
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

SIMULATION OPTIMIZATION FOR A LARGE-SCALE BIKE-SHARING SYSTEM

Nanjing Jian
Daniel Freund

Holly M. Wiberg
Shane G. Henderson

Operations Research & Information Engineering
Cornell University

Ithaca, NY, 14853, U.S.A.

ABSTRACT

The Citi Bike system in New York City has approximately 466 stations, 6074 bikes, and 15777 docks.
We wish to optimize both bike and dock allocations for each station at the beginning of the day, so that
the expected number of customers who cannot find a bike, or cannot find a dock to return a bike, is
minimized. With a system of this scale, traditional simulation optimization methods such as stochastic
gradient-search and random search are inefficient. We propose a variety of more efficient gradient-like
heuristic methods that can improve any given allocation based on a discrete-event simulation model of the
system. The methods are tested on data from December 2015 with different starting solutions obtained from
other models. We further explore the relationship between the system behaviors during the morning and
afternoon rush hours by comparing optimal solutions when the problem is restricted to these two periods.

1 INTRODUCTION

Citi Bike in New York City (NYC) is a large-scale bike-sharing system where a customer can check out a
bike from any station and return the bike to any other station. Due to time-varying demand, this freedom
of movement of bikes creates unbalanced flows in the system. For example, many customers ride bikes
from residential areas to the financial district during the morning rush (6-10am) and reverse their origin
and destination in the afternoon. Citi Bike relocates bikes in the system, both overnight (12-6am) and
throughout the day. Overnight rebalancing operations can move many more bikes than during the day due
to traffic congestion. We are interested in how many docks should be assigned to each station and, based
on that dock assignment, how many bikes should be allocated to each station at the beginning of the day.

This optimization problem is an extension of the rebalancing problem in the bike-sharing literature,
in that we attempt to rebalance docks in addition to bikes. Insight into the rebalancing problem has been
obtained by Fricker, Gast, and Mohamed (2012) and Fricker and Gast (2014) using mean-field analysis,
showing, e.g., that in a system with perfectly balanced inflows and outflows at each station, that the optimal
number of bikes is equal to half the combined station capacities plus the number on trips. Work that is
more operational includes Henderson, O’Mahony, and Shmoys (2015), O’Mahony (2015) and O’Mahony
(2015) where the CTMC model we refer to later is developed. Raviv and Kolka (2013) and Raviv, Tzur,
and Forma (2013) develop a solution to bike (only) repositioning. Based on this work, Forma, Raviv, and
Tzur (2015) develop a practical recipe for bike repositioning. Schuijbroek, Hampshire, and van Hoeve
(2013) develop related integer programming models for repositioning bikes (only). Shu et al. (2013) use
a time-space formulation that is more detailed than our models. Chemla, Meunier, and Calvo (2013), and
Rainer-Harbach et al. (2013) are examples of other repositioning algorithms.

We use discrete-event simulation to model the bike-sharing system, and thus we tackle the rebalancing
problem over bikes and docks as a simulation-optimization problem. Ideally, we would apply standard

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 602

Jian, Freund, Wiberg and Henderson

simulation-optimization methods to solve the problem, but as discussed in Jian and Henderson (2015)
this seems computationally infeasible. In particular, the optimization problem (1) over 466 stations is
an integer-ordered optimization problem with 932 decision variables. The scale of this problem renders
methods based on random search principles unlikely to be effective. Indeed, since the numbers of bikes
and docks are fixed, any local moves likely involve moving bikes and/or docks between randomly selected
pairs of stations, and there are over 100,000 such pairs of stations. Moreover, if one attempts to perform a
variant of gradient search where the gradients are estimated by finite (integer) differences, then each step
of such an algorithm would require simulating 932 “neighboring” configurations (if forward differences
are used).

These computational demands seem, to us, to be impractical. We instead develop heuristic search
procedures that use statistics from a single simulation run in order to update the allocation of bikes and
docks between stations. Our methods build on the heuristic introduced in Jian and Henderson (2015) for
allocating bikes to satisfy only the morning rush demand, to allocate both bikes and docks for a full day’s
operations. We exploit the simulation and use station-specific information from it to group the stations
according to their estimated contributions to the objective. This “contributions” can reasonably be viewed
as approximate gradients, but we make no claim that our approximate gradients are accurate or unbiased,
nor do we claim that we find a locally optimal solution. We instead see the value of these algorithms in
the improvements they can make in performance relative to that of starting solutions.

In obtaining the station-specific information and generating a search direction, we are using the simulation
as a “white box” that provides significantly more information than just the final performance estimate that is
the starting point for more traditional “black box” approaches. By grouping stations using that information
we have also reduced the dimensionality of the problem. These can be invaluable in search algorithms for
large-scale simulation optimization problems.

We offer two primary contributions. First, we demonstrate a practical simulation-optimization approach
to improving bike and dock allocations in bike systems that can tackle the large-scale instances seen in
practice. Second, we (strive to) increase the attention of the simulation-optimization research community
on large-scale practical problems that defy solution by existing simulation-optimization algorithms. In
doing so, we hope to inspire algorithmic developments in simulation optimization on sub-classes of
simulation-optimization problems.

2 PRELIMINARIES

This section introduces the problem and its input data, the discrete-event simulation model we use, and
some alternatives for obtaining starting solutions for the simulation-optimization search. Parts of Sections
2.3, 2.4.2, and a time-homogeneous version of 2.4.3 are recaps of a discussion in Jian and Henderson
(2015).

2.1 Problem Statement

Our goal is to minimize the expected number of “unhappy” customers who want to check out a bike when
a station is empty or return a bike when a station is full, by giving an initial bike allocation xi and dock
(capacity) allocation ri at each station i. We assume that the total number of bikes b and the total number
of docks c is fixed in the system. The level of bikes xi assigned is constrained by the capacity ri, and the
capacity ri is constrained between 16 and 60 by physical space limits at the station. (This latter restriction
is a simplification, since the actual space limits vary from station to station.) In practice in NYC, docks
mostly come in sets of 3, but we ignore that complication in the work that follows. We use ξ to denote the
random objects in the system, including the random arrivals and departures of customers at each station
as well as the trip durations, so the notation accommodates for the use of Sample Average Approximation

603

Jian, Freund, Wiberg and Henderson

(Kim, Pasupathy, and Henderson 2014). Thus the problem can be formulated as

minimize
x,r

E f (x,r;ξ)

subject to ∑
i

xi = b

∑
i

ri = c

0≤ xi ≤ ri, ∀i
16≤ ri ≤ 60, ∀i
xi,ri integer, ∀i.

(1)

The function f yields the exact number of unhappy customers in one day, and we estimate its expectation
using simulation.

2.2 Input Data

We use real trip data from the 14 weekdays in the period December 1 to 20, 2015. We selected this
time period because Citi Bike completed its most recent expansion up to 86th Street by November 2015
(CitibikeNYC). This period excludes the lower demands seen on weekends and during the holiday season
starting from December 21. During December 1 to 20 there were 466 active stations in Manhattan and
Brooklyn, with a total capacity of ∑i ri = 15777 docks. The number of bikes used is approximately b= 6074.
The daily number of trips in this period was 31,400, which is lower than the August average of 45,000,
presumably because of cold weather. We subsequently adjusted the rates by a multiplier of 1.5 to align
our data to an average non-winter month after expansion.

The input data used in the simulation consists of the flow rates between pairs of stations and the trip
durations. The flow rates are taken to be piecewise constant over each of the 48 30-minute time intervals
throughout the day, and are estimated from the data. The flow rate µt,i, j in time interval t, t = 1, . . . ,48
from station i to j is calculated from the total number of observed trips from station i to j in that interval,
divided by the time that the station is not empty. (This accounts for the censoring that happens when no
bikes are available, but does not account for the censoring that happens when a biker tries to return a bike
to a full rack and must go to an adjacent station.) The trip durations are obtained using linear regression,
fitting the log of the trip durations seen in data to the log of the predicted cycling durations from Google
Maps. Figure 1 shows a scatter plot in log scale with the fitted regression line (right plot) on 85% of the
data inside the central ellipse (left plot).

2.3 Discrete-Event Simulation Model

We adapt an existing simulation model (O’Mahony 2015) written in Python that operates in discrete time
(minute by minute). The arrival process of potential bikers at stations are independent across stations,
and at each station i is a time-varying Poisson process with rate µt,i = ∑ j µt,i, j in time interval t, with the
arrival times rounded to the nearest minute. The destination of a biker leaving station i in time interval t
has a multinomial distribution with the probability of going to station j estimated by Pt,i, j = µt,i, j/µt,i. The
associated trip duration Ti j is lognormally distributed with parameters obtained from the regression model
above, and also rounded to the nearest minute.

The system evolves as follows. In each new minute we generate and schedule the trips starting in that
minute from each station i and assign a destination and duration to each trip. Next, all the trips scheduled to
arrive or depart a station in this minute are executed as follows. If a departing trip cannot start now because
the origin station i is empty, the customer leaves the system and the trip is recorded as a “failed-start”.
If an arriving trip cannot end because the destination station j is full, the state “failed-end” is triggered,
and a new trip heading from j to the nearest station is scheduled. Customers make at most 3 attempts to

604

Jian, Freund, Wiberg and Henderson

Figure 1: The regression line is ln(observed) = 0.93ln(google)+0.53+ε), where ε is normally distributed
with mean 0 and variance 0.066. The R2 value of the fit is 0.806. Durations are measured in seconds.

return a bike, at which point we label the final trip as a “bad-end,” which happens rarely (less than 1% of
the trips). With this simulation model, the objective in (1) is

min
x

f (x) = Ex[#failed-starts]+Ex[#failed-ends]+Ex[#bad-ends], (2)

where each expectation is estimated using sample-average approximation over a fixed set of replications
of the simulation model.

We have sped up the basic model by a factor of approximately 40% by generating trips in 30-minute
batches and using conditional uniform occurrences to generate the Poisson arrival processes. The time
required to simulate one replication of an 18-hour day (assuming nothing happens from 12-6AM in which
only 2.4% of the daily trips occur) is around 1.4 seconds on a desktop with 4-core Intel Core i7-3770 CPU
3.40 GHz processor, 16G memory, and Ubuntu 14.04 OS.

2.4 Starting Solutions for the Simulation Optimization

We introduce three alternative methods to generate starting solutions.

2.4.1 An Equal Allocation Solution

With the current capacity at each station fixed at its true value as of December, 2015, a naı̈ve solution is
to allocate some bikes to every station in proportion to its capacity. This solution does not take the flows
in and out of stations into consideration, and so suffers from flow imbalances.

2.4.2 A Fluid Model Solution

Now consider flow rates but ignore randomness, so that in period t customers drop off bikes at station i
with constant rate λt,i = ∑ j µt, j,i and pick up bikes at the same station with constant rate µt,i. (For simplicity
we assume that the trip durations are 0.)

The key idea is to calculate the minimum level of bikes and docks to start the day with so that the
objective is 0. To achieve that, suppose the level of bikes in station i at minute q in the day Yi(q) is not
constrained by 0 or the capacity. Then given any starting bike allocation xi, Yi(q) is equal to the initial
level xi, plus the net flow of bikes in all the complete 30-minute intervals before q, and the net flow in the
last less-than-30-minute interval that contains q. That is,

Yi(q) = xi +

(
bq/30c

∑
t=1

30(λt,i−µt,i)

)
+(q−30bq/30c)(λq,i−µq,i).

605

Jian, Freund, Wiberg and Henderson

To avoid cost when the station is empty or full, in a perfect world we would start with x̂i = xi−minqYi(q)
bikes and capacity r̂i = maxqYi(q)−minqYi(q) docks so there are sufficient bikes and docks throughout
the day. Figure 2 gives an example of this “ideal” solution.

Figure 2: The bike level in an 18-hour day for the fluid model. The blue curve starts with 0 bikes, with
lowest and highest levels of -45 and 54. The red curve starts with the “ideal” of 45 bikes and 99 docks.

Starting with the ideal x̂i and r̂i for all stations i would require many more bikes and docks than we
have. Therefore, after obtaining these ideal levels, we scale the dock allocations to ensure that we don’t
exceed our available capacity. In doing so, some care is required to account for the integer nature of the
dock allocations; we omit the details. A similar scaling is used for the bike allocations. An additional
complexity results when these unequal scalings result in a station receiving more bikes than its allocated
docks, but again we omit the details of our ad-hoc solution.

A shortcoming of the fluid model, noted in Jian and Henderson (2015), is that it allocates almost no
capacity to stations with nearly balanced inward and outward flow rates, irrespective of their magnitude.

2.4.3 A Continuous-Time Markov Chain Solution

Henderson, O’Mahony, and Shmoys (2015) use a very similar model to ours, and show that under the
admittedly very strong assumption that the objective function in our optimization problem is separable by
stations, i.e., decomposes into a sum of functions, where the function for each station depends only on
the inflow and outflow rates and the number of bikes and docks allocated to that station. The change in
the allocations at one station does not affect the inflow and outflow rates at its downstream and upstream
stations. This dramatic simplification, together with a result establishing that the objective function can be
extended to a piecewise-linear convex function, allows them to obtain bike and dock allocations by solving
a linear integer program. Their result only applies to the case where the flow rates are constant in time. An
extension of their result due to Freund, Henderson, and Shmoys allows us to solve the time-inhomogeneous
problem, albeit still under the “objective separable by stations” assumption. The solution thus obtained is
our third starting solution for simulation optimization.

3 SIMULATION OPTIMIZATION

In this section we suggest four simulation-optimization heuristics that can be used to solve (1) over different
time horizons and problem features. Each alternative is tested using the starting solutions in Section 2.4.
The structures of the heuristics are similar. In each iteration we generate a trial solution and evaluate it
with the discrete event simulation model in Section 2.3. If the trial solution improves the objective, then we
move to the solution; otherwise we stay at the last solution. We use common random numbers to evaluate

606

Jian, Freund, Wiberg and Henderson

each trial solution using 30 replications of the simulation. In generating the trial solutions, we treat the
simulation as a “white box,” exploiting gradient-like information that can be gathered inside the model.

Recall that in the objective function (2), “# failed-starts” is the number of trips that cannot start because
the origin station has no bikes, “# failed-ends” is the number of trips that cannot end because the destination
station has no empty docks, and “# bad-ends” is the number of trips in which the customer finally abandons
the bike after 3 failed attempts. Although “bad-ends” have serious consequences, they happen very rarely
(< 1% of the trips) and thus are ignored in our methods when generating trial solutions. We denote the
allocation of bikes (docks) at station i at the beginning of the day by x(i) (r(i)), where i is the station id
of one of the 466 stations. As a reminder, the total number of bikes in the system is b = 6074, and the
capacity at each station is the status-quo as of December 2015.

3.1 Simulation Optimization Heuristics to Optimize Bike Allocations

First, consider a simpler problem that only optimizes the bike allocation x for a fixed capacity r equal to the
status-quo of December 2015 by treating r in (1) as an input parameter. We start with a simple heuristic that
optimizes the bike allocation only considering the morning rush (6-10am), similar to the one introduced in
Jian and Henderson (2015), then turn to optimizing over an 18-hour day (6-12am). We disregard 12-6am
because only 2.4% of the daily trips occur in that interval.

3.1.1 Optimizing Bike Allocations for the Morning Rush-hour

Suppose for now we are only optimizing the objective (2) over the morning rush (6-10am).
From m replications (days) of the 6-10am simulation with x as the initial allocation, we can estimate the

objective evaluated at x from the counts of the failed-starts and failed-ends over all replications. Suppose
we also obtain the list of stations where the failed-starts and first attempts of failed-ends (not including
later attempts when the destination station is full) arose. Define the ordered list statE(x,m, `) (we will
suppress the arguments) as origin stations with the top ` # failed-starts, and statF(x,m, `) as the destinations
with the top ` # failed-ends. We expect that the statE stations have many failed-starts because they are too
empty at 6am, whereas the statF stations have many failed-ends because they are too full at 6am. Thus,
increasing the initial bike level x at a station in statE and decreasing it at a station in statF should decrease
the # failed-starts and the # failed-ends in (2). This is mostly true for the morning rush-hour period, but is
flawed if we are optimizing over the entire day, as discussed in Section 3.1.2. The method swaps w bikes
between two randomly selected stations in these lists as described in Heuristic 1.

We use m = 30 replications. The list size for statE and statF is `= 20. The number of bikes allowed to
move from/to each station in each iteration w is changed adaptively along the iterations. Initially w = 3, and
whenever a consecutive of 100 iterations (100 trial solutions) cannot improve the objective, w is reduced by
1. When starting with a solution closer to optimality (like CTMC), w can be adjusted to start from 1, but
here we keep it consistent for all starting solutions just for the fairness of comparison. The initial solution
x0 and the terminating one are evaluated with 50 and 100 independent replications, respectively, to obtain
an independent estimate of the objective-function value, independent of the replications used in the search.
We choose to stop the heuristic when it fails to improve the objective for 200 consecutive iterations (trial
solutions generated).

The heuristic is tested from the proportional-allocation solution and the CTMC solution, giving Figure
3, in which the x-axis is the number of simulated days (replications), and the y-axis is the objective. The
equal allocation solution starts with a 95% confidence interval for the objective of 4673±35 and ends at
2775±22. The CTMC solution starts with an objective of 2276±30 and ends at 2236±22. The heuristic
makes great improvements to the equal allocation solution (42%), but not much to the better CTMC solution
(2%).

607

Jian, Freund, Wiberg and Henderson

Heuristic 1 Optimizing x for the morning rush.

Require: A starting solution x0. The list size ` for statE and statF. The random seed for the simulation
(daySeed). Number of replications m for the simulation. Number of bikes w allowed to move to/from
each station in each iteration.

1: initialize Set k = 1. Run simulation to evaluate x0 and obtain the initial statE and statF.
2: repeat
3: procedure GENERATE TRIAL SOLUTION

4: Randomly choose sE from statE and sF from statF such that xk−1(sE)+w≤ r(sE) and xk−1(sF)−
w≥ 0.

5: Generate trial solution x′ by add w bikes to sE and removing w bikes from sF based on xk−1.
6: procedure SIMULATE AND EVALUATE

7: Set random seed = seed.
8: Evaluate x′ using the sample average of the objective in (2) over m replications of simulation.
9: if x′ shows improvement in the average objective then

10: Set xk = x′ and let k = k+1. Record statE and statF from the simulation.
11: else
12: Go back to generate another trial solution.
13: until Stopped.

Figure 3: The objective of running Heuristic 1 starting from the equal allocation and CTMC solutions.
The left one is the comparison of the two, and the right one is CTMC only on a magnified scale.

3.1.2 Optimizing Bike Allocations for the Entire Day

Consider the same bike-allocation-only problem as above, but instead evaluating the objective over an
18-hour day. When we use Heuristic 1, changing only the simulation period to 18 hours, the method
was not able to find improvement for a long time. One of the problems is that most stations behave very
differently in the morning and in the afternoon, but statE and statF are still chosen based on the counts of
failed starts and failed ends over the entire day. If a station in statE has many failed starts in the morning,
then adding bikes to the station at the beginning of the day helps in reducing the objective. However,
consider a busy station in statE that fills in the morning and then empties in the afternoon. Adding bikes to
this station at the beginning of the day makes # failed ends in the morning worse. Meanwhile, because the
station starts to empty at the same time irrespective of adding bikes or not, it does not help to reduce the
count of failed starts in the afternoon. Indeed, the sample path for the increased allocation of bikes couples

608

Jian, Freund, Wiberg and Henderson

with that of the previous allocation once the bike level hits 0 or the capacity. A symmetric problem arises
with stations in statF that empty out in the morning and fill up in the afternoon; reducing their bike levels
at the beginning of the day would increase the objective instead. Moreover, these stations with both failed
starts and failed ends are typically those that have large traffic, e.g., near Penn Station, and thus contribute
heavily to the objective.

To adjust Heuristic 1 to address this issue, we define the following 7 types of stations, with illustrations
in Figure 4.

1. statEA: the stations that are empty in the morning and not full in the afternoon.
2. statEP: the stations that are empty in the afternoon and not full in the morning.
3. statFA: the stations that are full in the morning and not empty in the afternoon.
4. statFP: the stations that are full in the afternoon and not empty in the morning.
5. statBI: the stations that are full in the morning and empty in the afternoon.
6. statBD: the stations that are empty in the morning and full in the afternoon.
7. statC: the stations that contribute the least to the objective by rarely being full or empty.

Figure 4: The bike levels for the example stations from the lists statEA, statEP, statFA, statFP, statBI, and
statBD (ordered from left to right in rows) over 10 replications. The x-axis is in time from 6-12am.

It appears that statEA, statEP, and statBI need more bikes in the morning, whereas statFA, statFP, and
statBD need fewer bikes in the morning. The stations in statC contribute the least to the objective, and
thus are used as “back-up.” This inspires Heuristic 2 that changes the method for generating trial solutions,
while keeping the rest of Heuristic 1 the same.

Heuristic 2 Optimizing x for the entire day.
1: procedure GENERATE TRIAL SOLUTION

2: Randomly choose a station stype from each of the list types {EA, EP, FA, FP, BI, BD}.
3: To generate trial solution x′ from xk−1
4: take w bikes from each of sFA, sFP and sBD,
5: give w bikes to each of sEA, sEP and sBI .
6: If any of the movements is not possible because of capacity restrictions, we substitute the station

by a random station in statC that allows the movement.

609

Jian, Freund, Wiberg and Henderson

With the same configurations of m, `, w, and the stopping criteria as in Section 3.1.1, Figure 5 depicts
the progress of this heuristic starting from the equal allocation and CTMC solutions. The equal allocation
starts with a 95% confidence interval of the objective of 12249±89 and ends at 10428±47 (-15%). The
CTMC solution starts at 9239±73 and ends at 9168±46 (-1%). The percentage difference between the
starting and ending objectives has decreased compared to when optimizing only over the morning rush,
suggesting that the 18-hour day problem with its time-flow complexities is more difficult than the rush-hour
problem.

Figure 5: The objective of running Heuristic 2 starting from the equal allocation and CTMC solutions.
The left plot is the comparison, and the right one is CTMC only on a magnified scale.

3.2 Simulation Optimization Heuristics to Optimize Both Bike and Dock Allocations

Now we return to the original formulation (1), solving for the allocations of both bikes and docks, initially
just over the morning rush and then for an 18-hour day.

3.2.1 Optimizing Bike and Dock Allocations for the Morning Rush-hour

To incorporate the movements of docks into Heuristic 1, notice that some stations in statE cannot receive
more bikes because they are already full. Increasing the capacity at such stations allows us to allocate
more bikes and thus reduces the # failed-starts. Similarly, some stations in statF start empty, so increasing
the capacity at such stations allows them to receive more bikes and thus reduces the # failed-ends. The
docks added to these two types of stations come from statC that is subject to the least amount of change
in the objective due to the loss of a dock or a bike. Thus we change the procedure for generating the trial
solution in Heuristic 1, giving Heuristic 3.

Heuristic 3 Optimizing x and r for the morning rush.
1: procedure GENERATE TRIAL SOLUTION

2: Randomly choose stations sE from statE and sF from statF.
3: To generate trial solutions (x′,r′) from (xk−1,rk−1),
4: if xk−1(sE)+w≤ rsE and xk−1(sF)−w≥ 0 then
5: Take w bikes from sF and give w bikes to sE.
6: else if xk−1(sE)+w > rsE and rk−1(sE)+w≤ 60 then
7: Take w docks and w bikes from a random station in statC and give them to sE.
8: else if xk−1(sF)−w < 0 and rk−1(sF)+w≤ 60 then
9: Take w docks from a random station in statC and give them to sF. Excess bikes will go to sE.

610

Jian, Freund, Wiberg and Henderson

This heuristic prioritizes moving bikes first, and if that fails, it moves docks to the stations that cause
the failure. With the same configurations of m, `, and w as in Section 3.1.1, Figure 6 gives the progress
of this heuristic starting from the equal allocation, the fluid model, and the CTMC solutions. The equal
allocation starts with a 95% confidence interval of the objective of 4690±45 and terminates at 1936±18
(-59%), the CTMC solution starts with objective of 1379±28 and ends at 1333±13 (-3%), and the fluid
model starts with objective of 1472±32 and ends at 1378±13 (-6%).

Figure 6: The objective of running Heuristic 3 starting from the equal allocation, the fluid model, and
CTMC solutions. The left plot is the comparison of all three, and the right one is the comparison between
the CTMC and the fluid model solutions on a magnified scale.

3.2.2 Optimizing Bike and Dock Allocations for the Entire Day

Now we make changes to Heuristic 2, which optimizes the bike allocation over the entire day, to allow
for dock movements. Similar to Heuristic 2, the following heuristic requires lists statEA, statEP, statFA,
statFP, statBI, statBD, and statC from the last solution (xk−1,rk−1).

With the same configurations of m, `, w, and the stopping criteria as in Section 3.1.1, Figure 7 gives
the objective change of this heuristic starting from the equal allocation, the fluid model, and the CTMC
solutions. The equal allocation starts with a 95% confidence interval for the objective of 12249±89 and
terminates at 8915± 47 (-27%), the CTMC solution starts with objective 6937± 122 and terminates at
6681±43 (-3%), and the fluid model solution starts with objective 7063±89 and terminates at 6865±44
(-3%).

Heuristic 4 Optimizing x and r for the entire day.
1: procedure GENERATE TRIAL SOLUTION

2: Randomly choose a station stype from each of the list types in {EA, EP, FA, FP, BI, BD}.
3: To generate trial solutions (x′,r′) from (xk−1,rk−1),
4: Move w docks from a random station in statC to sBI if rk−1(sBI)+w≤ 60.
5: Move w docks from a random station in statC to sBD if rk−1(sBD)+w≤ 60.
6: Try taking w bikes from each of sFA, sFP and sBD in xk−1. If any of the movements is not allowed

because the station is already empty, give the station w docks from a random station in statC.
7: Try giving w bikes to each of sEA, sEP and sBI in xk−1. If any of the movements is not allowed

because the station is already full, give the station w docks and w bikes from a random station in statC.

611

Jian, Freund, Wiberg and Henderson

Figure 7: The objective of running Heuristic 4 starting from the equal allocation, the CTMC, and the fluid
model solutions. The left plot is the comparison of all three, and the right one is the comparison between
the CTMC and the fluid model solutions on a magnified scale.

4 REMARKS

Our heuristics make local improvements to the objective, yielding practically relevant improvements over all
solutions, although the improvements relative to the (already apparently well-performing) CTMC solutions
are modest. The starting solution plays an important role, because the heuristics cannot close the gap to the
best solution we have seen. The heuristics are perhaps best viewed as using approximations for “gradients”
(for this integer-variables problem) to guide reallocations of bikes and docks.

All our heuristics move only a few bikes and docks in each iteration, making modest improvements with
every 30 replications of the simulation. An alternative is to compute an approximation for the improvements
in the objective with regard to all the possible changes (±w bikes, ±w docks, ±w bikes and docks) to any
of the stations in the system, based on simulation results from the current solution. Then we can match
up the improvements that reduce the objective the most, and try executing the associated changes while
keeping the total number of bikes and docks in the system the same (e.g. +w bikes at a station and −w
bikes at another, or +w bikes and docks at a station and −w bikes and −w docks at two other stations).
The computation of the impact of potential changes at all stations would be expensive, but this approach
could potentially move hundreds of bikes and docks in each iteration. We could follow that large-scale
redistribution with one of the heuristics in this paper for finer adjustments.

ACKNOWLEDGMENTS

We thank David Shmoys for his guidance and members of the research team Aaron Ferber, Jaffe Greenwald,
Austin Lin and Jasmine Yang for their assistance. The authors would also like to thank Motivate International
and New York City Bikeshare for their longstanding cooperation. This work was partially supported by
National Science Foundation grants CMMI-1200315, CMMI-1537394, CCF-1526067, and CCF-1522054.

REFERENCES

Chemla, D., F. Meunier, and R. W. Calvo. 2013. “Bike sharing systems: Solving the static rebalancing
problem”. Discrete Optimization 10 (2): 120 – 146.

CitibikeNYC. Accessed Apr. 28, 2016, http://www.citibikenyc.com/.
Forma, I. A., T. Raviv, and M. Tzur. 2015. “A 3-step math heuristic for the static repositioning problem

in bike-sharing systems”. Submitted for publication.
Fricker, C., and N. Gast. 2014. “Incentives and redistribution in homogeneous bike-sharing systems with

stations of finite capacity”. Manuscript.

612

Jian, Freund, Wiberg and Henderson

Fricker, C., N. Gast, and H. Mohamed. 2012. “Mean field analysis for inhomogeneous bike sharing systems”.
In Discrete Mathematics and Theoretical Computer Science Proceedings, 365–376.

Henderson, S. G., E. O’Mahony, and D. B. Shmoys. 2015. “(Citi)Bike Sharing”. Submitted for publication.
Jian, N., and S. G. Henderson. 2015. “An introduction to simulation optimization”. In Proceedings of the

2015 Winter Simulation Conference, edited by L. Yilmaz, W. K. V. Chan, T. M. K. Roeder, C. Macal,
and M. Rosetti, 1780–1794. Piscataway NJ: IEEE.

Kim, S., R. Pasupathy, and S. G. Henderson. 2014. “A Guide to SAA”. In Encyclopedia of Operations
Research and Management Science, edited by M. Fu, Hillier and Lieberman OR Series. Elsevier.

O’Mahony, E. 2015. Smarter Tools for (Citi)bike Sharing. Ph. D. thesis, Cornell University, Ithaca NY.
Rainer-Harbach, M., P. Papazek, B. Hu, and G. R. Raidl. 2013. “Balancing Bicycle Sharing Systems:

A Variable Neighborhood Search Approach.”. In EvoCOP, edited by M. Middendorf and C. Blum,
Volume 7832 of Lecture Notes in Computer Science, 121–132: Springer.

Raviv, T., and O. Kolka. 2013. “Optimal inventory management of a bike-sharing station”. IIE Transactions 45
(10): 1077–1093.

Raviv, T., M. Tzur, and I. Forma. 2013. “Static repositioning in a bike-sharing system: models and solution
approaches”. EURO Journal on Transportation and Logistics 2 (3): 187–229.

Schuijbroek, J., R. Hampshire, and W.-J. van Hoeve. 2013. “Inventory rebalancing and vehicle routing in
bike sharing systems”. Tepper School of Business Paper 1491.

Shu, J., M. C. Chou, Q. Liu, C.-P. Teo, and I.-L. Wang. 2013. “Models for Effective Deployment and
Redistribution of Bicycles Within Public Bicycle-Sharing Systems”. Operations Research 61 (6):
1346–1359.

AUTHOR BIOGRAPHIES

NANJING JIAN is a PhD student in the School of Operations Research and Information Engineer-
ing at Cornell University. Her research interests include the convexity detection of black-box func-
tions with noise and applications of simulation optimization to large-scale problems. Her web page is
https://people.orie.cornell.edu/nj227. Her email address is nj227@cornell.edu.

DANIEL FREUND is a PhD student in the Center for Applied Mathematics at Cornell University. His
research interests include discrete optimization and incentive design, in particular for applications related
to sharing and transportation. From June 2015 until May 2016 he worked as a Data Scientist for Moti-
vate International. His web page is https://people.cam.cornell.edu/df365/index.html. His email address is
df365@cornell.edu.

HOLLY M. WIBERG is a senior undergraduate student in the School of Operations Research and Infor-
mation Engineering at Cornell University. Her research interests include simulation optimization and data
analytics, with a focus on applications to healthcare. Her email address is hmw54@cornell.edu.

SHANE G. HENDERSON is a professor in the School of Operations Research and Information Engineering
at Cornell University. His research interests include discrete-event simulation and simulation optimization,
and he has worked for some time with emergency services and bike sharing applications. He co-edited the Pro-
ceedings of the 2007 Winter Simulation Conference. His web page is http://people.orie.cornell.edu/∼shane.
His email address is sgh9@cornell.edu.

613

