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ABSTRACT

ASTRO-DF is a class of adaptive sampling algorithms for solving simulation optimization problems in which
only estimates of the objective function are available by executing a Monte Carlo simulation. ASTRO-DF
algorithms are iterative trust-region algorithms, where a local model is repeatedly constructed and optimized
as iterates evolve through the search space. The ASTRO-DF class of algorithms is derivative-free in the
sense that it does not rely on direct observations of the function derivatives. A salient feature of ASTRO-DF
is the incorporation of adaptive sampling and replication to keep the model error and the trust-region radius
in lock-step, to ensure efficiency. ASTRO-DF has been demonstrated to generate iterates that globally
converge to a first-order critical point with probability one. In this paper, we describe and list ASTRO-DF,
and discuss key heuristics that ensure good finite-time performance. We report our numerical experience
with ASTRO-DF on test problems in low to moderate dimensions.

1 INTRODUCTION

We consider simulation optimization (SO) problems, that is, optimization problems where the objective
function can only be expressed implicitly via a Monte Carlo simulation oracle. In the recent years, SO
has been adopted in a wide range of problem contexts including quality control (Rani and Moreira 2010),
telecommunication networks (Hou et al. 2014), traffic control (Osorio and Bierlaire 2009), epidemic
forecasting (Nsoesie et al. 2013), and health care (Alagoz et al. 2009). For a collection of SO problems,
see (Pasupathy and Henderson 2006) and the testbed available at www.simopt.org. The SO problem
is formally stated as

Problem P : minimize f (xxx) := E[F(xxx)]

s.t. xxx ∈ IRd ,

where f (·) is known only through a Monte Carlo simulation capable of generating copies of the random
variable F(xxx) for each xxx ∈ IRd . The estimator of f (xxx), denoted F̄(xxx,n), is constructed as the sample mean
of n i.i.d copies of F(xxx).

Monte Carlo oracle calls are often much more expensive than routine numerical operations, and hence
explicit derivative estimation is computationally expensive. Moreover, choosing the step-size for finite-
differencing in the presence of stochastic error can be a delicate operation, resulting in estimators having
poor quality (Asmussen and Glynn 2007). As a result, in such contexts, fast (asymptotic) convergence
rates to a critical point are arguably less relevant than stability and the need for “good” solutions. This
motivates our interest in developing derivative-free algorithms for the SO context.

While trust-region optimization (TRO) algorithms have existed for several decades and represent a mature
class of algorithms, deterministic model-based derivative-free trust-region (TRO-DF) algorithms (Conn et al.
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2009b) have become popular only over the last decade. The family of algorithms we propose, called ASTRO-
DF, follows a logic that is analogous to TRO-DF. ASTRO-DF is an iterative algorithm in which during
each iteration k a local (and analytically convenient) model of the objective function is constructed by
strategically placing design points within a trust-region around the current iterate XXXk, and then obtaining
Monte Carlo estimates of the objective function at each design point. As we shall see, the number of Monte
Carlo calls at each design point is adaptive — just enough to ensure that the sampling variability of function
observations at the point is commensurate with the estimated model error. After such model construction
and (stochastic) certification, the constructed model is used within an optimization step to identify the
next candidate solution X̃XXk+1. The candidate solution X̃XXk+1 is not immediately accepted. Instead, if the
model-predicted and Monte Carlo-estimated function decrease values from the current iterate XXXk to the
candidate point X̃XXk+1 are comparable in a certain sense, then X̃XXk+1 is accepted as the next iterate XXXk+1
and the trust-region expanded; otherwise, X̃XXk+1 is rejected and the trust-region is shrunk in an attempt
to improve the quality of the local model around XXXk. ASTRO-DF has been shown to globally converge
to a first-order critical point almost surely. For the details on theoretical results see the recent paper on
ASTRO-DF (Shashaani et al. 2015).

A number of features within ASTRO-DF are noteworthy. First, we introduce certificates of stochastic
model sufficiency for use in ASTRO-DF’s model construction step. Such certificates of model sufficiency
correspond to notions of fully linear and fully quadratic models (Conn et al. 2009b) in the deterministic
context, and are important to guarantee ASTRO-DF’s convergence. Second, sampling within ASTRO-DF,
most of which happens within the model construction step, is adaptive. Such adaptivity complicates
ASTRO-DF’s analysis but ensures efficiency through explicit dependence on algorithmic trajectory. Third,
three different sources of error are present within ASTRO-DF: (i) stochastic sampling error arising due
to the fact that function evaluations are through Monte Carlo simulation; (ii) model bias arising due to
the choice of the local model; and (iii) stochastic interpolation error arising due to the fact that model
prediction at unobserved points is a combination of the model bias and the error in (i). (Of these, only (ii) is
present in the deterministic context.) As we shall see, the sampling and searching logic within ASTRO-DF,
towards fostering efficiency, keeps the three sources of error (i), (ii), and (iii) in lock-step.

2 ASTRO-DF ALGORITHM

To facilitate our discussion of ASTRO-DF, we first provide the listing for a simplified deterministic trust-
region optimization (DTRO) algorithm in Algorithm 1. While this algorithm does employ gradients, we
use it to build basic intuition for trust-region algorithms and for the ASTRO-DF algorithm that will follow.
Our presentation and notation closely follow that of Nocedal and Wright (2006).

On the kth iteration of DTRO, we first construct a quadratic model at the current point xxxk (Step 2).
Next, we optimize (Step 3) the model in a trust-region, yielding a candidate point x̃xxk+1. This is followed
by the calculation of the success ratio in Step 4 in preparing to evaluate the quality of the candidate point
x̃xxk+1. In Steps 5–9, the candidate point x̃xxk+1 is accepted and the trust-region radius expanded if the success
ratio exceeds a certain threshold; otherwise, the incumbent point xxxk remains unchanged and the trust-region
radius is shrunk in an attempt to improve the quality of the local quadratic model.

Given the above basic framework for a trust-region algorithm, we now describe ASTRO-DF in greater
detail. A detailed algorithm listing is provided in Algorithm 2, where the numbering of all steps corresponds
to the analogous steps in DTRO. Since we assume that gradient estimates are not available, model construction
is a key step in ASTRO-DF. Detailed steps for model construction are listed in Algorithm 3.

The operations during each iteration of ASTRO-DF are encapsulated within four repeating stages that
are modified versions of their DTRO counterparts: (i) local (stochastic) model construction and certification
through adaptive sampling; (ii) constrained optimization of the constructed model (within the trust-region)
for identifying the next candidate solution; (iii) re-estimation of the objective function at the candidate
solution through adaptive sampling and evaluation of the candidate solution; and (iv) (stochastic) sufficient
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Algorithm 1 Deterministic Trust-Region Optimization (DTRO) Algorithm
Require: Initial guess xxx0 ∈ IRd , initial trust-region radius ∆0 > 0 and maximum radius ∆max > 0, model “fitness” threshold

η1 > 0, trust-region expansion constant γ1 > 1 and contraction constant γ2 ∈ (0,1).
1: for k = 0,1,2, . . . do
2: Model Construction: Construct the quadratic model mk(xxxk + ppp) = f (xxxk)+∇ f (xxxk)

T ppp+ 1
2 pppT Bk ppp at the current point xxxk.

3: TR Subproblem: Obtain the kth step by minimizing the model in trust-region, pppk = argmin‖ppp‖≤∆k
mk(xxxk + ppp), and

set the new candidate point x̃xxk+1 = xxxk + pppk.
4: Evaluate: Evaluate success ratio

ρk =
f (xxxk)− f (x̃xxk+1)

mk(xxxk)−mk(x̃xxk+1)
.
{numerator: actual objective value “reduction;” could be positive or negative}
{denominator: objective value reduction predicted by model; always positive}

Update:
5: if ρk > η1 then {If the actual objective value reduces “enough” relative to the model,}
6: xxxk+1 = x̃xxk+1, ∆k+1 = min{γ1∆k,∆max}. {accept the candidate point and expand the trust-region radius.}
7: else
8: xxxk+1 = xxxk, ∆k+1 = γ2∆k. {Else, remain at xxxk and reduce the trust-region radius.}
9: end if

10: end for

Algorithm 2 ASTRO-DF Main Algorithm
Require: Parameters from DTRO: Initial guess xxx0 ∈ IRd , initial trust-region radius ∆̃0 > 0 and maximum radius ∆max > 0,

model “fitness” threshold η1 > 0, trust-region expansion constant γ1 > 1 and contraction constant γ2 ∈ (0,1).
Parameters specific to ASTRO-DF: initial sample size n0, sample size lower bound sequence {λk} such that k(1+ε) = O(λk),
initial sample set Ỹ0 = {xxx0}, and outer adaptive sampling constant κoas.

1: for k = 0,1,2, . . . do
2: Model Construction: Construct the model at XXXk by calling Algorithm 3 with the candidate trust-region radius ∆̃k and

candidate set of sample points Ỹk, [Mk(XXXk + sss),∆k,Yk]=AdaptiveModelConstruction(∆̃k, Ỹk).
3: TR Subproblem: Approximate the kth step by minimizing the model in the trust-region, SSSk = argmin‖sss‖≤∆k

Mk(XXXk + sss),
and set the new candidate point X̃XXk+1 = XXXk +SSSk.

4: Evaluate: Estimate the function at the candidate point using adaptive sampling to obtain F̄(X̃XXk+1, Ñk+1), where

Ñk+1 = max
{

λk,min
{

n :
σ̂
(
X̃XXk+1,n

)
√

n
≤

κoas∆
2
k√

λk

}}
. (1)

Let Ñk = N (XXXk) obtained from Step 2 and evaluate the estimated success ratio

ρ̂k =
F̄
(
XXXk, Ñk

)
− F̄

(
X̃XXk+1, Ñk+1

)
Mk(XXXk)−Mk(X̃XXk+1)

.

Update:
5: if ρ̂k > η1 then
6: XXXk+1 = X̃XXk+1, ∆̃k+1 = min{γ1∆k,∆max}, Nk+1 = Ñk+1.

Set ỸYY max := argmaxYYY i∈Yk

{∥∥X̃XXk+1−YYY i
∥∥} . Update the sample set Ỹk+1 = Yk\

{
ỸYY max

}
∪{XXXk+1}.

7: else
8: XXXk+1 = XXXk, ∆̃k+1 = γ2∆k, Nk+1 = Ñk.

Set YYY max := argmaxYYY i∈Yk {‖XXXk−YYY i‖}. If X̃XXk+1 6= YYY max, then update Ỹk+1 = Yk\{YYY max}∪
{

X̃XXk+1
}

.
9: end if

10: end for

decrease check by comparing predicted and estimated function decrease, and iterate and trust-region update.
These stages are labeled in italics in Algorithm 2.

We now describe each step of Algorithm 2. In Step 2, a stochastic model of the function f (·),
constrained to the trust-region B(XXXk;∆k), is constructed using Algorithm 3. Equipped with a certified model
Mk(xxx),xxx ∈B(XXXk,∆k), Step 3 in Algorithm 2 involves approximately solving the constrained optimization
problem SSSk = argmin‖sss‖≤∆k Mk (XXXk + sss) to obtain a candidate solution X̃XXk+1 = XXXk +SSSk that attains a fraction
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Algorithm 3 [Mk(XXXk + sss),∆k,Yk]=AdaptiveModelConstruction(∆̃k, Ỹk)
Require: Parameters from ASTRO-DF: candidate trust-region radius ∆̃k and candidate sample set Ỹk.

Parameters specific to AdaptiveModelConstruction: trust-region contraction factor w ∈ (0,1), trust-region and
gradient balance constant µ , gradient inflation constant β with 0 < β < µ , and inner adaptive sampling constant κias.

1: Initialize jk = 1, and set Yk = Ỹk, and set YYY ( jk)
1 = XXXk where XXXk is the first element of Ỹk.

2: repeat
3: Improve Y

( jk)
k =

{
YYY ( jk)

1 ,YYY ( jk)
2 , . . . ,YYY ( jk)

p

}
by choosing YYY ( jk)

i , i = 2,3, · · · , p to make a poised set in B(XXXk; ∆̃kw jk−1).
4: for i = 1 to p do
5: Estimate F̄

(
YYY ( jk)

i ,N
(

YYY ( jk)
i

))
, where

N(YYY ( jk)
i ) = max

{
λk,min

{
n :

σ̂

(
YYY ( jk)

i ,n
)

√
n

≤ κias(∆̃kw jk−1)2√
λk

}}
. (2)

6: end for
7: Construct a quadratic model M( jk)

k (XXXk + sss) via interpolation.
8: Set jk = jk +1.
9: until ∆̃kw jk−1 ≤ µ‖∇M( jk)

k (XXXk)‖.
10: Set ∇Mk (XXXk) = ∇M( jk)

k (XXXk), ∇2Mk (XXXk) = ∇2M( jk)
k (XXXk).

11: return Mk (XXXk + sss) = M( jk)
k (XXXk + sss), ∆k = min

{
∆̃k,max

{
β ‖∇Mk (XXXk)‖ , ∆̃kw jk−1}}, and Yk = Y

( jk)
k .

of the Cauchy decrease, that is, identify SSSk so that for a positive constant κ f cd

Mk(XXXk)−Mk(XXXk +SSSk)≥
κ f cd

2
‖∇Mk (XXXk)‖min

{
‖∇Mk(XXXk)‖
‖∇2Mk(XXXk)‖

,∆k

}
. (3)

In preparation for checking if the candidate solution X̃XXk+1 provides sufficient decrease, Step 4 of
Algorithm 2 obtains a Monte Carlo estimate of the function value at X̃XXk+1; enough sampling is performed
so that the estimated standard error of the function estimate is smaller than a deflated multiple of square
of the trust-region radius (∆2

k/
√

λk), subject to the sample size being at least λk. The obtained function
estimate is then used to check if the ratio ρ̂k of the observed function decrease to the predicted function
decrease at the point X̃XXk exceeds a fixed threshold. If ρ̂k exceeds the specified threshold, the point X̃XXk+1 is
accepted, the iteration is deemed successful, and the trust-region expands; if ρ̂k falls below the specified
threshold, the point X̃XXk+1 is rejected, the iteration is deemed unsuccessful, and the trust-region shrinks. In
either case, the algorithm proceeds to the next iteration.

Recall that Step 2 is a model construction step where a stochastic model of the function f (·) is
constructed using a loop inside Algorithm 3. Specifically, Algorithm 3 obtains Monte Carlo function
estimates at each point of a poised interpolation set Y( jk)

k =
{

YYY ( jk)
1 ,YYY ( jk)

2 , . . . ,YYY ( jk)
p

}
. In Step 5 of Algorithm 3,

note that Monte Carlo sampling at each point YYY ( jk)
i ∈ Y

( jk)
k continues until the estimated standard error

σ̂

(
YYY ( jk)

i ,N
(

YYY ( jk)
i

))
/

√
N
(

YYY ( jk)
i

)
of the function estimate F̄

(
YYY ( jk)

i ,N
(

YYY ( jk)
i

))
drops below a deflated

multiple of square of the trust-region radius, subject to the sample size being at least λk. Then an
interpolation model is fit to the observed function values in the design set. If the gradient of the constructed
model is not large enough relative to the trust-region radius, the trust-region is contracted and the whole
process is repeated.

Algorithm 3 performs the two crucial roles of model construction and certification. That Algorithm
3 terminates almost surely, is a nontrivial fact that is proved rigorously in Shashaani et al. (2015). The
increased sampling resulting from the use of the inflation sequence λk ensures that the spurious effects of
stochastic sampling decay at a fast enough rate to secure the almost sure convergence of the iterates {XXXk}.
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3 KEY IMPLEMENTATION HEURISTICS

Notwithstanding the global convergence proofs, certain implementation heuristics appear to be important
to ensure ASTRO-DF’s good finite-time performance. For example, the choice of interpolation points
in the model construction step, trust-region management details, the manner in which historical iterates
are re-used in the model construction step, and the specific methods used for updating iterates, all affect
ASTRO-DF’s functioning. In this section we detail five such aspects listed here in order of importance.

1. Choosing the set of design points Y
( jk)
k for model construction in Algorithm 3 (Section 3.1).

2. Choosing the algorithm parameters to enhance practical efficiency (Section 3.2).
3. Pre-processing to identify the initial point XXX0 and the initial trust-region radius ∆0 (Section 3.3).
4. Solving the trust-region sub-problem (Section 3.4).
5. Choosing an iterate subsequent to a successful iteration (Section 3.5).

The almost sure convergence results of ASTRO-DF are not affected by the choices suggested in
subsections 3.2, 3.3, and 3.4; they are, however, affected by our proposals in subsections 3.1 and 3.5.
Specifically, the convergence proofs for ASTRO-DF in (Shashaani et al. 2015) require the interpolation set
Yk to remain certifiably fully poised in every iteration. The implementation of ASTRO-DF that we discuss
here relaxes this stipulation, thereby threatening convergence. We speculate that the convergence proofs
in (Shashaani et al. 2015) could be generalized to subsume the relaxation we propose, by stipulating full
linearity only on a subsequence of iterations.

3.1 Choosing Design Points for the Model Construction Step

The quality of models constructed within ASTRO-DF crucially affects ASTRO-DF’s performance. There is,
however, a natural tension between constructing accurate models and the fast convergence of ASTRO-DF.
Constructing accurate models entails identifying a “well dispersed” set of design points and then sampling
adequately at each of these identified points. And, the need to identify a well-dispersed set of points means
that past iterates, which are usually highly correlated, can only be used sparingly, if at all. In what follows,
we detail a proposal that balances the competing need for well dispersed points and the inclusion of past
algorithm iterates into the design set. (What we detail here applies toward executing Step 3 in Algorithm
3.)

Our proposal to identify the p = (d+1)(d+2)/2 design points needed to construct a full set Yk involves
the following two steps.

(i) Identify a well dispersed subset, defined in a certain rigorous sense, from amongst the already
observed points for inclusion into Y

( jk)
k ; and

(ii) if the cardinality of the set identified in (i) is less than p, identify additional well dispersed points
to complete the full set Y( jk)

k .

The steps for choosing design points towards constructing a model are listed in Algorithm 4, requiring the
TR radius and model gradient norm in the latest iteration of the model construction loop of Algorithm 3,
as well as the history of all visited points.

For (i) (Steps 1–11), a convenient method for the identification of “poised” points, denoted as Yinit is
through the maximization of Lagrange functions, as detailed in Algorithm 6.2 in (Conn et al. 2009b, p.
95) , where the Lagrange functions are first reset to the normal basis of a quadratic interpolation model,
that is Φ(z) := (φ1,φ2, . . . ,φp) =

(
1,z1,z2, . . . ,zd ,

1
2 z2

1,z1z2, . . . ,
1
2 z2

2, . . . ,
1
2 z2

d

)
, and then updated according

to the new design points added to the set. We use the COBYLA (Constrained Optimization BY Linear
Approximation) procedure (Powell 1994) for this purpose. Moreover we identify, from amongst all points
visited by ASTRO-DF and lying within the current trust-region, a subset of points such that the distance
between any two points included within the subset is at least θ ∆̃kw jk−1, θ ∈ (0,1). We call this subset Ypool .

558



Shashaani, Hunter, and Pasupathy

Then, for re-using purposes, the equivalent points in Ypool to those in Yinit are considered for inclusion in
the sample set. An equivalent of a point is defined as the closest one of Ypool with the distance of at most
θ ′∆̃kw jk−1, θ ′ < θ , to the point.

The current iterate (and centre of the trust-region) is always included within the sample set. In the
unlikely event that the cardinality of the subset identified in (i) is equal to p, we have successfully identified
the complete sample set Y( jk)

k . Otherwise, as part of (ii) (Steps 12–22), we search for additional points
that would complete the set Y( jk)

k while satisfying the minimum separation θ ∆̃kw jk−1 between all pairs of
points. The criticality alert, triggered if the most recent model gradient norm is small, enforces high quality
models by choosing the remainder of the sample set from new points in Yinit . Albeit with no evidence of
criticality, the additional points are selected from old points in Ypool in the order of most distant from all
the current points in the Y

( jk)
k to keep the set well-spread.

Algorithm 4 [Y
( jk)
k ]=SampleSelection(∆̃kw jk−1,XXXk,

∥∥∥∇M( jk)
k (XXXk)

∥∥∥ ,⋃k−1
`=0

⋃ j`
t=1Y

(t)
` )

Require: Parameters from AdaptiveModelConstruction: TR radius ∆̃kw jk−1, current iterate XXXk, current model gradient
norm

∥∥∥∇M( jk)
k (XXXk)

∥∥∥, and previous sample sets
⋃k−1
`=0

⋃ j`
t=1Y

(t)
` .

Parameters specific to SampleSelection: minimum separation constant 0 < θ < 1 , equivalence constant 0 < θ ′ < θ

and criticality constant εg.

1: Find a new poised set Yinit =
{

XXXk,YYY 2,YYY 3, · · · ,YYY p
}

using Lagrange polynomials. Let Y( jk)
k = {XXXk}, J=∅ and Ypool =∅.

2: for all yyy ∈
⋃ jk−i

t=1Y
(t)
k−i∩B

(
XXXk; ∆̃kw jk−1), i = 1,2, · · · ,k do {Check the visited points, starting from the most recent.}

3: if yyy /∈
⋃

z∈Ypool
B
(
z;θ ∆̃kw jk−1) then {If not within minimum separation with other points, add to the pool.}

4: Set Ypool = Ypool ∪{yyy}.
5: end if
6: end for
7: for all YYY i ∈ Yinit , i = 2,3, · · · , p do
8: if YYY ′i := argmin

z∈Ypool∩B(YYY i;θ ′∆̃kw jk−1)
‖z−YYY i‖2 exists, then {Select those points of Yinit that have equivalents in Ypool .}

9: Set Y( jk)
k = Y

( jk)
k ∪

{
YYY ′i
}

and J= J∪{i}. {Place their closest equivalent in Y
( jk)
k .}

10: end if
11: end for
12: if

∣∣∣Y( jk)
k

∣∣∣< p, then {If the sample set does not have p points in it choose the rest based on criticality.}

13: if
∥∥∥∇M( jk)

k (XXXk)
∥∥∥< εg, then {Alert if the current TR is in critical region, implying poised-ness must be maintained.}

14: for all i = 2 to p and i /∈ J do {Choose the remainder of the points from the new points in the poised set Yinit .}
15: Y

( jk)
k = Y

( jk)
k ∩{YYY i}.

16: end for
17: else
18: while

∣∣∣Y( jk)
k

∣∣∣ 6= p do {Choose the remainder of the points from the points in Ypool .}

19: Set YYY best := argmax
z∈Ypool

∑yyy∈Y( jk )
k
‖z− yyy‖2. {Choose the point with largest cumulative distance to all members of Y( jk)

k .}

Set Ypool = Ypool\{YYY best} and Y
( jk)
k = Y

( jk)
k ∪{YYY best}

20: end while
21: end if
22: end if

3.2 Choosing Algorithm Parameters

The parameters in ASTRO-DF fall into two categories: general trust-region parameters and adaptive
sampling parameters. We now discuss the choice and effect of these parameters in broad terms. It must
be understood that, just as in much of algorithm design, there is a certain subjectivity in the choice of
algorithm parameters. Convergence theory frequently leaves open a wide range of possibilities for algorithm

559



Shashaani, Hunter, and Pasupathy

parameter choice, which must then be narrowed through empirical experience. In accordance with the
philosophy that a well designed algorithm implementation should not expect a user to choose algorithm
parameters, we suggest default values for all parameters we discuss here. All results reported in the section
on numerical results were obtained using default parameter settings.

3.2.1 General Trust-Region Parameters

The general parameters in the trust-region framework include η1,γ1,γ2,β ,µ and w. For all experiments
that we report in section 4 we have used the following default parameter settings: γ1 = 1.2,γ2 = 0.9,β =
0.5,µ = 2.0, and w = 0.9. In what follows, we provide some intuition on each of these parameters.

The parameter η1 is a threshold for sufficient reduction in the function estimated value when moving
from the current iterate XXXk to the candidate solution X̃XXk+1. Large values of η1 make the sufficient reduction
condition more stringent, stipulating higher model accuracies; small values of η1 make the sufficient
reduction condition more lax, allowing for explorative moves. It is worth noting that the ASTRO-DF
algorithm as listed in this paper includes only a sufficient decrease condition. By contrast, the deterministic
TRO-DF algorithm proposed by Conn et al. (2009a) includes an additional constant η0 that is meant to
allow a simple decrease condition in addition to the sufficient decrease condition.

ASTRO-DF accepts the candidate point as the next iterate when the reduction predicted by the model
exceeds the estimated reduction by a factor η1; such acceptance then amounts to a tacit acknowledgement
that the newly constructed model can perhaps adequately represent the objective function in a region with
a radius that is larger than the incumbent trust-region radius. The parameter γ1 controls the extent of such
increase in the trust-region radius post candidate acceptance. Conversely, when a candidate point is not
accepted due to the predicted decrease being too small a fraction of the estimated decrease, ASTRO-DF
reposes less faith in the model, leading to contraction of the trust-region radius. The extent to which such
reduction happens is controlled by the parameter γ2. The other contraction factor is w in the inner loop of
Algorithm 3. Small values for both of these contraction factors can result in changes in the model as a
result of changes in the sample set, and a corresponding faster consumption of the simulation budget.

The parameter β , along with the parameter µ , enforces the model gradient to be in lock-step with the
trust-region radius. Algorithm 3 continues to be executed until a model of specified quality is constructed
in a trust-region whose radius does not exceed the product of µ and the model gradient. A large value of
µ thus allows for greater lenience, resulting in a poorer model. On the other hand, the parameter β is used
to prevent the trust-region radius resulting from the execution of Algorithm 3 from becoming too small.
Towards satisfying the stipulated lock-step, Algorithm 3 repeatedly shrinks the trust-region radius using
the constant factor w, thereby introducing the possibility of a final trust-region with a radius that is very
small. The parameter β prevents this possibility. As an example, if the parameter µ is set equal to β , the
size of the trust-region that exits Algorithm 3 is strictly in lock-step with the product of β and the model
gradient norm.

Furthermore the default parameter settings in the sample selection heuristic in our experiments are
θ = 0.2,θ ′ = 0.05, and εg = 10, chosen in an ad-hoc manner.

3.2.2 Adaptive Sampling Parameters

Whenever the objective function needs to be estimated at a specified design point, ASTRO-DF has to
make a decision on how much sampling effort needs to be exerted for estimation. One of the salient
features of ASTRO-DF is that decisions on the extent of sampling are, at least to a certain degree, adaptive.
Specifically, the sampling rules in expressions (1) and (2) control ASTRO-DF’s sampling rate with the
two parameters κoas and κias corresponding to the adaptive sampling constants for the outer-loop and the
inner loops respectively. Small values of κoas and κias make ASTRO-DF trajectories appear deterministic
due to increased sampling leading to reduced sampling error. On the other hand, large values of κoas and
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κias imply less sampling and increased variability in sample paths. The parameters κoas and κias far more
affect the convergence rate of ASTRO-DF than whether or not ASTRO-DF converges.

The other important adaptive sampling parameter is the inflation factor λk. This parameter implicitly
sets a lower bound for the sample size during each iteration. As specified in the inputs of Algorithm 2,
the sequence {λk} should satisfy k(1+ε) = O(λk), that is, λk is roughly of the same order as the iteration
number. (we use ε = 10E−4). Our extensive numerical experience indicates that the lower bound sample
size imposed through the sequence {λk} is rarely binding, especially as ASTRO-DF’s iterates approach a
stationary point. This is consistent with what has been predicted by theory in other contexts.

In all experiments described in section 4 we impose a large number for the inner and outer loop
sampling constants (κoas = κias = 103) to enable more exploration throughout the search.

3.3 Pre-processing

Like any non-linear optimization algorithm, the choice of initial values, specifically, the initial guess XXX0
and the initial trust-region radius ∆0, affect ASTRO-DF’s performance. Accordingly, we have found it
expedient to undertake a certain pre-processing step aimed at identifying good values for the initial guess
x0 and the starting trust-region radius ∆0. With a fixed small budget we run ASTRO-DF with a vector
of random initial points and a vector of random initial trust-region radii, giving each combination of the
initial point and initial trust-region radius the same share of the pre-processing simulation budget. The
best combination of the initial point and trust-region radius are then selected based on the resulting relative
reduction in the model gradient norm.

3.4 Solving the TR Subproblem

The candidate point X̃XXk+1 = XXXk + SSSk that is the potential next incumbent solution in the search process
comes from a constrained optimization problem in Step 3 of Algorithm 2. To find a good candidate solution
SSSk, one can use the Cauchy step, which is the minimizer of the one-dimensional constrained optimization
problem obtained by projecting the objective function along the negative gradient and constrained to the
trust-region. The resulting step satisfies the Cauchy reduction in expression (3) that is required for the
convergence of ASTRO-DF, with κ f ed = 2 for linear models and κ f ed = 1 for quadratic models. In such a
case SSSk is chosen as SSSk = tC∇Mk(XXXk), where

tC = argmin
α∈[0,∆k]

Mk(XXXk−α∇Mk(XXXk)),

to satisfy a 1
2 -Cauchy decrease. (See Section 10.1 in Conn et al. (2009b) for additional details.)

Any routine to solve the TR subproblem that provides a candidate point with a higher reduction than
that obtained through the Cauchy step is obviously preferred, although the resulting computational effort
needs to be weighed against the reduction in objective function value. In the experiments reported in this
paper we apply the constrained optimization method COBYLA (Powell 1994).

3.5 Updating the Next Iterate

Given that several design points (along with their function estimates) are observed during the model
construction and the TR subproblem stages, an important question is which amongst these should be
chosen as the subsequent iterate in the event that the the sufficient reduction step is satisfied leading to a
successful iteration. An obvious choice is the candidate point X̃XXk+1 in Algorithm 2 that led to a successful
sufficient reduction step. An alternative, and one that we propose, is to instead choose the best from
amongst all points in the design set Yk that were observed during model construction. No such step needs
to be performed after unsuccessful iterations. The following steps formally list the heuristic we propose
for updating an iterate after a successful step.
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(a) When the iteration is successful,
- if the candidate point does not yield the best function estimate, that is,

min
YYY∈Yk

F̄ (YYY ,N (YYY ))≤ F̄
(
X̃XXk+1,N

(
X̃XXk+1

))
accept YYY min := argmin

YYY∈Yk

F̄ (YYY ,N (YYY )) as the new iterate, and replace an existing point in Yk (one

located farthest from the new iterate) with the candidate point;
- else, that is, if the candidate point provides the best (lowest) estimated function value, update

the next iterate to the candidate point.
Keep XXXk in the set Yk+1 if it does not provide the worst (largest) estimated function value.

(b) When the iteration in unsuccessful: choose the current iterate as the iterate that starts the next
iteration.

4 NUMERICAL EXPERIENCE

In this section, we report ASTRO-DF’s performance on 20 nonlinear sum of squares problems included in
CUTEst (Gould et al. 2015) library of problems. The dimensionality of the chosen problems varies from
2 to 8. The objective function for all problems in the set takes the form

f (xxx) =
m

∑
i=1

f 2
i (xxx) , (4)

where each fi : IRd→ IR is smooth, and most of the functions fi are non-convex. The “noisy” observations
are obtained by adding a normal random variable ξi ∼ N

(
0,σ2

)
to the sum, that is, Fi(xxx) = f (xxx)+ξi.

ASTRO-DF was executed until a specified simulation budget is exhausted. Suppose the specified
simulation budget for ASTRO-DF is ntotal and let XXX i

kmax
denotes the solution returned by the i-th execution

of ASTRO-DF on a specific problem. If ASTRO-DF is executed m times, resulting in the m returned
solutions XXX i

kmax
, i = 1,2, . . . ,m, the estimated expectation and estimated square-root variance of the true

optimality gap of ASTRO-DF’s returned solution are given by

Ê[ f (XXX i
kmax

)− f (xxx∗)] := m−1
m

∑
j=1

f (XXX j
kmax

)− f (xxx∗);

√
V̂( f (XXX j

kmax
)− f (xxx∗)) :=

√
(m−1)−1

m

∑
j=1

( f (XXX j
kmax

)− f (xxx∗))2, (5)

where f (xxx∗) is the known minimum value attained by the function f . Each row in Table 1 corresponds to

a specific problem in CUTEst and reports Ê[ f (XXX i
kmax

)− f (xxx∗)] and
√
V̂( f (XXX j

kmax
)− f (xxx∗)) (in parenthesis)

for m = 20 independent executions of ASTRO-DF. A calculation similar to (5) for true gradient norms is

Ê[‖∇ f (XXX i
kmax

)‖] := m−1
m

∑
j=1
‖∇ f (XXX i

kmax
)‖;

√
V̂(‖∇ f (XXX i

kmax
)‖) :=

√
(m−1)−1

m

∑
j=1
‖∇ f (XXX i

kmax
)‖2. (6)

It is important to note that since the convergence theory for ASTRO-DF only guarantees convergence to
a stationary point, nothing can be said about the behavior of the true optimality gap even as the budget
tends to infinity.
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Table 1 and Table 2 suggest that ASTRO-DF exhibits consistent and steady progress toward a stationary
point across different problems. As is evident from the reported values for small budgets, ASTRO-DF’s
iterates rapidly approach a stationary point during the initial iterations, with the transient phase being
longer for higher dimensional problems. The progress then seems to slow down in the later iterations,
when the O(1/

√
n) Monte Carlo rate appears to become effective. Also, unlike optimality gaps expressed

using function values, the optimality gaps measured in terms of the gradient norm (reported in Table 2)
sometimes exhibit jumps. This could be due to the existence of “cliffs” in the objective function terrain that
cause ASTRO-DF to suddenly encounter new stationary regions. Consistent with what is generally known
to be characteristic of derivative-free trust-region algorithms in the deterministic context, the behavior of
ASTRO-DF is generally stable but somewhat slow.

Table 1: The estimated mean and standard deviation of the true optimality gap at a (random) returned
solution of ASTRO-DF, as a function of the total simulation budget. The statistics were computed based
on 20 independent runs of ASTRO-DF on each problem.

dim Problem Initial Gap ntotal = 500 ntotal = 1000 ntotal = 5000 ntotal = 10000 ntotal = 20000

2

CUBE 1,664,640,225.00 166.8 (12.01) 115.85 (71.15) 2.75 (0.06) 2.73 (0.07) 2.73 (0.07)
DENSCHNB 83,493.00 223.26 (0.04) 83.19 (34.97) 0.22 (0.18) 0.08 (0.09) 0.06 (0.05)
DENSCHNC 17,053,704.00 82.03 (159.96) 3.57 (3.59) 0.08 (0.07) 0.06 (0.06) 0.07 (0.07)
DENSCHNF 6,825,024.00 63.91 (60.74) 5.53 (0.39) 0.05 (0.06) 0.03 (0.03) 0.03 (0.02)
ROSENBR 7,398,689.00 3,228.74 (4,072.37) 14.47 (13.28) 1.52 (1.54) 0.80 (1.02) 0.54 (0.79)

S308 589,825.00 1.20 (0.03) 0.97 (0.13) 0.87 (0.07) 0.85 (0.06) 0.85 (0.07)
SINEVAL 265,359.79 62.54 (0.05) 62.54 (0.05) 37.78 (4.73) 33.86 (1.12) 25.61 (1.74)

3

BEALE 4,314,111,706.20 2,689.17 (8.31) 0.60 (0.01) 0.60 (0.01) 0.58 (0.04) 0.57 (0.03)
DENSCHND 4,880,138,240.00 965,257.37 (215,883.46) 90,575.16 (28,683.84) 5,767.2 (8,664.57) 392.77 (502.34) 54.36 (107.3)
DENSCHNE 57,857.00 127.92 (17.80) 74.80 (49.51) 5.60 (3.67) 1.41 (1.01) 1.05 (0.04)
ENGVAL2 1,654,165.00 285,405.96 (98,770.26) 142,720.60 (93,007.83) 6,278.57 (7,539.4) 531.84 (850.6) 59.99 (93.88)

YFITU 7,532.36 7,532.36 (224.99) 397.51 (0.01) 397.51 (0.01) 393.07 (5.36) 378.64 (6.02)

4

BROWNDEN 1,109,286,386.27 2,805,815.83 (384,187.4) 345,556.84 (196,785.90) 77,538.60 (63,343.09) 15,282.92 (11,667.43) 1,346.47 (2,564.37)
HELIX 62,036.77 21.20 (1.99) 5.75 (1.04) 4.47 (2.23) 1.89 (1.68) 0.79 (0.08)

HIMMELBF 18,223,594.79 25,133.51 (906.62) 24,919.70 (116.58) 24,919.70 (116.58) 23,718.34 (402.6) 22,082.45 (969.11)
KOWOSB 407.52 1.09 (0.52) 0.22 (0.23) 0.21 (0.24) 0.21 (0.24) 0.21 (0.24)

6 PALMER5C 57,060.56 0.17 (0.42) 0.05 (0.06) 0.05 (0.06) 0.05 (0.06) 0.05 (0.06)

8
PALMER6C 234,351,624.60 9,244.66 (1,979.12) 8,337.96 (2,974.69) 7,950.99 (3,188.69) 6,137.43 (1,530.45) 5,660.21 (1,925.74)
PALMER7C 938,543,568.98 19,198.73 (3,970.22) 17,806.34 (4,397.08) 6,511.37 (4,073.36) 5,848.43 (3,960.98) 5,007.86 (3,843.73)
PALMER8C 284,731,957.52 45,662.36 (4,776.17) 6,815.97 (7,067.04) 5,410.86 (5,841.45) 4,677.09 (5,067.15) 3,723.63 (3,979.81)

Table 2: The estimated mean and standard deviation of the true gradient norm at a (random) returned
solution of ASTRO-DF, as a function of the total simulation budget. The statistics were computed based
on 20 independent runs of ASTRO-DF on each problem.

dim Problem Initial Gradient ntotal = 500 ntotal = 1000 ntotal = 5000 ntotal = 10000 ntotal = 20000

2

CUBE 626,688,561.25 5,641.58 (215.93) 4,148.01 (2,133.23) 55.23 (38.39) 26.35 (18.69) 23.19 (24.82)
DENSCHNB 13,918.26 115.42 (0.63) 25.31 (14.66) 1.0 (0.32) 0.59 (0.41) 0.51 (0.21)
DENSCHNC 6,327,252.19 99.51 (180.17) 9.83 (20.25) 1.13 (1.08) 1.04 (0.75) 0.97 (0.75)
DENSCHNF 1,228,253.22 1.91 (0.05) 42.89 (1.77) 4.43 (2.82) 3.04 (1.56) 2.77 (0.27)
ROSENBR 1,741,683.78 2,215.21 (2,450.05) 95.27 (69.98) 11.19 (10.03) 3.67 (2.65) 2.9 (2.18)

S308 104,267.14 1.07 (0.01) 0.74 (0.23) 0.57 (0.17) 0.56 (0.19) 0.52 (0.2)
SINEVAL 45,109.93 418.43 (0.43) 418.43 (0.43) 23.04 (16.16) 15.12 (11.84) 14.22 (12.6)

3

BEALE 1,702,889,243.95 6154.35 (14.66) 223.04 (201.23) 26.53 (23.07) 13.63 (11.33) 9.11 (10.47)
DENSCHND 2,284,598,497.73 671,367.94 (102,757.39) 87,701.12 (35,407.02) 3,257.27 (3,186.4) 665.65 (676.33) 90.61 (159.8)
DENSCHNE 14,880.03 29.08 (4.72) 22.55 (12.75) 3.10 (3.48) 0.76 (1.22) 0.36 (0.23)
ENGVAL2 1,328,958.48 157,877.43 (86,706.09) 91,714.81 (81,874.81) 7,955.82 (12,353.36) 1,018.2 (1,486.14) 138.61 (87.25)

YFITU 6,698.93 6,698.93 (0.00) 894.61 (0.00) 894.61 (0.00) 533.38 (369.76) 164.9 (105.88)

4

BROWNDEN 14,484,286.01 705,654.61 (195,512.81) 74,951.12 (34,455.6) 23,518.29 (11,544.48) 12,489.10 (6,017.72) 4,301.18 (4,244.95)
HELIX 4,989.97 185.34 (10.03) 45.38 (0.90) 38.23 (13.02) 27.41 (15.79 5.14 (2.42)

HIMMELBF 4,787,770.96 178,763.72 (85,856.99) 11,085.61 (7,056.75) 1,819.48 (948.6) 1,373.75 (525.99) 1,295.14 (405.65)
KOWOSB 76.84 1.78 (0.53) 0.66 (0.46) 0.62 (0.47) 0.62 (0.47) 0.62 (0.47)

6 PALMER5C 1,510.43 1.31 (1.44) 0.78 (0.49) 0.86 (0.51) 0.86 (0.51) 0.86 (0.51)

8
PALMER6C 19,027,217.80 3,090.00 (3,960.13) 3,186.54 (1,846.33) 2,188.84 (1,097.99) 2,216.65 (1,26.77) 2,003.91 (989.47)
PALMER7C 80,645,963.34 146,744.86 (218,010.63) 177,031.03 (135,919.20) 8,473.06 (12,862.42) 7,679.50 (11,881.42) 4,241.71 (6,463.97)
PALMER8C 22,681,728.35 13,119.43 (12,556.37) 7,589.97 (7,386.3) 2,847.42 (2,274.93) 2,101.04 (2,547.86) 1,670.81 (1,388.25)
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5 CONCLUDING REMARKS

Over the last decade or so, derivative-free trust-region algorithms have enjoyed great attention and success
in the deterministic context. We believe that the question of developing analogous algorithms for the Monte
Carlo context is poorly studied; it is worthy of further inquiry because the settings for which derivative-
free trust-region methods are devised seem predominant within Monte Carlo contexts. In this paper, we
make some important initial steps towards answering this question. Specifically, we experiment our newly
developed adaptive sampling trust-region optimization algorithms (called ASTRO-DF) for solving low to
moderate dimensional simulation optimization problems. The algorithms we propose are convergent, but
more importantly, gain practical efficiency through certain key steps related to adaptive sampling, model
certification, and the careful balancing of interpolation, sampling, and model errors. The numerical results
reported in this study confirm that ASTRO-DF is a reasonable framework for simulation oracles with
low to high variability. Ongoing research focuses on a number of theoretical and practical issues within
ASTRO-DF, some of which we summarize below.

(i) Convergence theory for ASTRO-DF dictates the asymptotic sampling rate to be O
(
∆
−4
k

)
, where

∆k is the incumbent trust-region radius. A similar requirement has been prescribed by two other
recent prominent investigations (Chen et al. 2015, Larson 2012). Is this sampling rate fundamental
in any sense? Does the O

(
∆
−4
k

)
rate translate to the O(1/

√
n) Monte Carlo canonical rate?

(ii) Unlike the deterministic TRO-DF algorithm (Conn et al. 2009a), ASTRO-DF includes a model
construction step in every iteration. It seems that such a stringent requirement can be relaxed without
sacrificing convergence guarantees. In fact, the implementation of ASTRO-DF that we have used
in Section 4 does just that by adding a criticality step which stipulates that the model construction
step be invoked only when the model gradient is sufficiently small. Such a simple rule improves
practical efficiency; whether it preserves convergence is an open question.

(iii) A crucial unresolved issue that is somewhat related to the remark in (ii) relates to the manner of
model construction. Specifically, how should the model construction step balance re-using already
visited points with carefully placed new points within the trust-region? While using already visited
points enhance efficiency by preserving simulation budget, they invariably result in poorer models
because iterates visited by ASTRO-DF tend to be highly spatially correlated.

(iv) The slowly increasing sequence {λk} ensures that the sample sizes within ASTRO-DF are forced
to infinity asymptotically, and that the effects of infrequent spurious observations are limited.
Our numerical experience strongly suggests that {λk} is only rarely binding, and almost never so
asymptotically. Can it be established that the probability of the lower bound sequence {λk} being
binding infinitely often is zero with probability one?
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