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ABSTRACT

STRONG is a response surface methodology based algorithm that iteratively constructs linear or quadratic
fitness model to guide the searching direction within the trust region. Despite its elegance and convergence,
one bottleneck of the original STRONG in high-dimensional problems is the high cost per iteration.
This paper proposes a new algorithm, RBC-STRONG, that extends the STRONG algorithm with the
Random Coordinate Descent optimization framework. We proposed a RBC-STRONG algorithm and
proved its convergence property. Our numerical experiments also show that RBC-STRONG achieves better
computational performance than existing methods.

1 INTRODUCTION

Simulation models are widely used to analyze manufacturing, financial, computer, and service systems.
One important function of these simulation models is to optimize the represented system through running
simulations. We refer such optimization problems as Optimization via Simulation (OvS). Generally speaking,
OvS is the problem of optimizing the expected performance of a stochastic system represented by a computer
simulation model. For a recent comprehensive review of OvS, please refer to Fu et al. (2005) and Chau
et al. (2014) .

The goal of this paper is to develop an efficient algorithm with cheap per-iteration cost to solve
large-scale continuous OvS problem. The problem we consider in this paper is to optimize an unknown
continuous function

min g(x) = E[G(x, w)]

where the underlying function g(x) is defined by a black-box oracle. We assume that g(x) can only be
estimated through running simulation experiments at a particular value x and its gradient information is
not available. The simulation output, G(X, ®), is a function of the decision variable x and stochastic effect
o, and gives an unbiased estimator of the oracle function g(x).

There are two main classes of methods for continuous OvS problem: direct and gradient method,
and metamodel method (Barton 2009). Stochastic gradient (SG), such as the well-known Robbin-Monro
method (Robbins and Monro 1951), and sample averaging approximation (SAA) methods (Verweij et al.
2003) are two of the best-known methods in the first class. The intuition of SG methods is the same as
gradient descent. At each iteration, SG methods obtain an unbiased gradient estimation and search along
this direction for a better solution. SG methods differ mainly in how to estimate the gradient. These
methods typically have inexpensive iterations, but slow convergence and high sensitivity on algorithmic
parameters, especially the step size (Kushner 2010). Moreover, SG methods may not converge in the
general case. SAA methods, however, take an average of the functions and gradient estimators to reduce
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the variance. SAA methods tend to be more robust with respect to parameters and converge much faster
at a cost of more expensive iterations. For a comprehensive review on SG and SAA, please refers to Kim
et al. (2015) and Kushner (2010) .

The second class, meta-model methods (Barton and Meckesheimer 2006, Barton 2009), however, does
not use gradient directly. It is indirect because meta-model methods approximate oracle function g(x) with
surrogate functions ¢(x). With proper configuration, these surrogate functions are inexpensive to evaluate
and easy to be updated and refined as the optimization progresses. Responses Surface Methodology (RSM)
(Myers et al., 2009), Stochastic Kriging (Ankenman et al. 2009) , and MRAS (Hu et al., 2007) are all of
this kind. Among these, RSM employs experimental design to build linear or quadratic local approximation
to g(x); stochastic Kriging interpolates oracle function g(x) using Gaussian process; and MRAS takes the
specific parameterized distribution family f(x) as the reference distribution to approximate g(x). Interested
readers may refer to Myers et al. (2009), Ankenman et al. (2009), Hu et al. (2008) for in-depth introductions
on these methods.

The new method proposed in this paper is a variant of STRONG (Stochastic Trust Region Response
Surface Convergent Method) (Chang et al. 2011, Chang et al. 2012, Chang 2015) . It employs the idea
of trust region method to search locally on a surrogate linear or quadratic model, which is approximated
by response surface methodology. STRONG is guaranteed to converge to a stationary point in probability.
Based on the STRONG framework, Chang (2015) proposed STRONG-X (X stands for relaxation) by
relaxing the assumption of the normality of randomness and replacing hypothesis test by ratio test. Since
STRONG-X is much more efficient and elegant compared with the original STRONG, in this paper,
we build our method based upon STRONG-X, and, for brevity, refer STRONG-X as STRONG without
distinguishing.

Notice that many, if not all, of these methods are intractable when the high dimension is an obstacle
for either estimating gradient computation in direct and gradient method, or updating surrogate functions
in metamodel methods. Recently, researchers proposed to apply coordinate descent method in direct and
gradient methods as a remedy to solve various large-scale optimization problems (Nesterov 2012, Wang and
Banerjee 2014). Coordinate descent method is among the first optimization methods studied in literature,
but until recent study in large-scale problem it has not received much attention (Wright 2015).

For large-scale optimization problems, as working with all variables at each iteration may be costly,
difficult or impossible, coordinate descent methods partition variables into manageable blocks and solve
optimization problems by successively performing approximate minimization by focusing a single block
only. This often drastically reduces the cost-per-iteration, making BCD methods simple and scalable. Both
for their conceptual and algorithmic simplicity, BCD methods have been used in applications for many years,
and their popularity continues to grow for their usefulness in training support vector machines in machine
learning, Lasso, optimization, compressed image and so forth (Tseng and Yun 2007, Wang and Banerjee
2014, Wright 2015). At each iteration, coordinate descent method chooses one block of coordinates to
sufficiently reduce the objective value while keeping all other blocks fixed. The main differences in all
variants of coordinate descent methods consist in the criterion of choosing which coordinate to optimize
at each iteration. Three most commonly used criteria in coordinate descent method are cyclic, random,
and greedy descent coordinate search. Recent complexity result on these criteria were obtained by Xu
and Yin (2015) . However, for cyclic coordinate descent, it is difficult to prove convergence, and almost
impossible to estimate the rate of convergence. Greedy descent coordinate search assumes the knowledge
of explicit form of gradient, which is conflict with our black-box assumptions. Thus, we consider the
random coordinate descent method.

Note that Change et al. (2014) proposed STRONG-S to combine STRONG algorithm with factor
screening procedure in order to solve large-scale OvS problems with the assumption on the sparsity
of important variables. Chang et al. (2014) compared STRONG-S with the Simultaneous Perturbation
Stochastic Approximation (SPSA) and the Modified NelderMead method (MNM) and concluded the
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STRONG-S outperforms other methods in high-dimension scenarios. Thus, this paper uses STRONG-S as
benchmark in numerical comparison.

In this paper, we develop a random block coordinate descent STRONG (RBC-STRONG) method suited
for large-scale Stochastic Optimization problems. RBC-STRONG uses the coordinate descent method to
separate the variable space into several blocks and iteratively optimize within each block. At each iteration,
we randomly choose a block of variables and update this block using STRONG algorithm while fixing all
other blocks of variables. Given mild conditions that the underlying function is Lipschitz continuous in
each block, we show that RBC-STRONG converges to a stationary point in probability.

The outline of the paper is as follows. In Section 2, we formally state the research problem and its
assumptions, review the STRONG algorithm and the randomized block coordinate descendant method, and
then present the RBC-STRONG procedure. Section 3 gives the theoretical result on convergence rate. Then
we study a numerical example and compare the performance of our proposed algorithm with STRONG-S
in Section 4. We conclude with future research in Section 5.

2 THE RBC-STRONG ALGORITHM
2.1 Problem Definition
We consider a minimization problem with smooth but unknown objective function
min g(x) = E[G(x, w)]
st.xe 2

where x is the a N x 1 vector within the feasible region 27; g(+) : x — R" is a continuous function defined
by a black-box oracle; G(x, ) is the stochastic response and is assumed to be measurable and perturbed

by noise. Throughout the rest of the paper, we denote the scalar product by (x,y) =x’y and ||x|| = (XTX)%
for x,y € R, and make the following assumptions on g(x) and G(x, ®). Also, we use Kk with acronyms for
subscripts as notation for constant (Conn, Scheinberg, and Vicente 2009).

Assumption 1  The entire space R" is decomposable into n blocks

N:iM
i=1

and vector x of decision variables has the partition:

X = [x1,...,x,)7

Assumption 2 The objective function g(x) is bounded below and has block-coordinate Lipschitz con-
tinuous gradient, i.e. there are Lipschitz constants k7, > 0 such that:

IVig(x+Uihi) — Vig(X)|| < Kz, ||hll < ke ||hil| Vx € 27, e RN i=1,...,n

where K7 = max; Ky,.
Assumption 3  There exists a positive constant Ky, such that for every k the Hessian matrix Hy of all
estimations g(x) of g(x) satisfy
1 Hill < Ko ()
Assumption 4  The fitted model g(x) from response surface methodology is a (K., k.r)-fully linear
model of g(x) within the trust region Az, such that for |[s|| < Az,
IVg(x) = VE(x+5)|| < KegAr 2

lg(x) = g(x+5)|| < KkepAF 3)
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Assumption 1 and 2 are used in random block coordinate descent. Readers can find similar variants in
Tseng and Yun (2007), Patrascu and Necoara (2014), Xu and Yin (2015) . Under Assumption 1, [xy, ..., x,]”
are non-overlapping blocks of x. Let U; € RV*Ni be the ith blocks of the identity matrix corresponding to
ith block coordinates in X,

L, =[U1,...,U,]

Then we have x; = UiTx and x = Y? ;| Uix;. In addition, the ith block in the gradient of the function g
corresponding to x; can be denoted as
Vig(x) = U/ Vg(x)

Then, the model can be decomposed as

min g(X) = g(X],...,Xn) = E[G<x17"'7xn7a)>] (4)
st.x;e 2, i=1,2,...n (5)

where x; is in the closed feasible region 2; C RN and 2" = I, Zi.

Assumption 2 states that the partial gradients of g(x) with respect to each block coordinate descent
are Lipschitz continuous. Under the assumption 2 and the assumption that g(x) is smooth, Patrascu and
Necoara (2013) propose a variant of random block coordinate method and prove asymptotic convergence
for the sequence to stationary points and sublinear rate of convergence. Note that Patrascu and Necoara
(2013) assumes that knowledge of Lipschitz constants, L;, which are unknown under black-box context.

Assumption 3 asserts a uniform bound on the model Hessian matrix. This assumption, however, is
introduced for convenience. In the case of models that have large Hessian norms, we can simply replace
the Hessian with matrix of a small norm (Banderia et al., 2014).

Assumption 4 ensures the response surface methodology approximates the oracle function with good
accuracy. The definition of fully linear model is from Billups et al. (2013), Bandeira et al. (2014) . Notice
that this assumption is stronger than assumption 3 in Chang (2015) , which assumes that the stochastic
response G(x,®) can be expressed as

G(x, ) = g(x) + <Vg(xk), (x ka)> n %(x — X)) H (xH) (x — ) + £

where & is a random noise with zero mean, E(g,) = 0, and bounded variance, Var(gq) = 62 < oo.

2.2 Review of STRONG

STRONG is a sequential procedure that iteratively employs experimental designs to fit a polynomial surrogate
model in the trust region and uses the fitted model to find an optimal solution. Compared with the original
trust region method, STRONG considers random responses. STRONG contains three stages. In stage I,
STRONG approximates the underlying response surface with a first-order model. If the fitted model within
the trust region provides a satisfactory new solution, then the algorithm continues the search with linear
model; otherwise, the trust region will shrink. If the trust region becomes smaller than a user-specified
threshold, then the algorithm will switch to stage II, where a second-order model will be used. If the
second-order model fails to find a satisfactory solution, the algorithm will move to “Inner-Loop” and a
series of second-order models will be constructed with accumulated design points.

In STRONG, each iteration applies response surface methodology. At each iteration, STRONG runs
three steps: (i) fit a local model within the trust region, (ii) solve the following quadratic model, and (iii)
apply ratio test and update trust region.

. . ) 1o
min §(x* +d) = 2(x") + <Vg(xk),d> +5d"Hid ©6)
s.t. ||| < Ar (7
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where x* is the best solution after k iterations, V§(x) and H = V2§(x) are the estimated gradient and
Hessian matrix, and Ay is the trust region.

Although the new solution is optimal for surrogate model, it may not be so for the oracle function.
Thus, a ratio test is conducted to decide if the new solution is accepted or not. If the new solution is
accepted, the trust region will expend or remain the same; otherwise the trust region will shrink. To control
the error rate introduced by ratio test, STRONG requires the sample size of current and new solution N**!
to increase at a certain rate, N¥*! = {NZ‘ : lﬂ, where ¥ > 1 (Chang 2015)

STRONG, however, is not for large-scale scenario since it is expensive, if still possible, to fit a linear
or quadratic model when the dimension is high. Thus, we use Block Coordinate Descent method as a
remedy to apply STRONG in large scale scenario.

2.3 Random Coordinate Descent for STRONG

To fit the problem in random coordinate descent framework, we decompose the variable space into n blocks.
Instead of solving (6), we consider solving the problem

min g(x) (®)

s.t. ”le <Arpifori=1,..,n 9

The trust region radius Agz; are set in the following way: if the ith block of coordinates is chosen by RBC-
STRONG, then let Az, = Ar and A7, = 0 for j # i. Thus, this formulation is equivalent to the STRONG
optimization problem except that RBC-STRONG only optimizes one block of variables at one iteration.
We can also formulate it as an optimization problem with regularization terms:

min £(x) := 2(x) +Q(x)

where Q(x) is the box indicator function

0 if ||x|| <Ap Vi=1,...
Q(x) = { if ull <Ay Vi=1,..n (10)
o otherwise.
Notice that Q(x) is block-separable, meaning Q(x) =Y | Q;(x;), and thus, for computing new solution

for the ith block, we only need to consider the function Q;(x;). The framework of random block coordinate
is given in Algorithm 1.

An important property of our algorithm is that the direction d;, has the explicit expression since Q(x)
is a box constraint function:

di = |x, —H; 'V g(x") (1
Ar
where [x], is the orthogonal projection of vector x on the trust region A.

Partial gradient V;g(x) and partial Hessian matrix H;, are estimated through conducting an experimental
design around x. Notice that STRONG is a two-stage algorithm, where stage I fits a linear model and stage
II fits a quadratic model. Corresponding, in our proposed RBC-STRONG, we only estimate the partial
Hessian information H;, at stage II. For stage I, we set H; = 0.

For probability distribution p;, a general and robust choice of probability distribution p; is uniform
distribution, p; = % (Tseng and Mangasarian 2001, Wang and Banerjee 2014), where n is the number of
blocks. We take this approach for both theoretical convergence proof and numerical evaluations. Moreover,

Nesterov (2012) suggests choose random coordinate i € {1,2,...,n}with probability p; = anﬁ where
KL

Kkr,is the coordinate Lipschitz constants. This approach, however, is unrealistic for black-box problems.
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Algorithm 1 Random Block Coordinate Descent Procedure.
Inputs

1: Initial solution x° = (xJ,...,x9)
Steps

1: procedure RCB(x°)

2 for k=0,1,2,... do

3: Randomly pick a block of coordinate i, with probability p;, .

4

Update )/l-‘:rl with all other blocks fixed, x**! = x* + Ul{dl-k, where the direction d;, is given by

. 1
di, = argmin <Vikg(xk),sik> + =

T
iy 2 SikHik Sik + QAik (Sik)

5: end for
6: return x* = (X x4, ... %)
7: end procedure

2.4 RBC-STRONG Algorithm

RBC-STRONG, same as STRONG, is a sequential procedure that employs both the trust region method and
response surface methodology. The main difference is that RBC-STRONG applies random block coordinate
descent method to reduce the per-iteration complexity. For each iteration, RBC-STRONG conducts four
steps: (i) random pick block of coordinates i; (ii) use response surface methodology to fit a linear or
quadratic model g(x); (iii) solve for a new candidate and evaluate it through simulation; and (iv) apply
ratio test to the new candidate and update the trust region. The main structure appears in Figure 1, and the
detailed algorithm show in Algorithm 2.

Stage |
Linear Model

y
pick a block

Stage Il
Quadratic
Model

Figure 1: Main Framework of RBC-STRONG.

3 CONVERGENCE ANALYSIS

For general optimization problem, the first order necessary optimal condition is if x* € 2" is a local minimum,
then 0 € Vg(x*). Any vector x* satisfying this relation is called a stationary point. Our theoretical analysis
shows that under certain assumptions RBC-STRONG converges to a single stationary point by proving
that limy_,c HVg(Xk) H = 0 almost surely.

Before stating the theorem, we need an additional assumption that guarantees that the STRONG method
are able to adequately minimize the model at each iteration of our algorithm.
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Algorithm 2 RBC STRONG Main Algorithm.
Inputs

1: Initial solution x° = (x9,...,x9);

2: Initial trust region radius Ay, maximum trust region radius Anax, switching trust region radius Ay;
3: Trust region parameters 1o, N1, 71 and b O <Mo<Mm <land 0 <y <1< p);
4

: Sample size increasing rate ¥ and initial central sample size n,.

Steps
1: procedure RCBSTRONG(X®, Ay, Amax> Ass W, Nos N1s Y1s 1)
2 for k=0,1,2,... do
3 Random choose iy with probability p; = %;
4: if A;, <A, then
5: Fit a linear model g(x) = g(x*) + (Vg (x"),d);
6 else
7 Fit a quadratic model §(x) = g(x*) + (Vg (x}),d) + 1d" A,d;
8 end if
9 Solve for new candidate x**! = x* + Uikxik from 11;
10: Simulate (evaluate) G(x**1) for n. times to get G, (x*!)
11: Compute reduction ratio p* = °bse§2‘3i;‘fil}ervf(?uiﬁiﬁm‘)“ = G"}éﬁi:;:;@; )
12: if pk < no then
13: Reject X1, let XA =xk, A, = nA,
14: else if 19 < p* < n; then
15: Accept x*1
16: else
17: Accept x¥1 let AX = min{pA, }
18: end if
19: Update n, = [yn,]
20: end for
21:  return x¥ = (x4 xh)

22: end procedure

Assumption 5  For every k, and for all fitted model g(x;) from response surface methodology of oracle
function g(x;), we are able to compute a step d; such that

Kfcd

() = (" +di) > =7

|V (x")|| min{A, 'Vg(x"),Ar} (12)

for some constant x¢.; € (0,1]. We say in this case that d; has achieved a fraction of Cauchy
decrease.

This assumption is adapted from Conn et al. (2009), Billups et al. (2013), Shashaani et al. (2015). It
is trivial to show that this inequality holds automatically for linear model since the Hessian matrix Hy = 0.
For quadratic model, when xf.; = 1, the Cauchy step d; minimizes the fitted model g(x) along the gradient
direction Vg(x).

The first result demonstrates that the accumulated errors Y |8*(x*) — g(x*)| as well as the estimated
accumulated reduction Y, (¢¥(x*) — g1 (x*1)) is bounded above.
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Corollary 1 Under assumption 1-5, for every realization of RBC-STRONG algorithm, with probability 1,

)
k=1
_ Ak-l-l(xk-»-l))

A direct observation from this corollary is that the estimated accumulated reduction } ;. , (gk (k) —¢
only differs from the true accumulated reduction Y5 (g(x*) — g(x**1)) by a constant.

Next two corollaries are crucial to the convergence of RBC-STRONG. Corollary 2 states that the trust
region radius converges to zero as long as the Cauchy decrease is achieved (assumption 5). Then we shows
in Corollary 3 that the fitted function gradient converges to the oracle function gradient almost surely,
implying our main result that the oracle gradient converges to zero.

g (M) — g(*)| < oo (13)

Corollary 2 Under assumption 1-5, for every realization of RBC-STRONG algorithm,

A, — 0 (14)

Corollary 3 Under assumption 1-5, for every realization of RBC-STRONG algorithm,

[Ve(x¥) — Vg (xh)[| 225 0 (15)

The main result of convergence is given by next theorem stating that the RBC-STRONG algorithm
approaches to a stationary point of the oracle function almost surely.

Theorem 4 Under assumption 1-5, for every realization of RBC-STRONG algorithm,
lim | Vg(x*)|| =0

k—>oo

4 NUMERICAL EXPERIMENTS

In this section, we conduct two sets of numerical experiments: (i) compare RBC-STRONG with the
STRONG-S method; (ii) test the performance of RBC-STRONG under different dimensions.

4.1 Test Problems

We use three functions as oracle function and add random noises to the oracle for simulation output.
The first test function is the extended Rosenbrock function

p
g(.):Z[lOOX (xi—x%71)2+(xi_1 —1)2] (16)
i=2
The Rosenbrock function is well known as a difficult minimization function. The extended Rosenbrock
function is a multimodal function when the dimension p > 4. It achieves global minimum, 0, when
x =[1,1,...,1], and contains at least one local minimum near x = [—1,1,..., 1].
The second function is the Freudenstein and Roth function.

p/2
g() = Z[—13 +X2i—1 + ((5 —xzi)le' — 2)x2,~]2 + [—29 +x0i1+ ((X2i + 1)X2,' — 14)X2i]2 17
i=1

Freudenstein and Roth function is also a multimodal function when p > 2. The global minimum value 0
is achieved at x = [5,4,5,4,...,5,4,...].
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The third function is the Beala function.

p/2
g() =Y [1.5—xpi 1 (1 —x2i)]* +[2.25 —x2-1 (1 —x3;)* 4 [2.625 —x2i—1 (1 — x3))]? (18)
i
Same as the aforementioned functions, the Beala function is multimodal. It is minimized at O when
x = [3,0.5,...]. Also, it has multiple local minimums.
We consider a variance structure £(x) ~ N(0,a” - g(x)) where a = 0.1 is a constant and g(x) is the
oracle value.

4.2 Algorithm Configuration

For fair comparison, we use the same STRONG configuration as Chang et al. (2014), except that we
magnify the trust region size adjustment parameters, ¥, and 7, because their scaling effects are weakened
by decomposition in RBC-STRONG. Table 1 does not list all parameters for STRONG-S; interested readers
may refer to Chang et al. (2014) for more information.

Table 1: Parameter Setting for STRONG.

Parameters | np ng Ao Agwiren Amax Mo m " Y. block size
Settings 32 2 0.2 5 0.01 030 08 1.2 5

At each iteration, RBC-STRONG randomly select a (block of) coordinate from probability distribution
pi. Our convergence result is based on the uniform distribution, where p; = % For numerical evaluation,
we proposed another distribution: p; o< A;, where A, is the trust region radius of the ith block. The intuition
is that the larger the radius, the more likely the function value reduces. We call these two choices of p; as
uniform and weighted, respectively.

4.3 Comparing with STRONG-S

This section is to compare RBC-STRONG with STRONG-S when the dimension p = 200. Chang et al.
(2014) uses ~optimality gap”, OG, as performance criteria. This experiments, however, uses the optimality
distance g(x*) — g(x*), in which x* is the true optima of the objective function and x* is the solution
returned by algorithms after k iterations. Notice that these two criteria are the same except that OG is
normalized by the initial distance g(x°) — g(x*).

Table 2: Compare RBC-STRONG with STRONG-S.
| Oracle function | RBC-STRONG method | RBC-STRONG g(x*) —g(x*) | STRONG-S g(x)—g(x*) |

Uniform 3084
Rosenbrock Weight 2608 69313
Uniform 7208
Beala Weight 6568 140093
Freudenstein Uniform 26062
and Roth Weight 26210 45676

We run RBC-STRONG (uniform and weighted) and STRONG on each testing problem for 50 macro-
replications with the fixed initial solution, x° = [20,20,...,20]. For each macro-replication, algorithm
terminates after consuming 20,000 function evaluations and returns the best solution been found g(x*).
The averages of these 50 macro-replications are reported in Table 2.
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Notice that RBC-STRONG and STRONG-S have different assumptions on the underlying models.
The table does not suggest that RBC-STRONG is superior and thus can replace STRONG-S, but rather to
demonstrate the efficiency and robustness of RBC-STRONG for large-scale OvS problems.

4.4 Dealing with Dimensionality

RBC-STRONG is proposed to deal with large-scale OvS problems. It is, therefore, natural to ask how it
performs as the dimension increases. To address this question, we use the same parameter configuration
as in Table 1 and vary the dimension from 20 to 200. Table 3 reports the average function values as well
as the optimization gap.

Table 3: Deal with Dimensionality.

. . . Uniform Weight

Oracle function Dimension 2(xh) — g(x*) 0G 2(xk) — g(x*) 0G
20 773.63  7.56302E-07 967.84 9.47741E-07
40 2450.29 1.19897E-06 2431.50 1.18883E-06
Freudenstein and Roth 80 6903.15  1.68956E-06 7575.83  1.85088E-06
120 10864.65 1.77164E-06 11852.46 1.93503E-06
160 16193.38  1.98061E-06 17821.08  2.17754E-06
200 26062.47 2.55016E-06 26210.17  2.56586E-06
20 63.00 2.45790E-10 97.82 3.81392E-10
40 107.25  2.08936E-10 101.36  1.97240E-10
Beala 80 411.47 4.00799E-10 47275 4.60041E-10
120 1751.90  1.13948E-09 1498.55  9.73092E-10
160 2055.57  1.00064E-09 2596.58 1.26707E-09
200 7208.70  2.80660E-09 6568.62 2.55922E-09
20 94.60 3.45167E-07 45.88 1.67147E-07
40 345.02  6.12302E-07 139.76  2.47548E-07
Rosenbrock 80 711.26  6.23565E-07 280.15 2.45528E-07
120 1140.00  6.63406E-07 1032.06  6.00675E-07
160 1753.63  7.63370E-07 179891 7.81348E-07
200 3084.22  1.06981E-06 2628.33  9.22853E-07

A closer look at Table 3 reveals two interesting findings: (i) the optimization values g(x*) are approx-
imately proportional to dimensions p, (ii) the optimality gaps are roughly of the same order. Although
convergence rate of coordinate descent is hard to prove, from this table, we speculate that RBC-STRONG
approximately achieves convergence rate at O(p/n), whereas RSM converges at the rate of O(p* /n), where
n is the simulation effort and x ~ 2.

5 CONCLUSION AND FUTURE RESEARCH

In this paper, we proposed the RBC-STRONG algorithm to extend STRONG algorithm for the large-
scale continuous variable black-box optimization problem. STRONG provides a powerful engine for OvS
problems while it fails to handle large-scale problems due to the huge increase in per-iteration cost as the
dimension hikes. Random coordinate descent, on the other hand, reduces the searching space dimension
and thus forces STRONG algorithm to focus on small scale subproblem. Nevertheless, we substantially
simplified the STRONG implementation by removing the inner loop in STRONG. So far, we proved the
convergence properties of RBC-STRONG and demonstrated the efficiency in numerical evaluations. For
future research, we identified four opening questions and research directions: (1) Convergence rate. Proving

623



Wang, Wan, and Chang

convergence of BCD algorithms for minimization of non-convex objective functions is challenging (Richtrik
and Tak 2012). We speculate the convergence rate of RBC-STRONG will be the same as STRONG in
worst case scenario. (2) Regularization function. Trust region methods can be viewed as optimization with
box-constraint function as regularization functions. In this perspective, other regularization forms, such as
Lasso or Ridge regularization, may also be helpful (Wang and Banerjee 2014). (3) Shashaani et al. (2015)
proposed an adaptive sampling schedule for trust region method. This new schedule is more economic and
thus worth following. (4) Distributed algorithm. Due to the separability and randomization, the algorithm
is adequate for distributed and parallel environments (Richtrik and Tak 2015).
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