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ABSTRACT 

We propose a hybrid procedure that combines Morris’ elementary effect, bootstrap-based hypothesis testing, 

and aggregated false discovery rate control to simultaneously identify the main and interaction effects in a 

statistical model. Numerical experiments demonstrate the efficiency and efficacy of our method. 

1 INTRODUCTION 

Many screening methods have been proposed to search for important factors with minimal number of 

simulation runs, including classic two-level designs, supersaturated designs, frequency domain 

experimentation, together with aggregated designs (Kleijnen 2015). Among them, sequential bifurcation 

(SB) and Morris method (MM) introduced by Bettonvil and Kleijnen (1997) and Morris (1991), 

respectively, are two known and accepted techniques. See Borgonovo and Plischke (2015, pp. 11-12) for 

recent review on sensitivity analysis based on simulation/computer experiments.  

In this paper, we focus on MM, an alternative screening method in simulation experiments (Borgonovo 

and Plischke 2016). Unlike SB, MM is a model-free approach based on a series of ratios to find the 

elementary effect of a given factor; namely, no explicit statistical model such as low-order polynomial is 

used. Put another way, MM is not restricted to true input/output (I/O) function defined by the underlying 

simulation model. Through a sampling plan, a series of elementary effects (EEs) for a given factor can be 

derived. Morris (1991) maintains if the set of EEs for a given factor contains only zeros, then the specific 

factor does not significantly impact the response. If it exhibits a linear or  additive effects on response, then 

it has constant effect. Otherwise, it has interaction effects. Campolongo and Braddock (1999) extend the 

traditional MM method by providing an estimates of two-factor interaction effects, while Cropp and 

Braddock (2002) further extend their results. To avoid cancellation effects and to ensure the robustness of 

MM method, Campolongo et al. (2007) propose a normalized approach. Boukouvalas et al. (2014) propose 

a sequential MM method, which uses a threshold value to separate the inputs with linear and nonlinear 

effects to save computational cost. Fédou and Rendas (2015) present designs based on MM method to 

enable the estimation of the graph of interactions between pairs of input factors of a function. 
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The above literature shows that few researchers have studied MM and it is a relatively new technique 

for factor screening. Although there have been several improvements and extensions, the MM method has 

not been used for simulation with performance control. In this paper, we propose a new procedure that 

provides error control for MM methods, and named it the controlled MM (CMM). The contribution of this 

research is that we propose a bootstrap method to test the hypotheses for main effects and interaction effects, 

and develop an aggregate FDR to control the false discovery rate (FDR) (Benjamini and Hochberg 1995). 

The FDR has been widely adopted for large-scale hypotheses. We conduct numerical experiments to 

validate our approach and to compare with the conventional factor screening methods. 

2 MODEL REVIEW: MULTIPLE SEQUENTIAL BIFURCATION AND MORRIS METHOD 

2.1 Multiple Sequential Bifurcation (MSB) 

In this section, we review a specific SB, called controlled SB, which is a combination of basic SB (Bettonvil 

and Kleijnen 1997; Cheng 1997) and an error control procedure, initially developed for single response 

(Wan et al. 2006, 2010), and then for multiple responses (Shi et al. (2014) named MSB.  

The controlled SB inherits the basic sequential iterative structure of the original SB, which consists of 

finitely many steps. The initial step starts with the aggregation of all factors into a whole group and tests 

that group's effect (i.e., main effect). If the group exhibits an important effect, implying that at least one 

factor in the group may bear importance, then SB splits the group into two subgroups (i.e., bifurcation); 

otherwise removes the group and SB stops. If the group is shown to be significant, SB proceeds in a similar 

way to test each subgroup’s effects and each subgroup is categorized either as important for further testing 

or as insignificant and discarded. As the bifurcation procedure continues, the significant group becomes 

smaller and smaller; eventually each individual factor's effect is tested. 

In addition to the basic sequential and group-screening abilities, the controlled SB controls both the 

Type-I error of each unimportant factor and the power of detecting the important effects. We add the 

superscript  to denote the SB procedure. Let , , ,  be the users-specified parameters 

with , where  is the type-I error and  the type-II error, and  is the threshold of 

declaring unimportance and  the threshold of declaring importance. The objective of the controlled 

SB is to assign factors into one of the three classes: (a) unimportant factors, when main effect ; (b) 

important factors, when main effect ; (c) uncertain importance when the main effect is in the range 

of . For type (a), we expect the probability of declaring them important to be less than . 

For type (b), the power of discerning them to be important is . For the last type, the controlled 

SB gives reasonable power to identify them as important; i.e., . 

2.2 Morris Method (MM) 

The MM method proposed by Morris (1991) focus on deterministic simulation. Suppose there are  factors 

in the simulation model and each factor are scaled to take values from , such that the overall screening 

experiments are implemented in a -dimensional unit hypercube . Each factor is varied across 

 selected levels in . Thus, the experimental domain  emerges as a -dimensional and -level grid. 

Morris (1991) categories the effect of a factor in the simulation as (a) negligible, (b) linear, and (c) 

nonlinear/involved interaction with other factors. 

To determine where each factor belongs, they propose the so-called elementary effects. For a given set 

of factors , the elementary effect of the th factor is defined as: 

 , (1) 
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where  is actually the partial derivative with respect to ;  is randomly sampled from a subset of  

such that the transformed factor combination  lies in ; i.e., ;  is the simulation 

output for factor combination . Also,  is a pre-specified multiple of  such that  can take 

values from ; and  is a zero vector except for the th element with a unit. 

The finite distribution of  (i.e., the number of  is finite) associated with factor  is denoted 

by  such that . The maximum number of elements of  is then , where 

 is the number of factor combinations formed by the remaining  factors with  levels except for 

factor . Also,  is the possible levels that factor  can take to obtain elementary effects. For 

example, when , factor  can only have  levels, as the last level  is excluded. A 

recommended selection of  is even and . 

Morris suggests that a highly centralized distribution for  implies steady importance of factor  

across the experimental region ; and that a highly decentralized distribution corresponds to strong 

dependence of factor  on other factors (i.e., nonlinear or interaction effect). To characterize the distribution 

of , two unbiased estimators, sample mean , and variance  of the observed elementary effects are 

used: 

  (2) 

  (3) 

where  denote the th elementary effect of factor .  

In addition to (2) and (3), another measure of the individual elementary effect of the th factor has 

been proposed by Campolongo et al. (2007) so that the possible cancellation of elementary effects in (2) 

can be eliminated due to non-monotonic factor effect, that is, 

  (4) 

where  denotes the absolute value.  

To obtain either (2) or (4) and (3), we need to sample  elementary effects with replacement from , 

by designing an sampling matrix , where  is a random orientation form of  with 

, which is a -by-  sampling matrix, with a -by-  null vector and a -by-  lower 

triangular matrix, where all elements below the main diagonal are 1:  

  (5) 

Then  could be used as a design matrix. Thus,  or  would produce only one elementary effect for 

each factor, with the only distinction that  is randomly selected. Note that,  can be converted to  

through a specially developed algorithm proposed in Morris (1991).  
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3 IMPROVING MM APPROACH THROUGH ERROR CONTROL 

3.1 The Proposed CMM Framework   

We now propose an efficient and effective hypothesis testing method to accurately classify factors into 

different categories (see Table 1). Since the distribution of  is unknown, we employ the bootstrap testing 

method (i.e. simulation-based testing) to generate an empirical distribution function (EDF) of . Two 

bootstrap testing procedures for the main effect and interaction effect are proposed independently. 

Due to the large number ( ) of hypotheses in our problem, it is necessary to control the Type-I error 

(i.e. false positives). The conventional approach is commonly used to control the Family-Wise Error Rate 

(FWER). However, the FWER procedure focuses on reducing Type-I error, which often results in an 

extremely low statistical power, especially for large-scale testing cases, thereby increasing the risk of 

finding no or few factors even in the presence of significant main or interaction effects. To circumvent the 

weakness of FWER in multiple hypotheses testing, in this research we propose to control the False 

Discovery Rate (FDR). FDR, introduced by Benjamini and Hochberg (1995), controls the expected 

proportion of falsely rejected hypotheses. The reasons why we make use of FDR is that it is more relevant 

and practicable than FWER in many real world applications (Sun et al. 2006). This explains why FDR is 

so pervasive since its introduction. Efron (2004, 2007) maintain that FDR is particularly appropriate for 

large-scales testing cases, as it can guarantee a desired level of power.  

Table 1:  Potential Classification of factor  

  Main effect 

  Unimportant Important 

Interaction effect 
Unimportant ,  ,  

Important ,  ,  

3.2 Adapting Bootstrap Method to Test the Main and Interaction Effects 

Suppose that a set of elementary effects, , are obtained by random sampling from an 

unknown distribution  through (1). We want to test whether the mean , the unbiased estimator of , 

is less than , i.e.  

 , (6) 

where  implies that we use one-sided hypothesis and  is used to define the threshold of insignificant 

elementary effects. An individual factor is declared unimportant if its elementary effect is .  

 To determine whether factor  interacts with other factors, we check if the sample variance , an 

unbiased estimator of , is less than . Similar to (6), we define the upper-tail test: 

 , (7) 

where  is similar to , indicating the threshold of a significant interaction effect. An individual factor 

is declared to have insignificant interaction effect if its standard deviation is larger than . 

Since we test the main and the interaction effect for each factor, we use  and  to denote the 

main effect and the interaction effect, respectively. We use test statistic, , to evaluate hypotheses (6) and 

(7). Due to little knowledge on the distribution of , the population distribution  is unknown as well. 

Bootstrap enables us to approximate the null distribution , which is an empirical distribution function 

(EDF) of . If the null hypothesis is true, we can then use the following test statistics to conduct 

hypotheses test for (6) and (7) respectively:  
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 ,  (8) 

and 

 ,  (9) 

where  and  respectively follow the  and  distributions; and  is the sample variance of 

factor . We denote  as the observed value corresponding to (8) and (9), derived from the original 

sample .  

To apply (8) and (9), we should make certain the EDF  formed by bootstrap samples is an 

appropriate estimate of , and  satisfies the null hypothesis. Specifically, both  and  must be 

asymptotic pivots (i.e., independent of parameters  and ), which according to MacKinnon (2009) 

are necessary to arrive at a more accurate test result under bootstrap. However, because the mean and the 

standard deviation of  may differ from  and ,  may not be a desired estimate for . Thus, to 

obtain the desired mean and standard deviation for , we employ the following conversion process: 

 , (10) 

where  is the transformed vector based on the original sample . Similarly, we employ the following  

transformation process for (7),  

  (11) 

where the transformed sample  have variance .  

From , we sample  a set of bootstrapped data  using (10) and 

(11). For each bootstrap sample, we compute the test statistic for (6) 

 , (12) 

where , and  is the standard deviation of a bootstrap sample. Similar to (12), we 

now derive a bootstrap test statistic for (7), 

  (13) 

We replicate this bootstrap approach  times through Monte Carlo experiment to obtain bootstrap 

estimates . In this research, we made  replications, to ensure our test power. Let 

subscript  be the th ordered value with . We sort these estimates in ascending order 

( ), so that the EDF of  puts probability of  on . The -value of bootstrap test 

based on the original data is  

 , (14) 

where  is the marginal significance level of .  denotes the EDF of ; while   is 

an indicator function, which is equal to 1 if the argument in the bracket is true, and 0 otherwise. Hence, the 

bootstrap -value is simply the proportion of the bootstrap test statistics  that are more extreme than 

the observed test statistic .  
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3.3 Controlling the False Discovery Rate 

To control the FDR at a specific level, say , we blend bootstrapped -values together. This strategy is 

called aggregated/pooled FDR because we examine all tests together. We start with a pre-determined level 

. Next, we mesh  with , which are obtained from (14) with  and , 

respectively. For convenience, we drop superscripts  and ; then the original observed p-values become 

. Let  be the p values in ascending order. Following Benjamini and Hochberg (1995) 

(BH procedure), we are able to control the FDR by rejecting null hypotheses from the minimum  to , 

where  

  (15) 

However, this procedure actually controls the FDR at level , where , indicating the resulting 

FDR is more stringent as . To achieve a desired FDR level, we make use of the -values method 

(Storey 2002, 2003; Storey et al. 2004) to ensure FDR is at the level exactly. The estimates of the -

values are reached by adopting the recursive formula below: 

  (16) 

where  is an estimate of  and  when . Loosely speaking, the -value obtained from 

(16) is the minimum possible FDR for declaring the corresponding hypothesis significant. Thus, controlling 

FDR at level  is equivalent to declare all tests with  significant.  

4 NUMERICAL EVALUATION 

4.1 Comparison of CMM and MM 

To evaluate the proposed screening method, we first consider the low-order polynomial model presented in 

Morris (1991): 

 , (17) 

where  are for factor ; and  are for the remaining 

factors.  is normalized and uniformly distributed between ; as stated in Section 2.2. Coefficients of 

 are specified at  for ;  for ;  

for ; and , for . The rest of the first- and second-order 

coefficients are randomly generated from a normal distribution with mean zero and unit standard deviation. 

The remainder of the third- and fourth-order coefficients are set to . 

We examine the efficacy of CMM, under different  and , both of which vary from 5 to 20 in 

increment of 5. To determine the significant effects, we use the aggregated FDR algorithm in equation (16). 

Table  summarize the results of  and  of the 20 factors, where the  values less than the specified 

FDR level  are classified as significant.  

4.2 Comparison of CMM and MSB 

To compare CMM and MSB, we use the second numerical experiment in Shi et al. (2014), which is selected 

as it studied large-scale screening problems and compared SB and MSB. The metamodel used is 

  (18) 
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where  factors and  responses.  

From our experiments, we find except for (i) the noise of responses , the efficiency of CMM is 

unaffected by (ii) the number of important factors, (ii) sparsity of effects, as well as (iii) the existence of  

Table 2:  -values under various  and  of CMM method 

Input 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

A 0.001 0 0.014 0 0.320 0 0.548 0 0.810 0 1 0 1 0 
A 0 0 0 0 0.696 0 0.019 0 1 0 1 0 1 0 
B 0.001 0 0 0 0.009 0 0 0 0 0 1 0 1 0 
A 0.003 0 0.014 0 0.021 0 0.150 0 0.605 0 1 0 1 0 
C 0 0 0 0 0 0 0 0 0 0 0.263 0 1 0 
D 0 0 0 0 0.014 0 0.006 0 1 0 0.720 0 1 0 
E 0 1 0 1 0 1 0 1 0 1 0.189 1 0.840 1 
F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

clustering of important factors, whereas both SB and MSB are strongly affected by these characteristics. 

We also find that CMM requires more simulation run time than SB and MSB, when the signs of main 

effects are known and heredity assumption holds.  

In addition to efficiency, we also compare the efficacy between CMM and MSB. Like Shi et al. (2014) 

and Wan et al. (2010), the efficacy of CMM is also quantified by the fraction of trails, . Due to 

space limitation, Table 2 only summarizes the results of  for combination 2, 7, 9 and 14, as similar 

results are observed in the remaining 12 combinations. We can see that CMM provides appealing screening 

results for both main effects and interaction effects. 

The left column of Figure 1 demonstrates  for main effects, where the x-axis represents the 

number of factor ranging from 1 to 100 factors and the y-axis gives . We can see that  has great 

bearing on the performance of ; i.e. the larger  is, the higher  is close to 1. Specifically, 

(i) when ,  is considerably less than the type-I error  and approximates 

0; see the symbols “■” in each plot. (ii) When ,  approaches ; see the 

symbols “▲” in each plot. (iii) When ,  increases as  increases from 3 to 5. 

Contrasting to the locale of  for the same  in Shi et al. (2014), we find the results of CMM 
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agrees with that of SB. Therefore, although CMM does not control type-II error directly, it provides 

comparably desired control error. 

 

 

Figure 1:  of CMM for main and interaction effects in combination 2, 7, 9, 14  

We also examine  for interaction effects. Because SB is incapable of giving screening results 

for interaction effects, we only show the results for CMM. Since all  are generated 

from , CMM should only reach a unique conclusion for all factors, either carrying significant 

interaction effect or no interactions. The right column of Figure 1 plots  of interaction effects for 

the 100 factors with =10. We can see that, regardless of combinations 2, 7, 9 or 14, all factors have 

nearly identical, i.e. . Even when  takes a large value 10 relative to , CMM can still 

show significant interaction effects. The reason is that for factor , although each individual  is small, 
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their aggregated effect can reach or even exceed the threshold , causing CMM to identify them as 

important eventually.  

5 CONCLUSION 

CMM is an error control procedure that is capable of identifying both main effects and interaction effects 

simultaneously. Numerical evaluation shows that the performances of CMM are efficient and effective 

across various simulation settings. To further improve simulation efficiency, we will focus on optimal 

clustering matrix design in our future research. We will also develop stratified FDR control procedure to 

enhance statistical power. 
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