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ABSTRACT

Approximate Bayesian inference is a powerful methodology for constructing computationally efficient
statistical learning mechanisms in problems where incomplete information is collected sequentially. Ap-
proximate Bayesian models have been developed and applied in a variety of different domains; however,
this work has thus far been primarily computational, and convergence or consistency results for approxi-
mate Bayesian estimators are largely unavailable. We develop a new consistency theory for these learning
schemes by interpreting them as stochastic approximation (SA) algorithms with additional “bias” terms.
We prove the convergence of a general SA algorithm of this type, and apply this result to demonstrate, for
the first time, the consistency of several approximate Bayesian methods from the recent literature.

1 INTRODUCTION

We consider a class of sequential learning problems where incomplete or censored information is used to
maintain and update beliefs about one or more unknown population parameters. Such problems arise in
numerous application areas; three specific recently-studied applications include:

• In financial markets, market-makers are used to increase liquidity and promote trading after a shock
event. The market-maker’s optimal trading strategy seeks to learn the unknown value of assets
based on traders’ willingness to buy and sell (Das and Magdon-Ismail 2009).

• Suppose that buyer valuations of a product are drawn independently from an unknown distribution
that depends on the price. The seller wishes to learn this distribution, but cannot observe valuations
directly. Instead, they must be inferred based on sales (Qu, Ryzhov, and Fu 2013).

• Online gaming services attempt to match players of similar skill levels to promote competitive
play. However, “skill” is a modeling construct that cannot be observed directly, but rather must be
estimated from win/loss outcomes (Dangauthier et al. 2007).

Sequential learning is particularly important when it is coupled with multi-stage optimization; for
example, in dynamic pricing, the seller earns revenue from a sequence of pricing decisions, which can
be improved in an adaptive manner using the incoming sales information. In the simulation community,
learning is widely studied in the context of ranking and selection (see the tutorials by Hong and Nelson 2009
or Chau et al. 2014), in which a decision-maker seeks to discover the best of a finite set of alternatives by
adaptively allocating a simulation budget. When decisions are made sequentially, Bayesian statistical models
can be useful (Chick 2006, Chen et al. 2015) for quantifying the decision-maker’s remaining uncertainty
about the unknown values at every time stage; this uncertainty can then be traded off against the estimated
values of different decisions to determine an optimal balance between exploration and exploitation. See
Powell and Ryzhov (2012) for an introduction to the main algorithmic ideas in this literature.
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For the most part, the existing work on Bayesian optimal learning prefers to use simple statistical
models in which unbiased observations of the unknown values are available (e.g., from simulation models).
The most common framework (see, e.g., Gupta and Miescke 1996) assumes that the simulation output is
normally distributed and centered around the unknown quantity to be learned; a simple normal prior can
then be used to model our beliefs about the unknown mean. The property of conjugacy (DeGroot 1970)
ensures that our posterior beliefs continue to be normally distributed after any number of observations.
Consequently, the beliefs can always be completely characterized by a small set of parameters (e.g., means
and variances for normal distributions), which can be updated recursively in closed form.

In traditional Bayesian statistics, where inference is performed once on a given sample, conjugacy may
be less important and approximate Bayesian estimation (Sunnåker et al. 2013) may be based on Markov
chain Monte Carlo procedures (Plagnol and Tavaré 2004), which are computationally expensive but known
to converge (Asmussen and Glynn 2011). However, conjugacy becomes extremely valuable when samples
are observed sequentially and information collection is guided adaptively by the decision-maker. In such
cases, the ability to compactly represent beliefs using a small set of parameters enables the development
of optimization algorithms that take those parameters as inputs and return recommended decisions. These
algorithms may be required to run very quickly; for example, in dynamic pricing, it may be necessary to
calculate and post a price as soon as the next buyer logs on to the seller’s website. Conjugate learning
models greatly simplify the design of such procedures.

However, in many applications, including those listed above, there is no natural choice of prior
distribution that is conjugate with the observations. This issue has led to recent interest in approximate
Bayesian methods, which force conjugacy by creating an artificial posterior distribution from the same
family as the prior (e.g., normal), and choosing the parameters of that distribution to “optimally approximate”
(in some sense) the exact posterior, which is typically much less tractable. Computational strategies for
these methods include moment-matching (Zhang and Song 2015), density filtering (Qu et al. 2015),
and variational approximations (Jaakkola and Jordan 2000). However, although these approaches have
repeatedly demonstrated significant practical benefits, they remain largely unamenable to the usual forms
of theoretical analysis. Ryzhov (2015) discusses some of the theoretical challenges involved; here, we can
simply state that even the statistical consistency of approximate Bayesian estimators has heretofore been
a largely open problem. In fact, it is not even clear whether we should expect them to be consistent, as
each stage of sampling introduces a new approximation and thus more error into the Bayesian model.

In this paper, we summarize a new analysis by Chen and Ryzhov (2016) that sheds light on these issues
for the first time. To provide context, we first describe in Section 2 a simple example where approximate
Bayesian inference is used to create approximately normal posteriors based on censored binary observations.
We observe that the updating equations derived for this learning scheme can be interpreted as a form of
stochastic approximation (Robbins and Siegmund 1985, Kushner and Yin 2003, Borkar 2008), and more
specifically bears resemblance to online gradient descent procedures (Bottou 1998) with the addition of a
“bias” term. In Section 3, we propose a modified Robbins-Monro algorithm with a similar bias term, and
prove its convergence. In Section 4, we explain how these results can be applied to prove the asymptotic
consistency, not only of the example procedure from Section 2, but also of several other learning schemes
from the recent literature developed for all of the above-listed applications. Section 5 concludes and points
out directions for future work. We believe that our work is the first to offer general theoretical machinery
for consistency analysis of approximate Bayesian schemes; our results complement the existing algorithmic
literature and lend support to approximate Bayesian inference as a rigorous statistical learning methodology.

2 MOTIVATING EXAMPLE: LEARNING FROM CENSORED BINARY OBSERVATIONS

Before we begin our theoretical analysis, we present a simple motivating example where approximate
Bayesian inference is used to construct a computationally tractable estimator of an unknown population
mean in a setting where only censored binary observations of that mean are available. This setting provides
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context for our main insight that approximate Bayesian inference can be viewed as a form of stochastic
approximation.

Let θ be an unknown value and denote by (Yn)
∞

n=1 a sequence of i.i.d. samples from the common
distribution N

(
θ ,λ 2

)
. The variance λ 2 is assumed to be known for simplicity. We impose the Bayesian

model θ ∼N
(
µ0,σ

2
0
)

where the parameters µ0,σ0 represent our prior beliefs about θ .
If the samples Y1,Y2, ... can be observed directly, the posterior distribution of θ given Y1, ...,Yn is

known to be normal for any n (DeGroot 1970). In that case, our beliefs about θ can always be compactly
characterized by a pair (µn,σn), which can be easily updated recursively after each successive sample.
The consistency of the estimator µn follows trivially, as the updating equation for the mean is essentially
a form of recursive sample averaging.

Suppose, however, that we cannot observe Y1,Y2, ... directly. Instead, we can only observe a sequence
(Bn)

∞

n=1 of censored observations defined by

Bn+1 = 1{Yn+1<bn},

where the sequence (bn)
∞

n=0 is deterministic and known; for example, bn could be a dosage decision for a
drug, with Bn+1 indicating the presence or absence of adverse effects. It is readily evident that the posterior
density P(θ ∈ dx |B1) is no longer normal, even after just one observation. As we collect more samples, the
posterior will become a more complicated mixture, making it difficult to compactly represent and update
our beliefs.

We will now apply approximate Bayesian inference (Ryzhov 2015) to create a computationally efficient
learning mechanism for this problem. We will “force” the posterior to be conjugate by creating an artificial
density from the desired distributional family (in this case, a normal density) and choosing the parameters
of that density to “optimally approximate” the exact, non-normal posterior. We will then discard that
posterior and proceed under the assumption that our beliefs are accurately modeled by the artificial normal
distribution. In this way we regain the ability to represent our beliefs using just two parameters (mean and
variance), but presumably incur statistical error from the approximation.

In this example, we create the posterior using the well-known method of moment-matching, also known
as expectation propagation (Minka 2001). Suppose that our initial Bayesian assumption θ ∼N

(
µ0,σ

2
0
)

holds, and that B1 is given. Let θ̃ be a random variable following a normal distribution with mean µ1 and
variance σ2

1 , where these parameters are chosen to satisfy the equations∫
R

xP
(
θ̃ ∈ dx

)
=

∫
R

xP(θ ∈ dx |B1) ,∫
R

x2P
(
θ̃ ∈ dx

)
=

∫
R

x2P(θ ∈ dx |B1) .

In other words, the first two moments of θ̃ are equal to those of the non-normal posterior distribution. We
then move to the next stage of sampling and repeat the process with the assumption that θ ∼N

(
µ1,σ

2
1
)

and the next observation B2.
With some algebra, it can be shown that the moment-matching equations in the (n+1)st stage admit

a closed-form solution given by

µn+1 = µn−σ
2
n

(
Bn+1

1√
λ 2 +σ2

n

φ (pn)

Φ(pn)
− (1−Bn+1)

1√
λ 2 +σ2

n

φ (pn)

1−Φ(pn)

)
, (1)

σ
2
n+1 = σ

2
n

(
1−Bn+1

σ2
n

λ 2 +σ2
n

pnφ (pn)Φ(pn)+φ 2 (pn)

Φ2 (pn)

− (1−Bn+1)
σ2

n

λ 2 +σ2
n

φ 2 (pn)− pnφ (pn)(1−Φ(pn))

(1−Φ(pn))
2

)
, (2)
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where φ ,Φ are the standard normal pdf and cdf, and

pn =
bn−µn√
λ 2 +σ2

n
.

The new belief parameters (µn+1,σn+1) can be efficiently computed in a recursive manner from the old
parameters (µn,σn) and the next observation Bn+1.

It is not obvious whether the sequence (µn) of posterior means will be able to estimate θ accurately. In
fact there is some reason to expect that this will not happen: first, the censored observations (Bn) themselves
now carry much less information than the complete observations (Yn), and second, the approximate Bayesian
update introduces statistical error that may be compounded over time (since we always advance to the next
stage under the normality assumption). It is thus somewhat surprising that (µn) is, in fact, statistically
consistent, i.e., it is guaranteed to recover θ w.p. 1.

We will describe a rigorous framework for proving this result in the next section. First, however,
we provide additional intuition by pointing out that (1) can be viewed as a Robbins-Monro stochastic
approximation (SA) procedure of the form

µn+1 = µn−αnGn (Bn+1,µn) , (3)

with the posterior variance σ2
n serving as the stepsize αn. SA has previously been applied to frequentist

statistical estimation under the name “online gradient descent” or OGD (Bottou 1998). This version of SA
assumes that the unknown mean θ is fixed and optimizes the log-likelihood of the observed samples. In
the context of our example, the OGD algorithm is given by (3) with

Gn (Bn+1,µn) = Bn+1
1
λ

φ (qn)

Φ(qn)
− (1−Bn+1)

1
λ

φ (qn)

1−Φ(qn)
, (4)

where qn =
bn−µn

λ
and the only assumptions made on the stepsize αn are the conditions

∞

∑
n=0

αn = ∞,
∞

∑
n=0

α
2
n < ∞, (5)

which are usually required for convergence in SA theory (Robbins and Monro 1951).
It is easy to see that (4) is the gradient of the marginal frequentist log-likelihood function of Bn+1

evaluated at the current iterate µn. The approximate Bayesian update (1) also greatly resembles the OGD
algorithm, with the posterior variance σ2

n playing two roles: first, it augments the noise λ 2 in the definition
of Gn+1, and second, it replaces the stepsize. Thus, if σ2

n satisfies (5), and if the moment-matching update
does not deviate “too far” from the OGD update, we may also expect (1) to converge. This approach is
formalized in the next section.

We end this example with a numerical illustration. Figure 1(a) shows the sequence µn produced by
(1)-(2) over 106 iterations. We set λ 2 = 1.5, µ0 = 0, σ2

0 = 1, and the sequence bn = 8+0.000003 ·n. The
true value of the parameter is set to θ = 10. Convergence is observed after just 1000 iterations. Figure
1(b) shows the trajectory of the approximate posterior variance; we see that σ2

n can be viewed as a kind
of adaptive stepsize, whose declining behaviour slows down in later iterations in order to place sufficient
weight on new information.

3 A GENERAL CONVERGENT STOCHASTIC APPROXIMATION ALGORITHM

In this section, we propose a general stochastic approximation algorithm of the form

xn+1 = xn−αn (Fn (Wn+1,xn)+βn (Wn+1,xn,αn)) , n = 0,1, ... (6)
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(a) Approximate posterior mean. (b) Approximate posterior variance (log-scale).

Figure 1: Empirical convergence of the approximate Bayesian estimator.

where x0 ∈ Rm is an arbitrary m-vector, the step size (αn)
∞

n=0 is a positive (deterministic or random)
sequence satisfying (5) almost surely, (Wn)

∞

n=1 is a sequence of random variables, (Fn)
∞

n=0 is a sequence
of real measurable functions mapping (w,x) into Rm, and (βn)

∞

n=0 is another sequence of real measurable
functions representing the “bias” of the SA update.

The algorithm in (6) closely resembles the SA procedures studied in Kushner and Yin (2003) and other
references. However, our intended applications require us to introduce modifications into the procedure that
necessitate a new convergence proof. The main difference between (6) and standard SA is the introduction
of the bias βn. Connecting (6) back to our example in Section 2, the SA update Fn would be identical to the
OGD gradient Gn in (4), while the bias βn would be set equal to the difference between the OGD gradient
and the approximate Bayesian update in (1). Since the posterior variance σ2

n serves as the stepsize in (1),
the bias βn will thus depend on the random variable αn. This dependence does not fit into the standard SA
convergence conditions (e.g., those in Sec. 5.2 in Kushner and Yin 2003) and thus a new set of conditions
is required. These are described below.

We define

Fn , B (W1, ...,Wn,x1, ...,xn,α1, ...,αn) ,

Rn (xn) , E(Fn (Wn+1,xn) |Fn) ,

and impose several conditions as follows. The first condition ensures that the SA algorithm is searching
for a unique root θ :
Assumption 1 For any n, the equation Rn (x) = 0 has a unique root θ , which does not depend on n.

In the example from Section 2, this quantity corresponds to the unknown population mean, with the
minor distinction that here θ is treated as a fixed value (as in frequentist statistics). The second condition
resembles many standard SA convergence proofs, where the expected value of the stochastic gradient is
assumed to point in the “right” direction:
Assumption 2 (Convexity) For n = 1,2, ... and any ε > 0,

inf
‖x−θ‖2

2>ε,n∈N
(x−θ)T Rn(x)> 0.

The third condition bounds the growth of the second moments of Fn and βn:
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Assumption 3 There exist positive constants C1 and C2 such that

sup
n∈N

E
(
‖Fn(Wn+1,x)‖2

2|Fn
)
≤ C1

(
1+‖x−θ‖2

2
)
, (7)

sup
n∈N

E
(
‖βn (Wn+1,x,αn)‖2

2|Fn
)
/α

2
n ≤ C2

(
1+‖x−θ‖2

2
)

(8)

for all x.
Equation (7) controls the amount of noise in the SA update. Equation (8) ensures that the bias of

the update (recall that this is analogous to the difference between the frequentist OGD and approximate
Bayesian updates) is “small”.

We now state our main results about algorithm (6); the full details can be found in Chen and Ryzhov
(2016). Theorems 1 and 2 essentially state the same result in two ways, with the second version using
an explicit projection operator to ensure the boundedness of the iterates (a widely-used approach in the
application of SA convergence theory).
Theorem 1 Suppose that Assumptions 1-3 hold and (αn) satisfies (5) almost surely. Let xn be defined by
(6). Then xn→ θ almost surely.
Theorem 2 Suppose that Assumptions 1-3 hold and (αn) satisfies (5) almost surely. Define

xn+1 = ΠH (xn−αn (Fn (Wn+1,xn)+βn (Wn+1,xn,αn))) , n = 0,1, ... (9)

where ΠH : Rm→ H is a projection operator and H is a compact subset of Rm taken to be large enough
such that x0,θ ∈ H. Then, xn→ θ almost surely.

In the following section, we apply these results to prove the convergence of the example from Section
2 as well as several well-known approximate Bayesian schemes from different backgrounds.

4 APPLICATIONS OF THE CONVERGENCE THEORY

We now present several applications of our convergence analysis, based on recent algorithmic work in
approximate Bayesian inference. Section 4.1 states the convergence of the approximate Bayesian scheme
derived for the example in Section 2. Section 4.2 shows the consistency of a learning scheme developed
for learning player skills in competitive online gaming. Section 4.3 applies our technique to show the
consistency of a statistical procedure for learning the market value of an asset. In Section 4.4, we show
similar results for the problem of learning buyer valuations in online auctions.

4.1 Learning An Unknown Mean From Censored Binary Observations

Recall, from Section 2, the problem of learning an unknown mean θ based on censored binary observations.
Consider a version of this algorithm where the posterior variance σ2

n is updated using (2), and the posterior
mean µn is updated using a modification of (1), given by

µn+1 = ΠH

(
µn−σ

2
n

(
Bn+1

1√
λ 2 +σ2

n

φ (pn)

Φ(pn)
− (1−Bn+1)

1√
λ 2 +σ2

n

φ (pn)

1−Φ(pn)

))
, (10)

where H = [−M,M] for large enough M satisfying |µ0|< M and |θ |< M. Thus,

ΠH (x) = x ·1{|x|≤M}+M ·1{x>M}−M ·1{x<−M}.

Theorem 2 can then be applied to establish consistency. The projection operator serves to ensure the
boundedness of the sequence (µn), which is used to prove that the stepsize σ2

n satisfies (5) almost surely.
Proposition 1 Suppose that µn and σ2

n are updated using (10) and (2), and suppose that the sequence
(bn)

∞

n=0 is bounded. Then, µn→ θ almost surely.
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4.2 Learning Player Skills In Competitive Online Gaming

Herbrich, Minka, and Graepel (2006) and Dangauthier et al. (2007) describe a computational learning
scheme, based on approximate Bayesian inference, that was implemented in Microsoft’s Xbox Live online
gaming service for learning player skills in competitive events. In this application, large numbers of players
log on to the service and ask to play a game; the system then seeks to match players whose skill levels are
likely to be similar, in order to promote fair play and create a more rewarding experience.

We give a streamlined summary of the model, assuming without loss of generality that there are only
two players. Let θ (i) represent the “skill” of player i ∈ {1,2}. Denote by Y (i)

n the “performance” of player
i in the nth game, with the assumption that

Y (i)
n+1 ∼N

(
θ
(i),λ 2

)
,

where the variance λ 2 is known. We further impose the Bayesian modeling assumption

θ
(i) ∼N

(
µ
(i)
0 ,
(

σ
(i)
0

)2
)
.

Finally, we assume that all skills and performance values are mutually independent.
The game master does not have the ability to observe Y (i)

n directly, but rather must infer the unknown
mean from the binary outcome of the competition, given by

B(i)
n+1 = 1{

Y (i)
n+1<Y ( j)

n+1

},
where j denotes the index of the opponent. In words, if player j wins the match against i, we interpret
this as Y ( j)

n+1 > Y (i)
n+1. We suppose that draws cannot happen in the game in question.

As in Section 2, moment-matching can be applied to derive the approximate Bayesian updating equations

µ
(i)
n+1 = µ

(i)
n −

(
σ
(i)
n

)2

B(i)
n+1

1√(
σ
(i)
n

)2
+
(

σ
( j)
n

)2
+2λ 2

v

 µ
( j)
n −µ

(i)
n√(

σ
(i)
n

)2
+
(

σ
( j)
n

)2
+2λ 2



−
(

1−B(i)
n+1

) 1√(
σ
(i)
n

)2
+
(

σ
( j)
n

)2
+2λ 2

v

 µ
(i)
n −µ

( j)
n√(

σ
(i)
n

)2
+
(

σ
( j)
n

)2
+2λ 2


 , (11)

(
σ
(i)
n+1

)2
=

(
σ
(i)
n

)2

1−B(i)
n+1

(
σ
(i)
n

)2

(
σ
(i)
n

)2
+
(

σ
( j)
n

)2
+2λ 2

w

 µ
( j)
n −µ

(i)
n√(

σ
(i)
n

)2
+
(

σ
( j)
n

)2
+2λ 2



−
(

1−B(i)
n+1

) (
σ
(i)
n

)2

(
σ
(i)
n

)2
+
(

σ
( j)
n

)2
+2λ 2

w

 µ
(i)
n −µ

( j)
n√(

σ
(i)
n

)2
+
(

σ
( j)
n

)2
+2λ 2


 , (12)

where

v(x) =
φ(x)
Φ(x)

,

w(x) = v(x)(v(x)+ x).
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As in Section 4.1, we can replace (11) by a projected version where
(

µ
(i)
n

)
is constrained to be within a

suitably large interval.
Define

dn , µ
(1)
n −µ

(2)
n ,

δ , θ
(1)−θ

(2).

In this setting, we do not observe sufficient information to learn θ (i) exactly. However, we can learn δ ,
which is of primary interest to the game master.

Proposition 2 Suppose that µ
(i)
n is updated using a projected version of (11), while σ

(i)
n is updated using

(12). Then, dn→ δ almost surely.

4.3 Learning The Market Value Of An Asset

Das and Magdon-Ismail (2009) presents a model for learning the unknown value θ of an asset after a
market shock. In this setting, a market-maker is used to encourage trading and increase liquidity. The asset
is traded sequentially, one unit at a time. The sequence (Yn)

∞

n=1 denotes the traders’ perceptions of the
unknown value, which are assumed to be independently drawn from the common distribution N

(
θ ,λ 2

)
with λ 2 known.

The market-maker’s initial beliefs are represented by the prior distribution θ ∼N
(
µ0,σ

2
0
)
. Let (bn)

∞

n=0
and (an)

∞

n=0 denote deterministic, known sequences of “bid prices” and “ask prices” set by the market-maker.
If Yn+1 < an, the next trader buys one unit of the asset from the market-maker; if an ≤Yn+1 ≤ bn, the trader
does not make any transaction; and, if Yn+1 > bn, the trader sells one unit of the asset to the market-maker.
In this way, the market-maker cannot observe Yn+1 directly, but only knows a range into which this value
falls based on the trader’s action. Let

B(1)
n+1 = 1{Yn+1<an}, B(2)

n+1 = 1{an≤Yn+1≤bn}, B(3)
n+1 = 1{Yn+1>bn}

represent the (n+1)st trader’s actions (the three binary variables must sum to 1).
Das and Magdon-Ismail (2009) applied moment-matching to derive an approximate Bayesian learning

model for this problem. We define

pn =
an−µn√
λ 2 +σ2

n
, qn =

bn−µn√
λ 2 +σ2

n
,

and apply the updating equations

µn+1 = µn−σ
2
n

(
B(1)

n+1
1√

λ 2 +σ2
n

φ(pn)

Φ(pn)
+B(2)

n+1
1√

λ 2 +σ2
n

φ(qn)−φ(pn)

Φ(qn)−Φ(pn)

−B(3)
n+1

1√
λ 2 +σ2

n

φ(qn)

1−Φ(qn)

)
, (13)

σ
2
n+1 = σ

2
n

(
1−B(1)

n+1
σ2

n

λ 2 +σ2
n

pnφ(pn)Φ(pn)+φ 2(pn)

Φ2(pn)

−B(2)
n+1

σ2
n

λ 2 +σ2
n

(qnφ(qn)− pnφ(pn))(Φ(qn)−Φ(pn))+(φ(qn)−φ(pn))
2

(Φ(qn)−Φ(pn))
2

−B(3)
n+1

σ2
n

λ 2 +σ2
n

φ 2(qn)−qnφ(qn)(1−Φ(qn))

(1−Φ(qn))
2

)
. (14)
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In keeping with previous examples, we can use a projected version of (13). Consistency is then obtained
from the following result.
Proposition 3 Suppose that (an)

∞

n=0 and (bn)
∞

n=0 are bounded, and that µn is updated using a projected
version of (13), while σ2

n is updated using (14). Then, µn→ θ almost surely.

4.4 Learning Buyer Valuations In Online Auctions

Chhabra and Das (2011) studies a dynamic pricing problem in the context of online digital goods auctions.
In this application, the sequence (Yn)

∞

n=1 represents buyer valuations, which are assumed to be independently
drawn from a common distribution. The seller sets a sequence (qn)

∞

n=0 of prices, and the nth price is
accepted if Yn+1 > qn, i.e., the buyer believes that the value of the item is greater than the price. Otherwise,
the price is rejected and no revenue is earned.

Viewed as a function of the price q, the acceptance probability ρ (q) = P(Yn+1 > q) is referred to as
the “demand curve.” A widely-used model in revenue management (Petruzzi and Dada 1999) assumes a
linear relationship

ρ (q) = 1− γq.

In practice, the slope γ is unknown and must be learned. Suppose that the prices are normalized, that is,
qn ∈ [0,1] for all n. We can then assume that γ ∈ (0,1), which lends itself to a beta prior γ ∼ Beta(α0,β0).
Let In+1 be a binary variable that equals 1 if the (n+1)st buyer accepts the price qn, and zero otherwise.

Again, moment-matching can be applied to create an approximate Bayesian learning mechanism for
this problem. We define

µn =
αn

αn +βn
,

τn = αn +βn,

An = µn(1−µn),

Bn = 2(1−qn)+(3−2qn−2µnqn +µn)τn +(1−µnqn)
2
τ

2
n ,

Cn = qnτnµn(1−qn)(1+µnτn),

Dn = qnτn(1−µn)(1+(1−µn)τn),

and apply the updating equations

αn+1 = αn− In+1
Cn

Bn
+(1− In+1), (15)

βn+1 = βn + In+1
Dn

Bn
, (16)

τn+1 = αn+1 +βn+1, (17)

µn+1 = µn−
1

τn +1

(
In+1

Anqn

1−qnµn
− (1− In+1)

An

µn

)
. (18)

Once again, a projection could be applied to (18) to bound the posterior mean away from 0 and 1.
Consistency can then be obtained.
Proposition 4 Suppose that infn qn > 0 and supn qn < 1, and that µn is updated using a suitable projected
version of (18), while (15)-(17) are used to update αn, βn and τn. Then, µn→ γ almost surely.

5 CONCLUSION

We have presented the first theoretical framework for consistency analysis of approximate Bayesian models
for sequential learning. The main insight of our work is that many of these models can be viewed as a form
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of stochastic approximation; more specifically, they greatly resemble online gradient descent methods with
the addition of a “bias” term representing the difference between the frequentist and Bayesian versions of
OGD. We have proposed a convergent SA algorithm of this form and shown that it can be used to prove the
consistency of four different approximate Bayesian schemes, most of which have been studied in previous
work and proven themselves in practical applications.

Our ongoing work seeks to extend this analysis to multivariate problems, such as ranking and selection
where correlated beliefs are used to model relationships between alternatives (Qu et al. 2015). Correlated
beliefs have demonstrated substantial practical benefits in such settings; we believe that our consistency
theory has potential to establish approximate Bayesian inference as a rigorous and powerful methodology
for learning in these and other problems.
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