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ABSTRACT

Simulation models commonly describe complex systems with no closed-form analytical representation. This
paper proposes an algorithm for functions on continuous domains that fits into the nested partition framework
and uses quantile estimation to rank regions and identify the most promising region. Additionally, we
apply the optimal computational budget allocation (OCBA) method for allocating sample points using the
normality property of quantile estimators. We prove that, for functions satisfying the Lipschitz condition, the
algorithm converges in probability to a region that contains the true global optimum. The paper concludes
with some numerical results.

1 INTRODUCTION

Currently, there is a growing demand for efficient algorithms that can solve black-box, ill-structured
optimization problems. As applications for simulation optimization increase, methods that develop solutions
within a given tolerance (or quantile of best solutions) and computational budget are useful. Partition-based
search methods have been a popular approach to this problem (Chew et al. 2009, Shi and Ólafsson 2009,
Shi and Ólafsson 2000, Tang 1994). In particular, the nested partition framework has been shown to be an
effective tool in globally optimizing black-box functions.

The nested partition algorithm operates by sampling from a partitioned domain and then refining the
partition scheme to focus on promising regions (Shi et al. 1998, Shi and Ólafsson 2000). This method was
initially shown to be effective at solving problems on finite domains and most expansions on this work
have focused on discrete domains (Yu and Luo 2008). However, some work has been done applying the
nested-partition framework to continuous domains or domains with an uncountable number of elements
(Brantley and Chen 2005, Shi and Ólafsson 2009) by determining the most promising region from the best
sampled point or averaged sample values.

In this paper we propose an algorithm in the nested partition framework that solves continuous domain
problems while implementing optimal computational budget allocation (OCBA). Instead of nesting additional
partitions around the best sampled point or expected value in each region, we select the most promising
region as the one with the best estimated quantile. The established properties of this estimator are then used
to determine sampling allocations between regions via an OCBA scheme that asymptotically maximizes
the probability of selecting the region with lowest quantile.

This nested-partition-type search based on quantiles paired with an OCBA algorithm bears closest
resemblance to work done by Brantley and Chen (2005) and Chen et al. (2014). However, our approach
has some advantages over the previous approaches. First, branching on the quantile rather than the sampled
best point allows the algorithm to gain global information about each region while avoiding the influence
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of sampled outliers. Secondly, the use of quantiles (and their normally distributed estimators) allows
the implementation of an optimal computational budget allocation scheme without relying on parametric
models for extreme values.

Developing a region of a certain size with lowest quantile might be interesting for other purposes. An
application might be interested in identifying a portion of the domain with the highest concentration of
good points within a given quantile. An application may also be interested in selecting a range of points
for a type of sensitivity analysis.

This paper describes the implementation of the quantile-based nested partition algorithm for black-box
functions. We prove that the quantile-based nested partition algorithm converges in probability to an
unbranchable region (e.g., minimum volume) with the lowest specified quantile. We also prove that with a
sufficiently low quantile threshold, the probability that the unbranchable region with the lowest estimated
quantile contains the true global optimum approaches 1 as the number of iterations become arbitrarily
large. We implement the quantile-based nested partition algorithm on a set of common test problems with
and without OCBA sampling. We find that the addition of the OCBA sampling scheme results in better
(closer to the global minimum) sampled points using the same allocated budget.

2 BASIC MODEL AND ALGORITHM

We consider a black-box function f on a continuous closed and bounded domain S⊂Rn. We are interested
in the minimization problem

minx∈S f (x). (1)

We also define an optimal point x∗ ∈ S such that f (x∗)≤ f (x) ∀x ∈ S.
Due to the lack of information concerning the structural properties of the function, identifying the

true global minimum can be computationally expensive. Our algorithm looks for ”good enough” solutions
within a given specified quantile and therefore attempts to locate a region with a concentration of good
points inside the domain of S by sequentially applying a series of partitions (”branching”) on the domain
and then sampling from and ranking regions based on estimated quantiles.

Given a partitioning scheme (typically along each dimension), we define a region as ”unbranchable”
when the length of each dimension i is less than or equal to some length εi. Other definitions for unbranchable
might include a minimum volume or a contained diagonal length. Let Σmax denote the set of unbranchable
regions that form a partition on S (i.e.,

⋃
σ∈Σmax

σ = S and σ
⋂

σ ′ = /0 for all σ ,σ ′ ∈ Σmax,σ 6= σ ′). The set
Σmax will comprise the smallest regions for which the algorithm will apply no additional partitioning.

The number of unbranchable regions may become very large, especially with large n, so it is impractical
to evaluate each unbranchable region. For instance, if S is a box in n dimensions with width w along each
dimension, then the number of unbranchable regions in Σmax is

(
wn

∏
n
i=1 εi

)
. Therefore, our algorithm uses

quantile estimation to compare regions of various sizes, allowing the algorithm to focus on the regions
with large concentrations of near optimal points.

The algorithm ranks regions based on their estimated quantiles. For a given region σ , we use the
notation y(δ ,σ) as the δ -threshold quantile such that for X sampled uniformly from the region σ then

y(δ ,σ) = argmin{P( f (X)≤ y|X ∈ σ)≥ δ} (2)

for 0 < δ < 1. We also define a multi-dimensional volume function v(σ) that provides the volume for a
given region σ .

The algorithm proceeds by (1) sequentially partitioning a promising region of the domain S into M
equal smaller regions, (2) sampling points based on a budget allocation scheme (possibly OCBA), (3)
estimating the quantiles in each region, and (4) ranking the remaining regions by estimated quantiles. The
complete algorithm can be formally described as follows.
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The inputs to the algorithm include the δ -threshold quantile, the branching scheme M, a defined budget
per iteration T , and a minimum number of iterations K. The input parameter K sets a minimum number of
iterations that is typically larger than the number of iterations to achieve an unbranchable set by consecutive
partitioning, to prevent the algorithm from stopping prematurely. A maximum number of iterations may
also be set, however we use the discovery of an unbranchable region to determine the stopping condition.

Quantile-based Nested Partition Algorithm

STEP 0 Initialize:

Set δ , M, T , and K. Set Σcontend(0) = {S}. Define the most promising region (best) σB(0) = S and
set k = 1.

STEP 1 Partition:

If σB(k− 1) is unbranchable then Σcontend(k) = Σcontend(k− 1). Otherwise, partition the most
promising region, σB(k− 1), into M regions of equal volume σB(k− 1)1, . . . ,σ

B(k− 1)M, and
update

Σcontend(k) =
(
Σcontend(k−1)\σB(k−1)

) M⋃
m=1

σ
B(k−1)m.

Let σ k
j , j = 1, . . . ,‖Σcontend(k)‖ represent each region in Σcontend(k).

STEP 2 Sample:

Sample Nk
j points from region in σ k

j ∈ Σcontend(k) for j = 1, . . . ,‖Σcontend(k)‖ including previously

sampled points such that ∑
‖Σcontend(k)‖
j=1 Nk

j = k ·T . Note there must be at least one newly sampled
point in each of the regions in Σcontend(k). We specify a method for setting the budgeting allotments
Nk

j using OCBA in Section 4. Denote the sampled points in σ k
j as

x j
1, . . . ,x

j
Nk

j
.

Rank the sample points by their function evaluations, i.e., x j
(1), . . . ,x

j
(Nk

j )
such that f (x j

(1))≤ f (x j
(2))≤

·· · ≤ f (x j
(Nk

j )
).

STEP 3 Estimate Quantile:

Let vmin(k) be the smallest volume of the regions in Σcontend(k). For each σ k
j ∈ Σcontend(k) for

j = 1, . . . ,‖Σcontend(k)‖ determine ŷ j as an estimate of the quantile y
(

δ · vmin(k)
v(σ k

j )
,σ k

j

)
, estimated as:

ŷ

(
δ · vmin(k)

v(σ k
j )

,σ k
j

)
= f

x j(
ceil

(
Nk

j ·δ ·
vmin(k)

v(σk
j )

))


where the expression ceil(x) is the lowest integer greater than x. Notice that the quantile associated
with σ k

j (using the notation as in (2)) is adjusted by the ratio of volumes vmin(k)/v(σ k
j ).
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STEP 4 Rank:

Determine a new most promising region σB(k) ∈ Σcontend(k) such that ŷ
(

δ · vmin(k)
v(σB(k)) ,σ

B(k)
)
<

ŷ
(

δ · vmin(k)
v(σ k

j )
,σ k

j

)
∀σ k

j ∈Σcontend(k). In the case of a tie, such that ŷ
(

δ · vmin(k)
v(σ k

i )
,σ k

i

)
= ŷ
(

δ · vmin(k)
v(σ k

j )
,σ k

j

)
for sets σi,σ j ∈ Σcontend(k) then let σB(k) be the set with the greater volume, if volumes are tied
break the tie arbitrarily.

STEP 5 Stopping Condition:

Record the minimum incumbent value f B
k = min j f (x j

(1)) for j = 1, . . . ,‖Σcontend(k)‖. If k ≥ K and
σB(k) is unbranchable then stop the algorithm, otherwise increment k and go to Step 1.

The algorithm proceeds at each iteration to partition the most-promising region if it is unbranchable.
It then samples a positive number of points (determined by a budgeting scheme) and estimates quantiles
for each of the remaining regions. For purposes of selecting the most promising region, larger regions
have proportionally smaller quantiles estimated (relative to the volume of the smallest contending region)
and therefore the algorithm has a probability of selecting larger volumes as the ”most promising” and
”backtracking” to other areas of the domain for consideration. The algorithm terminates once an unbranchable
region has been developed and a minimum number of iterations have elapsed. Therefore the algorithm
ends with an unbranchable region with the lowest estimated quantile.

Figure 1: An example illustrating four iterations on a two dimensional domain, with M = 3.

An example is shown in Figure 1 for a two dimensional domain. On the first iteration the algorithm
creates M = 3 different regions, and selects the most promising region indicated by a ?. On the second
iteration the most promising region is partitioned (replacing σ3 with σ3,σ4 and σ5). In this example, the
most promising region on iteration 2 is σ1, illustrating backtracking. The algorithm finally lands on the
most promising region σ4 at k = 4 with σ4 being an unbranchable region.

3 ASYMPTOTIC ANALYSIS

The quantile-based nested partition, has a number of useful convergence properties that mirror the original
nested partition algorithm. First, we can observe that, as the number of iterations approaches infinity, the
most promising region will be the subregion in Σmax with the lowest true quantile. Let σ∗ be the best
unbranchable region, σ∗ ∈ Σmax such that y(δ ,σ∗)< y(δ ,σ) for all σ ∈ Σmax with σ 6= σ∗. For purposes
of analysis we assume σ∗ is unique.
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Theorem 1 As k→ ∞ then P
(
σB(k) = σ∗

)
→ 1.

Proof. On every iteration, the algorithm either branches the most promising region σB(k), or the most
promising region is unbranchable in which case σB(k) ∈ Σmax and ŷ

(
δ ,σB(k)

)
< ŷ
(

δ · vmin(k)
v(σ j)

,σ k
j ,
)

for all

σ k
j ∈ Σcontend(k) and σ k

j /∈ Σmax.

As k→ ∞ then vmin(k)→ v(σ∗) and the number of samples Nk
j → ∞ in every σ k

j in Σcontend(k), therefore

ŷ

(
δ · vmin(k)

v(σ k
j )

,σ k
j

)
→ y

(
δ · v(σ

∗)

v(σ k
j )
,σ k

j

)

with probability arbitrarily close to 1 by the consistency of the quantile estimator (Serfling 1980, Conover
1980).

Due to the consistency of the estimator and since the number of possible regions in Σcontend(k) is finite,
as k→ ∞, it is true with probability approaching 1 that for any region σ k

j ∈ Σcontend(k) either σ k
j ∈ Σmax

(unbranchable) or ∃ σ̄ k
j ∈ Σmax

⋂
Σcontend(k) such that y

(
δ , σ̄ k

j (k)
)
< y
(

δ · v(σ∗)
v(σ k

j )
,σ k

j

)
and σ∗ ∈ Σcontend(k).

To see this, consider two regions, σ j,σ j′ such that σ j ⊂ σ j′ . Then y(δ · v(σ j)
v(σ j′ )

,σ j′) ≤ y(δ ,σ j) since the

set of points {x : f (x) < y(δ ,σ j)} is also contained in σ j and therefore constitutes at least δ · v(σ j)
v(σ j′ )

of

the total volume of σ ′j. Now, if for all regions σ k
j ∈ Σcontend(k) either σ k

j ∈ Σmax (unbranchable) or

∃σ̄ k
j ∈ Σmax

⋂
Σcontend(k) such that y

(
δ , σ̄ k

j (k)
)
< y

(
δ · v(σ∗)

v(σ k
j )
,σ k

j ,

)
then for any branchable region that

contains σ∗, i.e., σ∗ ⊂ σ̃ k
j , we have y(δ · v(σ∗)

v(σ̃ k
j )
, σ̃ k

j ) ≤ y(δ ,σ∗) < y(δ , σ̄ k
j ) for all σ̄ j

k ∈ Σmax
⋂

Σcontend(k)

and therefore σ̃ k
j /∈ Σcontend(k). Since at least one region in Σcontend(k) contains σ∗ then σ∗ ∈ Σcontend(k).

Therefore as k→∞ the probability that σ∗ ∈ Σcontend(k) and y(δ ,σ∗)< y
(

δ · v(σ∗)
v(σ k

j )
,σ k

j

)
∀σ k

j ∈ Σcontend(k)

goes to 1, and as k→∞ then P(ŷ(δ ,σ∗)< ŷ(δ ,σm(k)))→ 1 and the probability P
(
σB(k) = σ∗

)
→ 1.

In addition to proving the convergence properties of the algorithm to an unbranchable region with lowest
specified quantile, we also prove that the final unbranchable region contains the true global optimum with
probability approaching 1 as the number of iterations approaches infinity. For purposes of the analysis, we
assume that global optimum x∗ is unique.

Theorem 2 If f is a function that satisfies the Lipschitz condition with Lipschitz constant L, there exists
a value δ ∗ such that for all δ < δ ∗ then P(x∗ ∈ σB(k))→ 1 as k→ ∞.

Proof. Consider σi ∈ Σmax for i = 1, . . . ,‖Σmax‖. Let x∗i = argminx∈σi f (x). Order the unbranchable
regions in Σmax by their minimum values, i.e., σ(1), · · · ,σ(‖Σmax‖) such that f (x∗(1))≤ ·· · ≤ f (x∗(‖Σmax‖)).

Consider σ(1) and σ(2) with f (x∗(1))< f (x∗(2)). From the Lipschitz condition there must be a hypersphere h

centered at x∗(1) and v
(
h
⋂

σ(1)
)
> 0, such that ∀x∈ h : f (x)< f (x∗(2)) . Therefore for δ < δ ∗ =

v(h
⋂

σ(1))

v(σ(1))
, we
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are assured that y(δ ,σ(1))< y(δ ,σ(i)) ∀i 6= 1. The best σ∗ relative to a δ < δ ∗ satisfies y(δ ,σ∗)≤ y(δ ,σ(i))
for all i, and therefore σ∗ = σ(1) and x∗ ∈ σ∗.

By Theorem 1, P
(
σB(k) = σ∗

)
→ 1 as k→ ∞. Therefore P

(
x∗ ∈ σB(k)

)
→ 1 as k→ ∞.

Therefore with a sufficiently small quantile threshold δ , the algorithm asymptotically develops an
optimal region that contains the global minimum.

4 OPTIMAL BUDGETING

Although the quantile-based nested partition algorithm is guaranteed to eventually find the unbranchable
region with lowest specified quantile, the efficiency of the algorithm will largely depend on the allocated
budget Nk

j in each contending region σ k
j ∈ Σcontending(k). At each iteration k the algorithm will sample

points and branch the most promising region in order to focus more sampling in the newly branched regions
on the next iteration. It is therefore important for efficiency to choose the most promising region with
the lowest quantile to minimize backtracking and focus sampling in the regions likely to contain optimal
points.

To ensure efficiency of the algorithm, values for Nk
j are chosen to maximize the probability of

correctly selecting the most promising region. At a given iteration, we define an index b such that

y
(

δ · vmin(k)
v(σ k

j )
,σ k

j

)
≥ y
(

δ · vmin(k)
v(σ k

b )
,σ k

b

)
∀σ k

j ∈ Σk
contend for j 6= b. As in Chen et al. (2000), we formulate a

program that maximizes the probability of correct selection as the following.

maxNk
1 ,··· ,Nk

j
P(Correct Selection) = P

( ⋂
∀ j 6=b

ȳ

(
δ · vmin(k)

v(σ k
j )

,σ k
j

)
≥ ȳ
(

δ · vmin(k)
v(σ k

b )
,σ k

b

))

subject to
‖Σcontend(k)‖

∑
j=1

Nk
j = k ·T

where ȳ
(

δ · vmin(k)
v(σ k

j )
,σ k

j

)
is a random variable representing an estimated quantile in the region σ k

j after

sampling. This creates an optimal computational budgeting program that can be further specified by
describing the distribution of the quantile estimator. Based on non-parametric order statistics, we can

establish that the estimator ȳ
(

δ · vmin(k)
v(σ k

j )
,σ k

j

)
for the quantile is normally distributed with specified mean

and variance, such that:

ȳ

(
δ · vmin(k)

v(σ k
j )

,σ k
j

)
∼ Nor

ŷ

(
δ · vmin(k)

v(σ k
j )

,σ k
j

)
,

(
1−δ · vmin(k)

v(σ k
j )

)
·
(

δ · vmin(k)
v(σ k

j )

)
f
(

y(δ · vmin(k)
v(σ k

j )
,σ k

j )

)2

·Nk
j


where N is the number of points sampled, f is the probability density function of the sample distribution

from the region σ k
j , and ŷ

(
δ · vmin(k)

v(σ k
j )
,σ k

j

)
is the value of the quantile estimate in region σ k

j (Serfling 1980).

Because of the normality of the estimator, we can extend the methodology for OCBA across a partitioned
domain in order to asymptotically maximize the probability of correctly selecting the most promising region.
The formula derived by Chen et al. (2000) specifies equations that asymptotically optimize the probability
of correct selection when choosing sampling points to divide between a discrete number of normally
distributed estimators,
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N j′

N j
=

 s j
δb, j
s j′

δb, j′

2

∀ j, j′ 6= b

Nb = sb

√√√√‖Σcontend(k)‖

∑
j=1, j 6=b

N2
j

s2
j

where δb, j = ŷ
(

δ · vmin(k)
v(σ k

j )
,σ k

j

)
− ŷ
(

δ · vmin(k)
v(σ k

b )
,σ k

b

)
and s2

j =
(1−δ · vmin(k)

v(σk
j )

)·δ · vmin(k)

v(σk
j )

f(y(δ · vmin(k)

v(σk
j )

,σ k
j ))

2
. These equations therefore

fully specify a division of the budget between partitions and with a total budget per iteration of k ·T .

Estimating the difference δb, j can be computed through estimating ŷ
(

δ · vmin(k)
v(σ k

j )
,σ k

j

)
based on previously

sampled points. The approximation of s j can be estimated through a jack-knife approximation, a sectioning
approximation, or by estimating the pdf f through kernel density estimation. As such, given a constant
budget per each iteration, we can determine the number of samples Nk

j from each of the contending regions
that is asymptotically optimal for maximizing the probability of selecting the contending region with the
lowest true quantile.

5 NUMERICAL RESULTS

In this section we apply the algorithm described in Section 2 to three test functions in order to demonstrate
the effectiveness of the algorithm with the OCBA scheme. The test problem is formulated as

minx∈S f (x) (3)

where S is a square domain and the three different test functions f (x) taken from Ali et al. (2005) are
specified as:

1. General Sinusoidal Function: f (x) =− [A ·∏n
i=1 sin(xi− z)+∏

n
i=1 sin(B · (xi− z))] with A = 2.5,

B = 5, z = 30 in two dimensions on the domain S = {[0,180], [0,180]} with a true minimum at
(90,90) with value −3.5.

2. Rosenbrock Function: f (x) =∑
n−1
i=1 [100 ·

(
xi+1− x2

i
)2
+(xi−1)2] in two dimensions on the domain

S = {[−2,2], [−2,2]} with a true minimum at (1,1) with value 0.

3. Ackley’s Function (Problem): f (x)=−20·exp
(
−0.02

√
n−1 ∑

n
i=1 x2

i

)
−exp

(
n−1

∑
n
i=1 cos(2πxi)

)
+

20+ e in two dimensions on the domain S = {[−32.768,32.768], [−32.768,32.768]} with a true
minimum at (0,0) with value 0.

The first numerical experiment compares the performance of the quantile-based nested partition algorithm
under two different sampling schemes that determine the values of Nk

j . The first sampling scheme uniformly

allocates an equal division of the budget to each region, i.e., σ k
j gets ceil

(
T

‖Σcontend(k)‖

)
new samples. The

second sampling scheme is the OCBA scheme, where Nk
j is determined by the equations developed in

Section 4. For OCBA, we use a sectioning approach with size of 20 samples to approximate the variance
of the quantile estimator.

In order to evaluate the performance of the algorithms, we allocate a budget T = 1200 for each iteration,
M = 6 as the number of divisions via branching, and δ threshold 0.05, and K = 6. We allow the algorithm
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Figure 2: The minimum sampled point (left) and minimum quantile (right) plotted against the total number
samples for the sinusoidal function. The plots for the uniform (broken line) and OCBA sampling (solid
line) are both shown.

to make 5 branching operations before hitting an unbranchable region which means the lengths that define
the unbranchable set are (ε1,ε2) = (5,0.8333) for the sinusoidal function, (ε1,ε2) = (0.1111,0.0185) for
the Rosenbrock function, and (ε1,ε2) = (1.8204,0.3034) for the Ackley function. To measure consistent
performance we report the average incumbent minimum value ( f B

k ) and the average best contending quantile

estimate
(

ŷ
(

δ · vmin(k)
v(σB(k))

)
,σB(k)

)
across 20 replications and plot the values relative to the number of samples

taken at every iteration. The results for the algorithm run with equal allocation of budget (uniform sampling)
and run with the OCBA sampling for the three test functions are shown in Figures 2, 3, and 4.

Generally, the numerical results demonstrate that the algorithm converges to a near-optimal value
(relative to the target quantile), and the OCBA sampling scheme performs better than the algorithm paired
with an equal allocation sampling scheme. For all three test functions, the best contending quantile estimate
at each iteration for both sampling schemes are almost identical. However, generally the algorithm paired
with OCBA shows a lower minimum incumbent value f B

k . For the sinusoidal function in Figure 2, the
OCBA algorithm develops lower values at early iterations and then tapers off after it locates the region
with lowest quantile. For the Rosenbrock function in Figure 3, the opposite behavior is observed with the
OCBA making mis-allocations early on and then developing better solutions at later iterations. The OCBA
version of the algorithm consistently develops better incumbent points across all iterations on the Ackley
function in Figure 4. Further testing will be done for different test functions.

To further explore the performance, we compared the quantile-based nested partition method (with
uniform and OCBA sampling) to two other variations of nested-partition method: one that branches based
on the sample mean in a region (i.e., estimated expected value over a region); and the other that uses the
minimum-sampled value in a region.

We examined the performance of each of the four variations on the three test functions in 4 dimensions.
To account for the additional resources needed for a 4-dimensional problem, we set new parameters
δ = 0.0005, T = 10000, K = 20 and maximum branching equal to 10. Running 20 replications we plot the
average minimum values for the four variations and the three test functions in Figure 5. For the sinusoidal
and Ackley’s test functions, the quantile-based algorithm with the OCBA sampling scheme converges to
a near minimum value with lower (better) points at the same iteration than the other variations. For the
Rosenbrock function, the OCBA scheme does not consistently produce better performance results. The
performance of the quantile-based nested partition algorithm with uniform sampling is shown to be generally
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Figure 3: The minimum sampled point (left) and minimum quantile (right) plotted against the total number
samples for the Rosenbrock function. The plots for the uniform (broken line) and OCBA sampling (solid
line) are both shown.

Figure 4: The minimum sampled point (left) and minimum quantile (right) plotted against the total number
samples for the Ackley function. The plots for the uniform (broken line) and OCBA sampling (solid line)
are both shown.

comparable to the nested partition based on minimum values. However, the addition of the OCBA scheme
allows better performance in the case of the sinusoidal and Ackley’s function.

6 DISCUSSION

This paper has developed an algorithm for finding optimal points for a black-box function on a continuous
domain. The algorithm works within the framework of the nested partition method and uses a calculation
of an adjusted sampled quantile to determine the most promising region. The algorithm then subsequently
branches the most promising region in order to concentrate sampling in regions likely to contain global
optimal solutions. We are able to directly prove that the developed algorithm will find a region with the
lowest quantile with probability approaching 1 as the number of iterations goes to infinity. With a low
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Figure 5: The minimum sampled point for the three test functions in four dimensions with four variations:
the quantile-based nested partition with uniform and OCBA sampling schemes, and the nested partition
method using minimum and estimated expected value for determining the most promising subregion.

enough quantile threshold, we prove that the region found will contain the true global minimum with
probability approaching 1 as the number of iterations approach infinity.

The paper then determines an optimal sampling scheme at each iteration in order to maximize the
probability of selecting the region with lowest adjusted quantile. Based on asymptotically normal properties
of the quantile estimator, we derive sampling levels in each region that will maximize the probability of
selecting the most promising region as the number of samples approaches infinity.

With the developed OCBA scheme, we apply our algorithm to several common test functions to
demonstrate the effectiveness of employing the quantile-based nested partition algorithm. In all three cases
we show that the algorithm quickly converges to a near optimal solution and also that the application of the
OCBA budgeting scheme allows the algorithm to more efficiently reach near-minimum points. Comparison
with other nested-partition methods shows that the quantile-based algorithm can achieve better values for
selected problems.

Several extensions of the current algorithm might be developed in order to improve the quantile-based
nested partition algorithm. First, the algorithm could be modified in order to regroup previously branched
regions in order to avoid sampling in less promising areas. The proof developed in Theorem 1 might
be extended to this algorithm to show convergence. A second possible extension is to iteratively adjust
the quantile thresholds at each iteration of the algorithm. This modification would satisfy the condition
described in Theorem 2 in the limit while avoiding the problems of using extreme values to determine the
most promising regions early in the algorithm when the number of sampled points are low.
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