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ABSTRACT 

Simulation optimization has become commonplace in commercial simulation tools, but automated 

statistical analysis of the impacts of varying input parameters is much less common. In this paper we 

explore how both optimization and statistical analysis can be coupled with simulation models to provide 

key insights for decision makers. A manufacturing example is provided to illustrate the results of multi-

objective optimization and post-optimization statistical analysis of the simulation runs. We demonstrate 

how automated statistical analysis can provide analysts with valuable information on variable sensitivities 

and good and bad regions of the decision trade space. 

1 INTRODUCTION 

Most organizations fail to take full advantage of their simulation models. Even though large amounts of 

time and money are invested creating a simulation tool and populating it with validated data, a large part 

of the valuable knowledge that the model may yield is generally overlooked.  

 Simulation analysts who can access such knowledge are exceedingly valuable to their organization 

and become highly sought-after resources. Combining optimization and statistical analysis techniques 

with a simulation model is the key to unlocking this knowledge. Optimization techniques can be used to 

execute a simulation model many times, varying the input parameter values, to determine the best input 

values to achieve desired system outputs. The results of these simulation runs can then be explored with 

statistical techniques to better understand the system modeled by the simulation. Essential optimization 

and analysis questions that can be answered for simulation models by combining these techniques 

include: 

 

 Optimization 

 What combinations of input parameters lead to the best and worst performance of the system?   

 What are the best tradeoffs between multiple competing objectives?   

 Analysis  

 Which input parameters have the greatest influence on the system being modeled and which 

have the least? 

 Are there good or bad regions of the input parameter space that can be defined by a subset of 

input parameters with restricted ranges? 

 Are some areas of the parameter trade space more robust to parameter variation than others?   

 

 To derive the greatest benefit from a simulation model, an analyst should apply both optimization and 

the statistical analysis techniques. Combining these techniques can provide answers to these essential 
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questions and key insights for decision makers. More importantly, they increase the organizational return 

on investment from simulation studies. Answering these types of questions additionally provides model 

validation and builds stakeholder confidence. 

2 OPTIMIZATION AND STATISTICAL ANALYSIS IN COMMERCIAL SIMULATION 

PACKAGES 

Over the past two decades optimization tools in commercial simulation packages have become 

widespread and are relatively easy to use, even if not all practitioners exploit them. Commercial 

simulation packages also have analysis tools that explore the variability uncovered through simulation 

replications (or Monte Carlo runs) for a single set of input parameters. However, the analysis of all 

simulation runs resulting from an optimization run is less commonly available, at least in an automated, 

easy to digest way.  

 The underlying statistical techniques discussed in this paper are not new. However, in many tools 

today, to perform variable sensitivity and good and bad region analysis across simulation runs executed 

with different combinations of input parameter changes, analysts have to use multiple tools, or perform 

the simulations and then piece together the results of various statistical techniques. Thus, these types of 

valuable simulation analyses are done infrequently, and are often performed only by technical consultants 

and advanced users.  To perform these analyses, users of discrete event simulation packages export their 

simulation results and then use specialized statistical tools like JMP, SPSS, or R for analysis. Users of 

spreadsheet-based Monte Carlo simulations have more statistical analysis tools at their disposal, but even 

for these users, gaining insights across all simulation runs is not an automated process.   

 The critical goals of identifying good and bad regions of a parameter trade space, and of discovering 

robust solutions, are sometimes pursued by more advanced analysts through generation of a response 

surface approximation by coupling design of experiments with simulation. This approximate response 

surface is then explored through various stochastic optimization techniques (Samuelson 2011). Such an 

approach generally relies on moving from tool to tool for the different steps in the process: generating the 

design of experiments, executing the simulations, and performing the stochastic optimization. This type 

of process has the conspicuous shortcoming of frequently oversimplifying complex response surfaces, 

which can entail a costly loss of valuable insights. 

 If these statistical analyses across simulation runs are integrated into commercial simulation products 

and automated, then key results can be presented as a direct outcome of simulation optimization runs, 

providing more information and allowing more robust analysis by all simulation users. It is our belief that 

just as simulation optimization has become commonplace, these types of automated analyses across 

different input parameter sets following optimization runs will also become a standard feature of 

commercial simulation packages in coming years.  In the remainder of the paper a concrete example will 

be provided and results presented to show the benefits of integrated optimization and analysis with a 

simulation model. 

3 AN ILLUSTRATIVE EXAMPLE 

To illustrate emerging simulation analysis features to overcome the limitations in many current systems, 

we will look at a simulation manufacturing example and show tables and graphs produced by 

SimWrapperTM. This tool embodies technologies which we expect will become standard in commercial 

simulation packages over the next decade, just as simulation optimization features have been added to 

most packages in the past 15 years.  

SimWrapper does not provide simulation capabilities itself.  It wraps (integrates with) simulation 

models to provide complementary optimization and analysis features. SimWrapper embeds OptQuest
®
, a 

state-of-the-art black box optimizer incorporated in many commercial simulation tools, and 

OptAnalysisTM, a library of statistical and data mining techniques. Among its varied features, it allows 

users to create binary, integer, continuous, enumerated, choice, and location decision variables from 
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simulation input parameters. Users also specify outputs of the simulation model to be used in constraints 

and objectives to optimize.  

Following a batch run, design of experiments run, or optimization run, automated simulation analysis 

results are displayed for the user in a series of tables and two- and three-dimensional graphs that 

summarize and elucidate the results.  

 Although the remainder of the paper follows a manufacturing example, the optimization and analysis 

techniques discussed are equally applicable in other domains. The optimization techniques treat the model 

as a “black box”, requiring only that each set of input values yields corresponding output values. 

Likewise, the statistical techniques presented require only rows of data containing dependent and 

independent values, which is what the input and output results from each run of a simulation model are.  

This pairing of optimization and statistical analysis techniques with simulation models can be used 

beneficially anytime a complex system is being modeled and many combinations of input parameters are 

being considered. 

 We will consider an example of an organization that has a simulation model of its manufacturing 

environment which includes the key input parameters and performance metrics shown in Figure 1.   

 

Simulation Inputs Parameters to Change Performance Metrics 

Number of production lines Throughput 

Machine configurations and performance Work in progress 

Job scheduling policies Inventory 

Batch size (or bounds on size) Fixed and variable cost 

Queue lengths (or bounds on lengths) Utilization 

Staffing – shift lengths and start times, overtime Job tardiness 

Figure 1: Simulation parameters and key performance metrics for a manufacturing example. 

Managers often do not know the breadth of information that can be garnered from a simulation model 

and consequently are prone to ask questions that are too narrow. For instance, a manager hoping to 

increase throughput may ask a simulation analyst to run a small parametric study and report results from 

executing changes relative to the current batch size of -20%, -15%, -10%, -5%, 0%, +5%, +10%, +15%, 

and +20%. Suppose, however, the key drivers of throughput in this manufacturing environment are job 

scheduling policies and staffing. The manager may tweak the batch sizes based on the simulation runs, 

but will fail to discover the most influential throughput improvements because the question posed was not 

broad enough, and the analyst simply ran the requested simulations. The routine parametric study of batch 

sizes gives no chance to uncover the important influence of scheduling and staffing policies. 

 

Decision Variables Type Values 

Number of production lines Integer Min: 1, Max: 5 

Machine configuration Choice C1, C2, C3, or C4 

Job scheduling policies Choice P1, P2, or P3 

Batch size Integer, Stepped Min: 10, Max: 50, Step: 5 

Queue lengths  Integer, Stepped Min: 5, Max: 25, Step: 5 

Number of shifts Integer Min: 1, Max: 3 

Voluntary overtime Boolean True, False 

Figure 2: Decision variables defined for a manufacturing example. 

 To expand the example, consider the situation where our manufacturing firm has experienced a 

significant increase in orders and is struggling with job tardiness. An analyst has been asked to explore 
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options for reducing job tardiness and their cost ramifications. The analyst identifies seven simulation 

inputs that may be significant and defines potential ranges on their values as shown in Figure 2. 

4 SIMULATION OPTIMIZATION 

The next step for an analyst is to define one or more objectives and perform an optimization of the 

simulation model.  In this example, one approach would be to minimize job tardiness at a fixed cost level. 

However, more information can be gained via simulation optimization by solving for two objectives 

simultaneously, minimizing job tardiness and minimizing fixed and variable costs, and then exploring the 

non-dominated efficient frontier of possibilities. 

 Our analyst runs a simulation optimization solving for both objectives simultaneously and obtains the 

graph shown in Figure 3 summarizing the results of 144 simulation runs. The dark blue line is the non-

dominated efficient frontier showing the optimal tradeoffs between cost and tardiness. The grey points are 

other dominated solutions, and the lighter blue lines highlight the best efficient frontiers found with fewer 

simulation trials. 

 

 

Figure 3: Plot of all simulation runs highlighting the non-dominated efficient frontier. 

 In this example, configurations that increase costs at the lower end yield minimal benefits in reducing 

job tardiness. Then at a point lying roughly between the costs of $310,000 and $685,000, there is a 

significant decrease in job tardiness per unit cost with tardiness dropping from 8.3 days to 2 days. The 

slope then flattens again, and further gains in job tardiness are increasingly expensive. Using these 

already executed 144 simulation runs, the analyst can also answer key simulation analysis questions.  

5 SIMULATION ANALYSIS 

Before sharing these results with supervisors the analyst would like to understand which simulation inputs 

have the biggest impact on the objectives, along with the changes that must take place in the 

manufacturing environment to achieve the solutions found at different points along the curve. To see how 

variations in the simulation inputs impact the total cost and job tardiness the analyst can examine the 
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sensitivities of these variables to the different objective values. SimWrapper includes several routines 

which automatically identify influential variables and quantify how each relates to each objective of 

interest. 

5.1 Variable Sensitivities 

Figures 4 and 5 show the variable sensitivity summaries for the job tardiness objective and the total cost 

objective, respectively. The tables show results from least-squares regression analysis, variable effects 

analysis, mutual information, and regression tree analysis as well as an overall influence rank for each 

variable. The composite influence rank is an aggregation of the individual analysis results and ranges 

from 0 to 100. The larger the influence rank, the more impact the variable has on the objective.  

 

 

Figure 4: Variable sensitivities table for the job tardiness objective. 

 

 

Figure 5: Variable sensitivities table for the total cost objective. 

5.1.1 Least squares regression 

A linear regression finds a linear fit between an output or objective and one (or more) decision variables 

(Neter, Wasserman, and Kutner 1990). Regression results include an R
2
 value which ranges from 0 to 1 

and measures the goodness of a linear fit, with values closer to 1 indicating a stronger linear relationship. 

In our manufacturing example, the R
2
 score for number of production lines and the total cost is 0.88, 

indicating a strong linear relationship. Adding production lines is a significant capital investment. 
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5.1.2 Variable effects analysis 

The variable effects score shown is based on the idea of isolating the “main effects” of a variable 

(Montgomery 1997). These effects provide a measure of how much a model output of interest changes as 

the variable value moves from its lower bound to its upper bound within its range. High absolute value 

indicates a high level of influence on the objective value with the sign indicating the direction of 

influence (e.g., with a negative sign higher variable values result in lower objective values) and the 

magnitude of the score provides the approximate amount of change in the objective as the variable value 

moves from its lower to upper bound. Looking at the variable effects column of Figure 4 we can see that 

increasing the number of shifts from 1 to 3 reduces the job tardiness by almost 8 days on average. 

5.1.3 Mutual information 

The mutual information value for a variable represents how much the variable and objective "move 

together."  It's a measure of correlation that can pick up nonlinear dependencies (Cover and Thomas 

1991). In Figures 4 and 5 a normalized mutual information value is reported that ranges from 0 to 100, 

with higher values indicating stronger relationships. The mutual information score complements the 

regression and variable effects scores by identifying non-linear relationships. Scanning the R
2
 and mutual 

information columns in Figure 4 the queue length variable has an R
2
 score of only 0.02, but a mutual 

information score of 41.03. From Figure 6 we see that queue length and job tardiness have a strong 

nonlinear relationship. 

 

 

Figure 6: A plot showing the relationship between queue length and job tardiness. 

5.1.4 Regression tree analysis 

Regression tree analysis (Breiman et al. 1984) provides the tree level in the variable sensitivity tables. A 

regression tree segments the decision space, identifying combinations of variable value ranges that yield 

good and bad simulation run outcomes based on an objective. The root node represents all simulation 
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runs, and then successive branches are created with child nodes containing subsets of the simulation runs 

with decision variable values in different ranges. 

A variable branched on closer to the root indicates higher influence. Regression trees are another 

method that can identify nonlinear variable influence. Figure 7 shows a regression tree for the job 

tardiness objective. The tree splits multiple times on number of production lines and then splits on 

machine configuration or queue length depending on the node. The two leaf nodes at the lower left show 

that for four or five production lines, using machine configuration C2 rather than configuration C1, C3, or 

C4 yields average job tardiness of 2.2 days versus 3.9 days. 

 

 

Figure 7: A regression tree for the job tardiness objective. 

5.2 Good and Bad Regions 

Identifying good and bad regions of the decision variable trade space is also exceedingly useful for 

analysts. Combinations of decision variable ranges define subsets of simulation runs (regions) that are 

associated with either high or low objective values. Statistical measures for a region can be provided as 

one measurement of the robustness of results found in a region. These good and bad regions are an 

important complement to influential variable analysis. They highlight for an analyst how variables 

interact in combination in specific ranges to influence an objective of interest. Sometimes the optimal set 

of input values represents an outlier surrounded by solutions with much worse objective value. Decision 

space analysis allows the analyst to avoid these solutions, and to select robust solutions with confidence. 

 Figure 8 shows two good regions for the job tardiness objective, the first defined just by having four 

or five production lines, and the second by having five production lines and using machine configuration 

C2. The second good region identified has a smaller standard deviation than the first, indicating less 

variability across the simulation runs that share these characteristics. One bad region is identified defined 

by one production line and the use of job scheduling policy P1 or P2. 
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Figure 8: Good and bad regions for the job tardiness objective. 

 The results shown in Figure 8 are derived from regression tree analysis and Patient Rule Induction 

Method (PRIM) analysis. PRIM is a machine learning method (Friedman and Fisher 1999) which is 

specifically designed to identify good and bad regions of the decision space.  Both the regression tree and 

the PRIM analysis result in multiple good regions, but In Figure 8 only the top region identified by each 

technique is displayed. 

6 CONCLUSION 

We have illustrated the benefits of coupling both optimization and statistical analysis with simulation 

models to provide key insights for decision makers. Utilizing optimization and statistical analysis together 

provides answers to the “what’s the best?” questions of the optimization realm, while the complementary 

simulation trade space analysis provides answers to questions like “which inputs are influential?” and 

“how can the system be characterized?” which rely on statistical analysis of many executed simulation 

runs. Combining optimization and statistical analysis with simulation enables managers and analysts to 

delve into the crucial factors that influence the functioning of their organizations, and gain greater insights 

than those available through simulation alone. 
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