 249 2.278e+00 6.381e+00
4.0e-01 0 4.046e-03 177 2.198e+00 4.534e+00
5.0e-01 0 3.360e-03 132 2.128e+00 3.366e+00
6.0e-01 0 2.834e-03 102 2.065e+00 2.587e+00
7.0e-01 0 2.319e-03 80 2.009e+00 2.028e+00
8.0e-01 0 1.774e-03 65 1.958e+00 1.641e+00
9.0e-01 0 1.046e-03 54 1.914e+00 1.362e+00

Table 4: Nk = N0ka,γk = γ0k−b.
a b ‖ f (x)− f (x∗)‖ # iteration Theor. bound CPU Time

1.0e-01 4.000e-01 4.473e-03 529 2.624e+00 1.404e+01
2.0e-01 3.500e-01 4.203e-03 369 2.721e+00 9.481e+00
3.0e-01 3.000e-01 3.841e-03 249 2.814e+00 6.388e+00
4.0e-01 2.500e-01 3.515e-03 177 2.903e+00 4.514e+00
5.0e-01 2.000e-01 3.021e-03 132 2.991e+00 3.362e+00
6.0e-01 1.500e-01 2.577e-03 102 3.075e+00 2.588e+00
7.0e-01 1.000e-01 2.152e-03 80 3.157e+00 2.020e+00
8.0e-01 5.000e-02 1.682e-03 65 3.237e+00 1.633e+00
9.0e-01 0.000e+00 1.046e-03 54 3.315e+00 1.347e+00

6 CONCLUDING REMARKS

In this paper, we present an extragradient variable sample-size stochastic approximation scheme (eg-VSSA)
and make the following contributions. First, the scheme admits similar linear rates akin to the scheme
presented by Shanbhag and Blanchet (2015) for strongly convex regimes. Second, for convex programs,
we derive error bounds for the expected sub-optimality in terms of sampling budget M for constant and
increasing sample sizes with either constant or diminishing steplength sequences. Specifically, if Nk = N0ka

and γk = γ for all k≥ 1 and a∈ [0,1) and γ is optimally chosen, the expected sub-optimality displays a rate of
decay of O(1/K(a+1)/2)where K denotes the number of steps while this rate is O(

√
N0/
√
(2+a)M) in terms

of M. In effect, these schemes display the canonical rate but require approximately (M(a+1)/N0)
1/(a+1)

steps rather than M steps. Additionally, naive naive batching schemes with Nk = N lead to a degradation
in the worst-case error by

√
N. Preliminary numerics suggest that such avenues hold much promise and

provide solutions of comparable accuracy with a fraction of the effort.
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