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ABSTRACT

Simulation is widely used to predict the performance of complex systems. The main drawback of simulation
is that it is slow in execution and the related compute experiments can be very expensive. On the other
hand, analytical methods are used to rapidly provide performance estimates, but they are often approximate
because of their restrictive assumptions. Recently, Extended Kernel Regression (EKR) has been proposed to
combine simulation with analytical methods for reducing the computational effort. This paper has different
purposes. Firstly, EKR is tested on different cases and compared with other techniques. Secondly, two
different methods for calculation of confidence band are proposed. Numerical results show that the EKR
method provides accurate predictions, particularly when the computational effort is low. Results also show
that the performance of the two confidence band methods depends on the case analyzed. Thus, further
studies are necessary to develop a robust method for confidence band calculation.

1 INTRODUCTION

The detailed design of a system configuration (e.g., production lines in a plant, the emergency department
in a hospital), usually requires that a large number of alternative solutions must be analyzed and evaluated.
Simulation and analytical methods are two classic and effective tools for system performance evaluation
in system design.

Analytical methods are frequently used to estimate the performance of stochastic systems. Queuing
theory and Markov chains are the most widely used frameworks under which analytical methods are
developed. In literature, a number of analytical methods are available for studying a specific system (Askin
and Standridge 1993, Buzacott and Shanthikumar 1993, Gershwin 1994, Papadopoulos et al. 2009, Li and
Meerkov 2008). Analytical methods can provide system performance estimates fast. Nevertheless, this
advantage is counterbalanced by the bias of the provided estimates. This is because approximations will
be introduced either in the system assumptions or in the mathematical derivation of the solution equations
to make analytical methods solvable for complex systems. In general, the more complex the system is, the
larger the approximation introduced in analytical methods.

Simulation is used when a high-accurate estimate of system performance is required. The accuracy of
simulation depends on the detail level of the model and the length of simulation runs. Simulation is also used
to quantitatively assess the bias of newly developed analytical methods. In this case, a design of experiments
(DOE) is developed by running simulation and analytical methods on a set of points sampled according
to some criteria. Then, deviations of analytical methods from simulation are calculated by considering
the simulation outputs as the benchmark. Simulation needs considerable effort to build models and it is
time-consuming to evaluate all the feasible solutions. To overcome this problem, regression techniques
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based on kriging or radial basis function, like Stochastic Kriging (SK) (Ankenman, Nelson, and Staum
2010) and Kernel Regression (KR) (Wand and Jones 1995), are often used. They can provide the estimates
of expected system performance at unknown points by using an empirical model built with the simulation
outputs of a DOE. Nevertheless, they usually require a large number of design points to perform well when
the underlying response surface is not smooth or the dimension of the input is high.

The estimates provided by regression techniques can be improved by combining simulation with
analytical methods. High-fidelity models (mainly simulation models) generate accurate measurements
of the system performance, whereas low-fidelity models (low accurate simulation models or analytical
methods) capture some basic features of the system response. This problem is known as multi-fidelity
regression modeling and several methods have been proposed in literature. Co-Kriging (Cressie 1993,
Forrester and Keane 2009) merges data from different fidelity sources by extending Kriging estimator. This
technique is widely used in engineering. Goh et al. (2013) use a Bayesian approach to combine results from
different simulators. Chen et al. (2015) use locally weighted regression and smoothing method (LOESS)
to combine simulation results with those provided by a Jackson queuing network.

Extended Kernel Regression model (EKR) (Matta et al. 2015) is a meta-model that uses both simulation
and analytical methods to evaluate the system performance. EKR is considered as a non-parametric technique.
Because it is not necessary to make any assumptions about the fitted function before the evaluation. Instead,
it lets the data show the structure. From another perspective, the EKR model can be seen as a parametric
regression method in which the analytical method provides the shape of the function, whereas the rest is
locally fitted by kernel functions.

The contribution of this paper is twofold. Firstly, the EKR method is compared with other available
techniques, such as SK and KR, by executing numerical experiments on two cases: a G/G/1 system and a
Closed-Loop Flexible Assembly System (CLFAS). Secondly, the paper proposes two methods to calculate
confidence band, which are useful to cut unpromising alternatives during the design of the system. The
first method is derived by assuming that the normalized bias of the EKR estimator is a Gaussian process.
The second one is derived from basic statistic knowledge.

This paper is organized as follows. Section 2 presents the notation throughout the paper and describes
how to build EKR models. Section 3 proposes two methods for confidence band calculation. Section 4
describes the application of the EKR model in a G/G/1 system. In section 5, EKR is applied to a CLFAS
system. Finally, conclusions and guidelines for future developments are drawn in section 6.

2 EXTENDED KERNEL REGRESSION

2.1 Notation

We are interested in evaluating the system performance Y as a function of the system description xxx. Y
is a univariate random variable and xxx ∈ D ⊂ Rd is a 1× d vector where D is the set containing all the
alternative system configurations.

We assume that a DOE has been developed and two kinds of outputs are available from the experiments:
high-fidelity estimates from simulation and low-fidelity estimates from analytical method. There are n
design points in the DOE and each point is a system configuration xxx000

iii = (x0
i1, · · · ,x0

id)∈D , i∈N = {1, . . . ,n}
where x0

ik represents the value of k-th dimension (with k ∈K = {1, . . . ,d}) of the system configuration
at the design point i. The index 0 in the notation indicates that the variable belongs to the initial design.
Let us denote the output of experiment j on the design point i with y0 j

i . As convention, we use j = s for
simulation experiments and j = a for experiments with analytical method.

The problem is stated as follows. We want to estimate the expected system performance y(xxx) at
the unobserved point xxx = (x1, · · · ,xd) ∈ D using the observations collected from the initial experiment
y0s

i (xxx000
iii ),y

0a
i (xxx000

iii ) and the performance estimates ya(xxx) provided by analytical method at xxx:

y(xxx) = E(Y |ya(xxx),y0s
i (xxx000

iii ),y
0a
i (xxx000

iii ), i ∈N ).
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2.2 Model

The main idea of the EKR model is using an analytical method to help kernel regression to estimate the
unknown function y(xxx) at the unobserved point xxx.

KR is a non-parametric estimation technique that does not assume any distribution to fit the data. The
estimation at an unobserved point is built by calculating the weighted average of the simulation outputs of
all the initial design points. The weight of each design point depends on the distance between the point we
are interested in (i.e., xxx) and the observation itself (i.e., xxx000

iii ) using a spatial correlation function (generally
a radial basis function). In EKR model, KR technique is used to average the estimates provided by each
initial design point with Nadaraya-Watson estimator (Wand and Jones 1995):

ŷEK(xxx) =
∑i∈N K1(xxx000

iii − xxx)ŷi(xxx)

∑i∈N K1(xxx000
iii − xxx)

(1)

where K1(·) is a d-dimension kernel function and ŷi(xxx) is the estimate at the unobserved point xxx provided
by the design point xxx000

iii . This work uses the widely applied Gaussian Kernel as K1(·):

K1(xxx000
iii − xxx) = ∏

k∈K
e−

1
2θ1k

(x0
ik−xk)

2
(2)

where θ1k are parameters selected according to some specific criteria. These parameters control the influence
of the design points on the prediction. The weight given by Gaussian Kernel is large when the design
point is close to point xxx, and small for the design point far away. Therefore, it allows each design point to
have an importance related to point xxx. The closer the points, the larger their importance.

The knowledge about some structural properties of the function embedded in the analytical method
can help to build the estimator, particularly when the point to be evaluated is far from initial design points
and the spatial correlation is not likely to hold. The ŷi(xxx) in equation (1) presents the predictions from
simulation outputs combined with analytical method estimates by kernel function K2(·):

ŷi(xxx) = K2(xxx000
iii − xxx)y0s

i (xxx000
iii )+(1−K2(xxx000

iii − xxx))ỹa
i (xxx),∀i ∈N (3)

where y0s
i (xxx000

iii ) is the simulation output at point xxx000
iii and ỹa

i (xxx) is the response of the analytical method at
point xxx adjusted with the bias evaluated at point xxx000

iii :

ỹa
i (xxx) = ya(xxx)+ y0s

i (xxx000
iii )− y0a

i (xxx000
iii ),∀i ∈N . (4)

In equation (4), ya(xxx) is the output of the analytical method at the unknown point xxx whereas y0s
i (xxx000

iii )−y0a
i (xxx000

iii )

is the bias evaluated at design point xxx000
iii (i.e., the deviation between the simulation output and the analytical

method output at point xxx000
iii ). The Gaussian Kernel described in equation (2) is also used as K2(·) with

selected parameters θ2k:

K2(xxx000
iii − xxx) = ∏

k∈K
e−

1
2θ2k

(x0
ik−xk)

2
. (5)

The weight given by Gaussian Kernel is between 0 and 1. Hence, in equation (3), the estimator ŷi(xxx) gives
more importance to the simulation output y0s

i (xxx000
iii ) when the design point xxx000

iii is close to xxx, whereas more
importance is given to the adjusted analytical method response ỹa

i (xxx) when the design point is far from xxx.
For simplicity, we assume that each dimension of the system configuration is equally important for

predicting the system performance. Thus, the parameters θ1k and θ2k have the same value along all
the dimension k (i.e., θ1k = θ1,θ2k = θ2,∀k ∈K ). All the variables of the system configuration (i.e.,
xk,xik, i ∈N ,k ∈K ) are normalized into [0,1].

Algorithm 1 describes in detail how to implement the EKR method.
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Algorithm 1
Step 1 Initialization:
xxx000

iii ,∀i ∈N = {1, . . . ,n}← System configuration of initial design points (DOE)
xxx← System configuration to evaluate
θ1k = θ1,θ2k = θ2,∀k ∈K = {1, · · · ,d}← Assigned parameters values
Step 2 Execute DOE:
for i = 1, . . . ,n do

Execute simulation at xxx000
iii and collect y0s

i (xxx000
iii )

Execute analytical model at xxx000
iii and collect y0a

i (xxx000
iii )

end for
Step 3 Estimation:
Execute analytical model at xxx and collect ya(xxx)
Normalize xxx,xxx000

iii ,∀i ∈N into [0,1]d

for i = 1, . . . ,n do
Calculate ỹa

i (xxx) using equation (4)
Calculate K2(xxx000

i − xxx) using equation (5)
Calculate ŷi(xxx) using equation (3)
Calculate K1(xxx000

i − xxx) using equation (2)
end for
Calculate ŷEK(xxx) using equation (1)

3 CONFIDENCE BAND

Confidence band is used to present the uncertainty in an estimate of a function based on limited data. Two
approximate methods to calculate the confidence band around the EKR estimates are presented in this
section. The first method, derived from Wasserman (2006), assumes that the normalized bias between the
estimates ŷEK(xxx) and expected estimates E[ŷEK(xxx)] is a Gaussian process. The second method is derived
from basic statistic knowledge by assuming that the estimates ŷi(xxx), i ∈N , follow a normal distribution.

3.1 Method A

We consider the ŷi(xxx) in equation (1) as the observation of each design point, then the EKR model can be
seen as a smooth regression model:

ŷEK(xxx) = ∑
i∈N

wi(xxx)ŷi(xxx)

where xxx is the point to be evaluated, ŷi(xxx) is the evaluation at point xxx calculated by equation (3) and the
form of wi(xxx) is presented here:

wi(xxx) =
K1(xxx000

iii − xxx)

∑i∈N K1(xxx000
iii − xxx)

,∀i ∈N . (6)

Let W (xxx) denote the normalized bias between the estimates ŷEK(xxx) and expected estimates E[ŷEK(xxx)]:

W (xxx) =
ŷEK(xxx)−E[ŷEK(xxx)]

σ(xxx)‖www(xxx)‖

where σ(xxx) is the standard deviation of the bias and www(xxx) is the weight vector (w1(xxx),w2(xxx), · · · ,wn(xxx))T.
Assuming W (xxx) is a Gaussian process, then an approximate 1−α confidence band for ŷEK(xxx) can be
calculated as follows by extending Wasserman (2006) method to the multi-dimension case:

ŷEK(xxx)± cσ̂(xxx)‖www(xxx)‖ (7)
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where σ̂(xxx) is estimated by calculating the error of estimates at design points through a regression method
as follows. Let σ̂2(xxx) = eq̂(xxx), where q̂(xxx) is an estimate of logσ2(xxx) and can be calculated by regressing
Zi with function K1(·):

q̂(xxx) =
∑i∈N K1(xxx000

iii − xxx)Zi

∑i∈N K1(xxx000
iii − xxx)

where Zi = log(y0s
i (xxx000

iii )− ŷEK(xxx000
iii ))

2. The parameter c in equation (7) can be calculated by solving

P(|Tm|> c)+
k0

π

(
1+

c2

m

)−m/2

= α

where Tm is t-distributed with m = n− tr(LLL) degrees of freedom. LLL is an n×n matrix whose i-th row is
www(xxx000

iii )
T. An approximation for k0 is given by:

k0 ≈
1√
θ1
· ‖K

KK′′′111‖
‖KKK111‖

where KKK111 is a vector containing the kernel value of each design point xxx000
iii and KKK′′′111 is the sum of the partial

derivatives of KKK111 calculated as ∂KKK111
∂x1

+ ∂KKK111
∂x2

+ · · ·+ ∂KKK111
∂xd

.

3.2 Method B

Method A is complicated and time consuming, especially when the DOE size is large. The main reason is
the regression used for σ(xxx)’s estimation and the use of derivative. Therefore, a simple but approximate
method is provided here for fast calculation of the confidence band.

In this method, we assume that the estimators ŷi(xxx), i ∈N , calculated by equation (3) are independent
and follow the normal distribution N(y(xxx),σ2(xxx)), where y(xxx) is the true value of the system performance
at the new point xxx and σ2(xxx) is an unknown function of xxx. Under this assumption, we can write:

ŷEK(xxx)− y(xxx)

S
√

∑i∈N wi(xxx)2
∼ t(n−1)

where S is the sample standard deviation of ŷi(xxx), wi(xxx) are the weights defined in equation (6) and t(n−1)
is the t-distribution with n−1 degrees of freedom. Thus, we can calculate the confidence band by using
the quantile of the t-distribution:

P

(
ŷEK(xxx)− t α

2
(n−1)S

√
∑

i∈N
wi(xxx)2 < y(xxx)< ŷEK(xxx)+ t α

2
(n−1)S

√
∑

i∈N
wi(xxx)2

)
= 1−α

where 1−α is the confidence level and t α

2
(n−1) is the upper quantile of the t-distribution.

In order to obtain a more accurate confidence band, a weighted sample standard deviation Sw, rather
than the sample standard deviation S, is used as the estimate for the standard deviation of ŷi(xxx):

σ̂ = Sw =
√

∑
i∈N

wi(xxx)(ŷi(xxx)− ŷEK(xxx))2.

The confidence band has the following form:

ŷEK(xxx)± t α

2
(n−1)Sw

√
∑

i∈N
wi(xxx)2.
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4 A SIMPLE EXAMPLE: G/G/1 SYSTEM

4.1 System Description

In this section, the EKR model is applied to a G/G/1 system in which inter-arrival times and service times
are independently and normally distributed. The performance measure to be evaluated is the mean waiting
time in the queue. This measure is denoted with Wq.

4.2 Experimental Design

The system configuration consists of the mean inter-arrival time Ta and the mean service time Ts (i.e.,
xxx = (Ta,Ts)). The domain of interest is Ta ∈ [10,15] and Ts ∈ [5,10]. The standard deviation of the
inter-arrival time and service time are all equal to 3.

Kingman’s formula calculates the mean waiting time in the queue of the G/G/1 system as follows
(Hopp and Spearman 2011):

ya(Ta,Ts)≈
(c2

a + c2
s )

2
· u

1−u
·Ts

where u = Ts/Ta and ca,cs are the coefficients of variation of the inter-arrival time and of the service time,
respectively.

Several DOEs with different sizes (from 10 points to 500 points) are developed. The simulations are
executed in Arena with 100,000 warm-up time and 1,000,000 simulation length. EKR models are built
using the simulation outputs at each point of the DOEs and the outputs of the Kingman’s formula.

The parameters θ1,θ2 are selected as follows. First, we construct a DOE with 10 new points
(xxx′′′iii, i = 1, ...,10) and collect the simulation outputs ys(xxx′′′iii). Second, a complete factorial design with
two factors (θ1,θ2) and nine levels (0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.5,1) is developed. Third,
the performance Wq at the 10 new points are estimated using the values of θ1,θ2 from the complete factorial
design (i.e., ŷEK(xxx′′′iii|θ1,θ2)). Finally, we select the parameters θ1,θ2 that minimize the Root Mean Square
Error (RMSE) of the 10 new points:

RMSE(θ1,θ2) =

√
1
10

10

∑
i=1

(ŷEK(xxx′′′iii|θ1,θ2)− ys(xxx′′′iii))
2.

The proposed method is compared with SK and KR methods. To evaluate the prediction performance
of the models, R = 1000 checkpoints xxxiii are sampled. The Mean Absolute Relative Error (MARE) is used
to assess the prediction performances of these models:

MARE =
1
R

R

∑
i=1

|ŷ(xxxiii)− ys
i (xxxiii)|

ys
i (xxxiii)

where ŷ(xxxiii) and ys
i (xxxiii) are the outputs of the regression models (EKR or KR or SK) and the simulation

outputs at the 1000 checkpoints xxxiii, respectively. MARE may be not useful when the response is very small.
In this case, even small absolute deviations leads to large MARE. Therefore, another useful measure of
the prediction accuracy is the RMSE:

RMSE =

√
1
R

R

∑
i=1

(ŷ(xxxiii)− ys
i (xxxiii))2.

The points of all DOEs as well as the checkpoints are sampled by Latin Hypercube Sampling (LHS)
(Helton and Davis 2003).
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4.3 Numerical Results

Figure 1 shows the MARE (left) and the RMSE (right) of the three models with different DOE sizes (i.e.,
the points we use to build regression models). The relative error decreases with the increase of the DOE
size for all the three models. When the DOE size is small, EKR model performs best while KR model has
the largest relative error. For large DOE size, the relative errors of EKR, KR and SK models are close.

Figure 1: The MARE (left) and the RMSE (right) of the estimates provided by EKR, KR and SK models
at the 1000 checkpoints with DOE size from 10 points to 500 points.

The EKR model always performs better than the other two methods according to RMSE. The reason is
that most of the initial design points have small simulation outputs. Indeed, as shown in Figure 2, SK and
KR have large errors when the simulation output is large, whereas EKR model is very robust and follows
the true path due to the contribution of the Kingman’s formula. That means RMSE is more representative
than MARE in this case.

Figure 2: The simulation outputs of the 1000 checkpoints as well as their estimates provided by KR, SK
and EKR models with DOE size equal to 50 points. The checkpoints are sorted by simulation outputs.
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The experiment is repeated 50 times with DOE size equal to 20 points for robustness analysis. Figure
3 shows boxplots of the MARE (left) and the RMSE (right) of the three models. Variability of MARE for
SK is larger than EKR and KR, whereas for RMSE the variabilities of these three models are quite close.

Figure 3: The MARE (left) and the RMSE (right) of the estimates provided by KR, SK and EKR at the
1000 checkpoints with DOE size equal to 20 points. 50 replicates are executed.

Method B provides a much faster calculation of the confidence band than method A. It takes about 0.13
seconds to calculate the confidence bands among 1000 checkpoints with DOE size equal to 20 points, while
method A needs about 21 seconds. Table 1 and Table 2 present the proportion of simulation outputs within
the confidence band calculated by the method A and method B among the 1000 checkpoints, respectively,
of different values for confidence level. The confidence band calculated by method A is too large. Indeed,
almost all the simulation data fall into the confidence band regardless of the confidence level. As far as
using method B, the proportion is a little smaller than the confidence level. This is probably caused by the
assumption of independence among ŷi(xxx), i ∈N . Nevertheless, the proportion becomes stable when the
DOE size increases.

Table 1: The proportion of simulation outputs within the confidence band provided by method A(%).

DOE size 10 20 50 100 150 200 300 400 500
80% 99.8 99.3 98.8 92.5 95.7 99.3 98.7 99.8 99.0

1−α 90% 99.9 99.4 99.2 93.3 96.2 99.4 98.8 99.8 99.0
95% 99.9 99.4 99.3 93.5 96.7 99.5 98.9 99.8 99.2

Table 2: The proportion of simulation outputs within the confidence band provided by method B(%).

DOE size 10 20 50 100 150 200 300 400 500
80% 49.5 75.0 75.7 50.9 69.4 62.4 68.6 69.8 70.9

1−α 90% 57.4 83.0 82.2 60.3 81.5 73.2 77.2 79.2 79.7
95% 63.2 87.6 86.5 65.2 88.0 79.5 82.7 84.9 85.9

Figure 4 presents the confidence band by showing all the checkpoints with service time Ts ∈ [7.4,7.6].
The horizontal axis is the inter-arrival time Ta. The estimate of each point is calculated by EKR model
with 20 points in the DOE. The confidence band is calculated by method B with 95% confidence level.
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Figure 4: The simulation outputs, EKR estimates and confidence band at the checkpoints with service
time Ts ∈ [7.4,7.6]. The confidence band is provided by method B with confidence level 95%. The EKR
estimates are calculated with 20 points in the DOE.

5 A REALISTIC EXAMPLE: A CLOSED-LOOP FLEXIBLE ASSEMBLY SYSTEM

5.1 System Description

The closed-loop flexible assembly system (CLFAS) described in Suri and Leung (1987) is considered in
this section. The same system was studied by Chen et al. (2013). In the analyzed system, there are several
workstations connected together in a loop. The buffer capacities between adjacent workstations are limited.
The first workstation is for loading and unloading of workpieces on pallets. All the workpieces enter
or leave the system through the load/unload station. The workpieces are assembled on the pallets. The
number of pallets in the whole system is fixed. It is assumed there is a large number of workpieces waiting
outside system. Once a finished workpiece leaves the system, a new workpiece will enter the system to be
processed.

As shown in Figure 5, there are six workstations in the system and only one buffer slot between adjacent
workstations. The number of the pallets in the system is also six, which means there will be always six
workpieces in the system.

Figure 5: Closed-Loop Flexible Assembly System with six workstations and six pallets.

The transfer time between two workstations is assumed negligible. The operation time at each
workstation Tr (with r = 1,2, ...,6) consists of two parts: a deterministic machine cycle time xr and an
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additional random time Rr modeling machine jams. Let Rr be i.i.d. and follow the uniform distribution
U(0.1,1.1). The probability that the machine r will jam is αr = 0.005. Therefore, the operation time
Tr = xr + Ir{machine r jams}Rr, where Ir{·} is the indicator function. The total assembly time equals to
the total operation time ∑

6
r=1 Tr. We want to evaluate the mean throughput of the system.

5.2 Experimental Design

The system configuration is the machine cycle time xxx = (x1,x2, ...,x6) and the domain of interest is
[0.05,0.15]6. Two kinds of analytical methods are applied to this case. In the first case a Continuous
Time Markov Chain (CTMC), which assumes that the operation time at each workstation Tr follows an
exponential distribution, is developed. In the second case a Closed Queuing Network (CQN) Jackson model
(Tempelmeier and Kuhn 1993), which further assumes that the buffer capacity is infinite, is developed.

LHS and complete factorial design are used as in section 4 for sampling of design points and selection
of parameters, respectively. The simulation outputs are collected by simulating 100,000 workpieces with
50,000 workpieces of warm-up period.

Two designs are developed (17 and 25 points in the DOE) and 1000 checkpoints are generated for
evaluation of the prediction performance of the models by comparing the two synthetic indicators MARE
and RMSE. The experiment is replicated 50 times.

5.3 Numerical Results

Figure 6 shows the results of different models. The results of MARE and RMSE are similar. The estimates
have lower variability with 25 points in the DOE compared to that with 17 points for all the models. The
performance of the SK model fluctuates widely while EKR model performs better (both for mean error
and variability). The use of the CTMC slightly improves the prediction performance of the EKR model
compared to that with CQN, although the CTMC has larger error. This indicates that the smoothness of
the bias of the analytical method is more important than the mean error of that in EKR model. However
the margin is not significant. The reason is due to the fact that only six pallets circulate in the system, thus
the buffer capacity is not critical.

Table 3 shows the proportion of simulation outputs within the confidence band calculated by different
methods for different confidence levels with 17 and 25 points in the DOE. The EKR models with CTMC and
CQN have similar results, here only the results of the EKR model with CTMC are presented. Differently
from the previous case, the confidence band calculated by the method A is more reliable than method B.

Table 3: The proportion of simulation outputs within the confidence band.(%).

17 points 25 points
1−α Method A Method B Method A Method B
80% 77.1 41.5 69.2 39.6
90% 83.5 51.6 74.7 49.4
95% 88.7 59.5 79.3 57.2

6 CONCLUSION

In this paper, the Extended Kernel Regression model is presented in detail and tested numerically on a
G/G/1 system and a Closed-Loop Flexible Assembly System. The proposed method is compared with
SK and KR methods and results show that EKR provides better predictions in the analyzed cases. Based
on the numerical analysis reported in this paper, the KR and SK models provide good estimate when the
system performance is smooth or the DOE size is large and EKR model can improve the performance of
the regression technique with the involvement of the analytical method.
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Figure 6: The MARE (above) and the RMSE (below) of the estimates provided by KR, SK, EKR (with
CTMC and CQN) at the 1000 checkpoints with DOE size equals to 17 (left) and 25 (right) points.

Besides, two methods for calculation of confidence band are proposed and assessed numerically. Method
B performs better than method A in the G/G/1 system. While for CLFAS, the confidence band calculated
by the method A is more reliable than that calculated by method B. Future research will be devoted into
different directions. First, more effort will be put in to improve the calculation of confidence band. Second,
the EKR method will be compared with other techniques (e.g., Co-Kriging). Third, more than one analytical
methods with different fidelities will be considered in the EKR model.
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