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ABSTRACT

We introduce a new framework for performing multiple comparisons with a standard when simulation models
are available to estimate the performance of many different systems. In this setting, a large proportion of
the systems have mean performance from some known null distribution, and the goal is to select alternative
systems whose means are different from that of the null distribution. We employ empirical Bayes ideas to
achieve a bound on the false discovery rate (proportion of selected systems from the null distribution) and
a desired probability an alternate type system is selected.

1 INTRODUCTION

One objective of simulation optimization procedures is to select the best system when simulation models
are used to estimate performance of different systems. Similar procedures exist for choosing the best subset
of systems, or choosing systems that are better than some standard. We consider a large number of systems,
where the goal is to choose a subset of systems that have particularly low (or high) mean performance
relative to some standard. The majority of systems have output which can be categorized according to some
null probability distribution with a known mean. An alternate distribution models the output from systems
with smaller means, and we attempt to select these systems and classify them as non-null, or “alternate”.
The goal is to divide the systems into “null” and “alternate” to further study the systems deemed alternate.

This work is inspired by recent literature on large scale inference using empirical Bayes methods
in Efron (2010). The methods are motivated by situations where one wishes to test a large number of
hypotheses, and it is presumed that some proportion of these hypotheses are “null” while the remaining
hypotheses are non-null. In Efron (2010), this setup is explored with applications to biological systems in
microarray testing, where there are a large number of gene expression levels to be tested. The goal is to
isolate the few likely to be significant for further investigation. We parallel these ideas to the problem of
multiple comparisons with a standard when the data for many different systems is simulated. This problem
involves selecting the systems that are different than the standard according to some probability guarantees
on the proportion of null systems included in the selection, and the probability that an alternate is included.

One method for large scale testing of hypotheses is the Benjamini-Hochberg algorithm (Benjamini
and Hochberg 1995). This algorithm sorts the data for each system according to p-values associated with
the hypothesis test, and determines a threshold for selecting systems as alternate. The false discovery rate
(FDR) is the probability that a selected system is actually null. This is in contrast to the typical Type I
error, which is the probability that a null system is selected as an alternate. The algorithm ensures that the
expected false discovery rate (Efdr) is below some chosen value. The idea is that controlling the Efdr helps
select a subset where most of the systems are alternate, so that future effort investigating these systems is
not wasted on many null systems. Generally, choosing the subset according to Efdr can lead to a larger
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subset and more alternates included than rules relying on Bonferroni bounds to control the probability that
any null system is included. By allowing some proportion of selected systems to be null, more alternates
can be identified.

We develop a new algorithm for studying the problem of multiple comparisons with a standard that
can be applied in simulation settings. We assume i.i.d. normally distributed data where the null systems
have a known mean but unknown variance. This algorithm is a threshold policy that selects systems with
p-values smaller than some critical value. In addition to controlling the Efdr as the Benjamini-Hochberg
algorithm does, the algorithm controls the probability that an alternate system will be correctly selected
(analogous to the power of a test). We exploit the simulation environment and determine the number of
samples that must be collected for each system to achieve these metrics. These sample sizes depend on
the variance of the systems and the difference in means needed to distinguish alternates from null systems.

Section 2 briefly reviews the simulation literature dealing with subset selection problems and Section
3 summarizes the Benjamini-Hochberg algorithm. Section 4 describes the framework and derivation of
sample sizes needed for our algorithm and Section 5 details the algorithm implementation and numerical
results. Finally, Section 6 concludes.

2 LITERATURE REVIEW

Our motivation parallels that of the classical problem of subset selection and comparison with a standard,
and we briefly review past work in these areas. In the subset selection problem the objective is to select
multiple systems with the best performance means, or select a subset that includes the best system. In the
multiple comparisons with a standard problem, the goal is to identify systems that are better than some
standard, or choose the best system where special consideration is given to one system that is considered
standard.

Algorithms for choosing a subset of systems have different objectives. One is to maximize the probability
of choosing the top m systems (Chen, He, Fu, and Lee 2008), while others wish to choose a subset of
size m that contains some number of the best systems (Koenig and Law 1985). In Ryzhov and Powell
(2009), possible subsets are treated as individual alternatives and sampling rules applied to choose the best
subset. Chingcuanco and Osorio (2013) consider an opportunity cost function as an objective rather than a
zero-one function for assessing whether the correct systems have been included. A common objective is to
identify all systems whose means are within a specified distance from the mean of the best system. Corlu
and Biller (2013) consider this problem while using historical data to quantify input uncertainty associated
with each system.

Many algorithms exist for performing multiple comparisons with a standard to determine the best
system, where special consideration is given to some standard system. The first method for comparing
multiple systems with a standard is in Paulson (1952). The algorithm guarantees with some specified
probability that the standard is selected if it is actually the best, and delivers a sample size required to
determine that another system is the best with respect to the standard. This work, as well as many recent
algorithms, assume i.i.d. normal observations from each system. Nelson and Goldsman (2001) handle
different variances across systems using a two-stage procedure where the first stage estimates the variance
and determines the sampling effort required in the second stage. Kim (2005) employs a fully sequential
procedure and is able to accommodate a much larger number of systems. Xie and Frazier (2013) employ a
dynamic programming solution to sequentially decide where to sample based on different sampling costs,
and accommodate a general class of payoff functions for correct and incorrect selections.

3 BENJAMINI-HOCHBERG ALGORITHM

This section outlines the Benjamini-Hochberg (BH) algorithm as an example of empirical Bayes methods.
These methods involve testing a large number of hypotheses by comparing p-values calculated for each
test. Let pi, i ∈ 1, . . .N be the p-values from each of N tests. The null hypothesis says that the p-values
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should have a U(0,1) distribution if the null is true for all tests. The p-values are then sorted in increasing
order p(1), p(2), . . . , p(i), . . . , p(N), and those with the smallest values signal a likely alternate result. The BH
algorithm offers a method for selecting a p-value threshold for choosing alternate systems by controlling
the Efdr. Let q ∈ (0,1) be the desired upper bound on the Efdr. Then, define imax as the largest index for
which

p(i) ≤
i
N

q.

The BH algorithm rejects the null (selects as alternate) all systems with p(i) such that i≤ imax. Let π0
be the proportion of systems that are null. The following theorem then applies.
Theorem 1 Assume that the p-values are uniformly distributed if the null distribution applies for all
systems. If the p-values corresponding to the correct null hypothesis are independent of each other, then

Efdr(q) = π0q≤ q

where π0 is typically assumed to be unknown, but close to 1. Proofs appear in Benjamini and Hochberg
(1995) and Efron (2010).

4 PROCEDURE

Inspired by Theorem 1, we develop a new procedure to classify a large number of simulated systems by
controlling the expected false discovery rate. Each system will be classified as either null or alternate.
The objective is to select a subset of systems that include a large number of alternate systems that are
likely to be better than the null standard. Selecting as many alternate systems as possible is desirable, but
controlling the proportion of null systems included in the selection (the false discovery rate) is also critical.
We develop an algorithm to choose a threshold for selecting a subset of systems that will balance these
two objectives.

We allow for an arbitrarily large number of systems, N. For simplicity in exposition, we assume the
system output is independent and normally distributed. These are not necessary requirements for using
empirical Bayes methods generally, but these assumptions are available in simulation through replications
and batched means methods. These assumptions allow us to explicitly calculate probabilities that null and
alternate systems are selected. Without loss in generality, we say that null system i is normally distributed
N (µ,σ2

i ), with each system having a different unknown variance. This value of µ is analogous to the
standard in multiple comparisons problems, and we attempt to identify systems that have means smaller
than µ − ε for some ε > 0. The parameter ε is analogous to an indifference-zone parameter in ranking
and selection methods (see Kim and Nelson (2001)). Our algorithm would still work (although it would
be conservative) if some of these null systems actually had means greater than the standard µ and some
of the alternates had means smaller than µ− ε .

We have a belief that N0 = π0N of these systems are null, where 0≤ π0 ≤ 1, and N1 = N−N0 = π1N
of these systems are from an alternate configuration with a mean smaller than µ , where π0 +π1 = 1. We
will discuss in Section 4.4 how to estimate π0, though there may be some prior belief on this value. We
derive exact results for known π0, and numerical experiments show that estimated values of π0 can be used
with encouraging results. Additionally, we derive properties of our procedure under worst-case conditions,
where each alternate system i has output that is distributed as N (µ−ε,σ2

i ), where the σi values unknown.
To further simplify the analysis, let µ = 0 so that the distribution of the null systems are N (0,σ2

i ) and
the alternates are N (−ε,σ2

i ).

4.1 Classification method

The two desired output metrics from our algorithm are an Efdr of q ∈ (0,1) and a probability that an
alternate is correctly selected as 1−β ∈ (0,1) (analagous to the power of a test). We note that there is
a tradeoff between these two output measures. Selecting only a small number of systems (with the most
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extreme p-values) will have a smaller Efdr, but fewer of the actual alternates are selected for future study.
Selecting more systems will increase the probability an alternate is correctly selected, but risks including
more null systems, which will reduce the Efdr. In order to obtain these desired output metrics, two inputs
to our procedure must be carefully chosen. The first input is a threshold u ∈ (0,1) that classifies system i
as alternate if pi ≤ u. The second input is a sample size ni for each system.

The procedure consists of two main steps. In the first step, sample from each system and construct
p-values pi from each system’s output. The second step selects systems with p-values less than a critical
threshold u∗ and classifies them as alternate. The remainder of this section describes the overall framework
and how to choose the threshold u∗ to obtain the desired Efdr. Choosing the sample sizes n∗i when σi is
known is discussed in Section 4.2 and the unknown σi case is discussed in 4.3. We assume π0 is known
in both these cases, and Section 4.4 describes a method for estimating π0.

The result of the algorithm’s classification method is displayed in Table 1. This table parallels one
from Efron (2010) and shows the four possible categories for the N systems. Each system is either null or
alternate in reality, and is either selected or not selected as alternate in our algorithm. The values in the table
are the expected number of systems that will fall into each of the four categories. Because null systems
have uniformly distributed p-values, on average uN0 of them will be selected as alternate. Define a function
γ(u;ε,σi,ni) to be the probability that alternate system i with variance σ2

i and ni samples delivers a p-value
smaller than or equal to u. The second row of Table 1 show the expected number of alternate systems
nonselected and selected using this function γ because for alternate systems, P(pi ≤ u) = γ(u;ε,σi,ni).

Table 1: Expected number of null and alternate systems nonselected and selected.

Nonselection Select as Alternate Sum
Null (1−u)N0 uN0 N0

Alternate ∑
N1
i=1 1− γ(u;ε,σi,ni) ∑

N1
i=1 γ(u;ε,σi,ni) N1

Sum # nonselected # selected N

Many algorithms attempt to control the Type I error u, which is the probability that a null is classified
as alternate. In some cases, a Bonferonni bound is used to control the probably that any of the selected
systems are actually null. Here, our two metrics are the Efdr,

q := Efdr =
uN0

uN0 +∑
N1
i=1 γ(u;ε,σi,ni)

, (1)

and the expected proportion of alternates selected for future study,

1−β :=
∑

N1
i=1 γ(u;ε,σi,ni)

N1
. (2)

We need to choose inputs u∗ and n∗i so that we can jointly obtain desired values of q and 1−β . Denote
the expected number of alternate systems selected as K := ∑

N1
i=1 γ(u;ε,σi,ni). Solving both (1) and (2) for

K implies uN0(
1
q −1) = (1−β )N1. Further solving for the value of u∗ yields

u∗ =
(1−β )N1

N0

q
1−q

=
(1−β )π1

π0

q
1−q

. (3)

Thus, we can control the Efdr using u∗ based on the choice of 1−β and knowledge of π0. Choosing
ni carefully for each system helps select any individual alternate system with probability 1−β . Note that
(1−β )N1 = K, and K is the sum of N1 terms. Choosing ni such that each term within the sum is equal to
1−β will satisfy our requirements. Let p+i be p-values calculated for alternate systems. We need to solve
the following for ni:

1−β = γ(u∗;ε,σi,ni) = P(p+i ≤ u). (4)
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Assuming that as ni increases γ(u∗;ε,σi,ni) increases for alternate systems, we find n∗i as the solution
to (4) using root-finding methods. We explore cases where this calculation may become tractable in the
next sections.

4.2 Known Variance

This section describes how to choose n∗i when the variance of each system is known. Given ni samples of
a system with mean X i, calculate pi as

pi := Φ

(
X i−µ

σi/
√

ni

)
= Φ

(
X i−0
σi/
√

ni

)
. (5)

Null systems deliver uniform p-values using (5). We next derive γ(u;ε,σi,ni) for alternate systems.
Let Z be a standard normal random variable. Then,

P(p+i ≤ u) = P(Φ(Z− ε
√

ni/σi)≤ u) = P(Z ≤Φ
−1(u)+ ε

√
ni/σi) = Φ(Φ−1(u)+ ε

√
ni/σi). (6)

As suggested in Section 4.1, we can control the FDR using u∗, and obtain a probability that the alternate
will be selected as 1−β by solving (4) for ni and rounding up to the nearest integer to obtain the sample
sizes

n∗i =
⌈(

σi

ε

)2
(Φ−1(1−β )−Φ

−1(u∗))2
⌉
. (7)

The sample size increases as σi increases and ε decreases, as expected.

4.3 Unknown Variance

This section describes choosing n∗i when the variance of each system is unknown. Let X i and σ̂2
i be the

mean and sample variance of ni samples from system i. Calculate a t-statistic for null systems as

X i−µ

σ̂i/
√

ni
=

X i−0
σ̂i/
√

ni
∼ tni−1 (8)

where tni−1 has a t-distribution with ni− 1 degrees of freedom. The cumulative distribution function of
this t-distribution is denoted Ftni−1(·). Calculate the p-value for system i as

pi := Ftni−1

(
X i

σ̂i/
√

ni

)
. (9)

Under the null hypothesis that all system means are 0, the distribution of the calculated pi values will
be uniform. If the system output is generated independently across systems, using our threshold algorithm
with u∗ given in (3) will select the systems with the smallest p-values while controlling the expected false
discovery rate. Next, we derive the distribution of p+i values for alternate systems. Paralleling (8) and (9),
calculate

t+ni−1
D
=

X i + ε− ε

σ̂i/
√

ni

D
=

σin
−1/2
i Z− ε

σ̂i/
√

ni

D
=

Z− ε
√

ni/σi

χni−1/
√

ni−1
, (10)

where Z is a standard normal random variable, X i has distribution N (−ε,σ2
i /ni), χ2

ni−1
D
= (ni−1)σ̂2

i /σ2
i ,

and D
= denotes equality in distribution. Hence, the distribution of t+ni−1 is a noncentral t-distribution. The

corresponding p-value is
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p+i := Ftni−1(t
+
ni−1).

If ε > 0, then there is more weight in the distribution of p+i towards zero (values of pi for the null
system stochastically dominate the values of p+i for the alternates), suggesting that systems with smaller
p-values are more likely to be alternates. We continue by deriving the distribution of p+i values. It follows
that

γ(u;ε,σi,ni) = P(p+i ≤ u) = P(t+ni−1 ≤ F−1
tni−1

(u)). (11)

This distribution function can be calculated using properties of the noncentral t-distribution, and thus we
can solve (4) numerically using (11) to determine the samples sizes for each system, and compare it to the
optimal value of n∗i in the known variance case (7). Letting n̂∗i = (σ̂i/ε)2(Φ−1(1−β )−Φ−1(u∗))2, Eq.
(7) leads to

n̂∗i −n∗i =
(
(Φ−1(1−β )−Φ−1(u∗))

ε

)2

(σ̂2
i −σ

2
i ),

where
(n0−1)1/2(σ̂2

i −σ
2
i )

D
≈ σ

2
i N(0,2),

and n0 is the sample size used to calculate variance estimates. Hence, for n0 sufficiently large, σ̂2
i ≈ σ2

i ,
meaning that n̂∗i ≈ n∗i . This and Eqs. (6)–(7) in turn suggest that P(p+i ≤ u) ≈ 1−β when the variance
estimate is used. We quantify this difference in a more rigorous manner next.

We use the following standard ordering notation in the remainder of the paper. For a positive sequence
{ηn}n∈IIN, a sequence of random variables {ξn}n∈IIN is Op(ηn) if for all ζ > 0 there exists a constant M
such that P(|ξn/ηn|> M)< ζ for all n sufficiently large. The sequence is op(ηn) if P(|ξn/ηn|> M)→ 0
for M > 0 arbitrary, as n→ ∞.

Equation (10) leads to

t+ni−1 ≤ F−1
tni−1

(u) ⇐⇒ Z−F−1
tni−1

(u)χni−1/
√

ni−1≤ ε
√

ni/σi,

so that
P(t+ni−1 ≤ F−1

tni−1
(u)) = P(Z−F−1

tni−1
(u)χni−1/

√
ni−1≤ ε

√
ni/σi). (12)

Writing χ2
ni−1

D
= ∑

ni−1
k=1 Z2

k and using the Central Limit Theorem lead to

√
ni−1

(
χ2

ni−1

ni−1
−1

)
= N (0,2)+op(1).

Appealing to the Delta method (Theorem 3.1 of (van der Vaart 1998)) results in

(χni−1−
√

ni−1) = N (0,1/2)+op(1),

Hence,

Z−F−1
tni−1

(u)χni−1/
√

ni−1−N

(
−F−1

tni−1
(u),1+

(F−1
tni−1(u))

2

2(ni−1)

)
= op(n

−1/2
i ),

Since F−1
tni−1(·) = Φ−1(·)+O(n−1/2

i ) (see p. 81 of (Serfling 1980)), Slutsky’s Lemma leads to

Z−F−1
tni−1

(u)χni−1/
√

ni−1 = N
(
−Φ

−1(u),1+
(Φ−1(u))2

2(ni−1)

)
+op(n

−1/2
i ).
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It follows from (11) and (12) that

γ(u;ε,σi,ni) = Φ

(
ε
√

ni/σi +Φ−1(u)

(1+(Φ−1(u))2/(2ni))
1/2

)
+o(n−1/2

i ).

Then, as in the known variance scenario, we solve for ni such that

1−β = Φ

(
ε
√

ni/σi +Φ−1(u∗)

(1+(Φ−1(u∗))2/(2ni))
1/2

)
+o(n−1/2

i ),

where u∗ is as in (3). Since Φ−1(1−β +o(n−1/2
i )) = Φ−1(1−β )+o(n−1/2

i ),(
1+(Φ−1(u∗))2/(2ni)

)1/2
Φ
−1(1−β ) = ε

√
ni/σi +Φ

−1(u∗)+o(n−1/2
i ).

The function

g(ni) =
(

σi

ε

)2
(

Φ
−1(1−β )

(
1+

(Φ−1(u∗))2

2ni

)1/2

−Φ
−1(u∗)

)2

is a contraction and has negative first derivative. Hence, starting with a guess ñi =(σi/ε)2
(
Φ−1(1−β )−Φ−1(u∗)

)2

(cf. Eq. (7)) and applying g(ñi), one can sandwich ni with a lower bound(
σi

ε

)2 (
Φ
−1(1−β )−Φ

−1(u∗)
)2 ≤ ni

and an upper bound

ni ≤
(

σi

ε

)2

Φ
−1(1−β )

(
1+
(

ε

σi

)2 (Φ−1(u∗))2

2(Φ−1(1−β )−Φ−1(u∗))2

)1/2

−Φ
−1(u∗)

2

,

for ε sufficiently small that the o(n−1/2
i ) term can be dropped.

A conservative approach is to set

n∗i =


(

σi

ε

)2

Φ
−1(1−β )

(
1+
(

ε

σi

)2 (Φ−1(u∗))2

2(Φ−1(1−β )−Φ−1(u∗))2

)1/2

−Φ
−1(u∗)

2
 . (13)

Replacing σ2
i by its estimate σ̂2

i (n0) over n0 trial samples produces the estimator

n̄∗i =


(

σ̂i(n0)

ε

)2
Φ

−1(1−β )

(
1+
(

ε

σ̂i(n0)

)2 (Φ−1(u∗))2

2(Φ−1(1−β )−Φ−1(u∗))2

)1/2

−Φ
−1(u∗)

2
 ,

with n̄∗i −n∗i = Op(n
−1/2
0 ε−2). Set n0 = O(ε−δ ), for δ > 0, so that n̄∗i −n∗i = Op(ε

δ/2−2). Taylor expanding
the right-hand side of Eq. (6) about n∗i ,

Φ(Φ−1(u)+ ε
√

n̄∗i /σi)−Φ(Φ−1(u)+ ε
√

n∗i /σi) =
φ(Φ−1(u)+ ε

√
n∗i /σi)

2σi

ε√
n∗i

Op(ε
δ/2−2)

= Op(ε
δ/2).

Hence, we conclude that the error in Eq. (6) induced by estimating the variance is of order Op(ε
δ/2). For

instance, setting ε = 0.05 and δ = 2 results in n0 = 400 trial samples, and an error in Eq. (6) of order O(ε).
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4.4 Estimating π0

The value of u∗ requires knowledge of π0. To estimate the proportion of null systems π0, we employ a
method from Efron (2010). Define the z-values for each system as

zi = Φ
−1(pi). (14)

The “zero assumption” says that the density of alternate system z-values is zero on some range, because
the peak of the distribution of z-values is assumed to contain mostly null systems. This range for the zero
assumption could be A := [0,∞), or could include negative values depending on the values of ε and σ2

i .
Let F0(A ) be the probability that a z-value from a null system lies in range A . Then, the expected number
z-values observed in A is

E[#zi ∈A ] = π0NF0(A ).

Efron (2010) suggests using the resulting estimator

π̂0 =
#zi ∈A

NF0(A )
(15)

based on the observed z-values. This estimator can sometimes yield an estimate of π0 ≥ 1 depending on the
range of A used, which leads to u∗ ≤ 0. For computational purposes we assume that at least one system
is an alternate, so that π0 ≤ (N−1)/N and u∗ > 0. More complex methods for estimating the proportion
of null systems are discussed in Efron (2007).

5 IMPLEMENTATION

We summarize the results from Section 4 into an algorithmic implementation. First, we outline the algorithm
when the values of σi and π0 are known:

1. Calculate u∗ using (3), and n∗i using (7).
2. Sample each system i using n∗i samples, and calculate pi according to (5).
3. Select systems with pi ≤ u∗ as alternate.

By construction, the above method will select a subset with an Efdr of q and with an expected proportion
1−β of alternates included in the subset. When σi and π0 must be estimated, we propose the following
method which we call Algorithm 1. This algorithm has a first stage which generates estimates σ̂i and π̂0.

Algorithm 1

1. For each system i ∈ 1, . . .N collect an initial n0 samples (n0 should be sufficient to estimate σ2
i )

and calculate pi according to (9) using estimates σ̂i.
2. Estimate π0 using (14) and (15). Use this to calculate u∗ using (3).
3. Calculate the sample sizes n∗i from (13) using σ̂i.
4. Resample each system using n∗i new samples and calculate updated σ̂i and pi values.
5. Repeat Step 2 with the recalculated pi values to obtain an updated value of π̂0 and u∗.
6. Select systems with pi ≤ u∗ as alternate.

We describe the metrics collected to evaluate the performance of the algorithm. The first two are the
Efdr and 1−β . These two should be controlled by the algorithm by design, and numerical experiments
will show the effects of using estimates of σ2

i and π0. Additionally, we measure the Type I error (the
proportion of null systems selected), and the total proportion of systems selected as alternate to measure
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the selection size. Finally, to measure the sampling effort of Algorithm 1, we record the average sampling
ratio 1

N ∑
N
i=1 n∗i /(σi/ε)2 to estimate the effort needed for each system relative to σi and ε .

Each table reports results from an experiment consisting of 1000 replications to estimate the mean and
standard deviation of each output metric. Each replication simulates N = 1000 systems with π0 = 90%
of them as null. Then, π0 is estimated in the algorithm and we choose the zero-assumption range
A = [Φ−1(1/2− ε/4),∞). We generate the value of σi for each system from 2+Exp(3) where Exp(x)
is an exponential random variable with mean x, and choose initial sample sizes for variance estimation to
be n0 = 1000.

We compare the results of Algorithm 1 to the Benjamini-Hochberg algorithm when similar sampling
effort is applied to each algorithm. The BH algorithm can be applied to the second stage after n∗i samples
are collected with results very close to those of Algorithm 1. We choose the average n∗i value (from the
results of Algorithm 1) as the sample size for each of the N systems and apply the BH algorithm. The
overall number of samples is the same across both algorithms, but the BH algorithm applies effort equally
while Algorithm 1 uses n∗i for system i.

Both algorithms perform favorably, with the BH algorithm typically yielding a smaller Efdr and smaller
1−β than Algorithm 1. Table 2 compares the BH algorithm and Algorithm 1 when q = 0.1, 1−β = 0.9
and ε = 0.1. Both algorithms appear able to control the Efdr to be smaller than 0.1. Algorithm 1 using n∗i
does a slightly better job selecting more alternate systems (93.2%), though this is conservative relative to
the desired 90% selection rate. We will see in all the tables that the value of 1−β delivered by Algorithm
1 is noticeably larger than that for the BH algorithm. The Type I error is small for both algorithms, and
the proportion of systems selected is approximately 10%. We note that the expected number of systems
selected will be π1(1−β )/(1−q) and in the forthcoming examples should be equal to π1 = 10% because
we choose β = q.

Table 2: Parameters q = 0.1, 1−β = 0.9, ε = 0.1, the mean and std. deviation of 1
N ∑

N
i=1 n∗i /(σi/ε)2 are

15.14 and 2.76.

BH-Mean BH-Std. Dev. Algorithm 1-Mean Algorithm 1-Std. Dev.
Efdr 0.090 0.030 0.096 0.039
1−β 0.896 0.036 0.932 0.043

Type I Error 0.010 0.004 0.011 0.005
Proportion selected 0.099 0.005 0.103 0.007

Table 3 reduces ε to 0.05, and the results are similar to those for ε = 0.1, but the mean sampling ratio
increases as expected from 15.14 to 17.62. Again, we note that both algorithms achieve desired performance
across the four metrics, though we note that our implementation of the BH algorithm benefits from a sample
size selection achieved by using the average of the system sample sizes delivered by Algorithm 1.

Table 3: Parameters q = 0.1, 1−β = 0.9, ε = 0.05, the mean and std. deviation of 1
N ∑

N
i=1 n∗i /(σi/ε)2 are

17.62 and 4.01.

BH-Mean BH-Std. Dev. Algorithm 1-Mean Algorithm 1-Std. Dev.
Efdr 0.090 0.030 0.094 0.039
1−β 0.912 0.036 0.954 0.040

Type I Error 0.010 0.004 0.011 0.005
Proportion selected 0.100 0.005 0.106 0.007

Table 4 reports results for ε = 0.1, but has q = 0.05 and 1−β = 0.95. Both algorithms are able to
deliver an Efdr smaller than q, and sampling management in Algorithm 1 delivers an estimated 1−β of
96.6%. The mean relative samples needed increases to 20.14 to obtain the smaller q and higher 1−β than
in Table 2.
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Table 4: Parameters q = 0.05, 1−β = 0.95, ε = 0.1, the mean and std. deviation of 1
N ∑

N
i=1 n∗i /(σi/ε)2 are

20.14 and 2.83.

BH-Mean BH-Std. Dev. Algorithm 1-Mean Algorithm 1-Std. Dev.
Efdr 0.046 0.021 0.050 0.027
1−β 0.910 0.032 0.966 0.026

Type I Error 0.005 0.002 0.006 0.003
Proportion selected 0.095 0.004 0.102 0.004

We conclude with a table showing the results when the BH algorithm is applied without sample size
management. Table 5 reports performance of the BH algorithm when all systems receive n0 = 1000 samples.
The same input parameters as those in Table 4 are used. We observe that Edfr is still controlled, but the
values of 1−β , Type I error, and proportion of selected systems are close to zero due to so few systems
being selected. The benefit of Algorithm 1 is that it guides the sample size selection to encourage selection
of more alternates.

Table 5: BH algorithm with n0 = 1000 samples for each system. Parameters q = 0.05, β = 1− 0.95,
ε = 0.1.

BH-Mean BH-Std. Dev.
Efdr 0.048 0.196
1−β 0.002 0.006

Type I Error 0.000 0.000
Proportion selected 0.000 0.001

6 CONCLUSIONS

We present an algorithm for performing multiple comparisons with a standard under a framework where
most of the systems are from a “null” distribution, and the remainder are from an “alternate” distribution.
The intent is to isolate the subset of systems that are likely from the alternate distribution. The algorithm
selects a subset of systems while controlling the expected false discovery rate and the probability that an
alternate system is selected. The framework is similar to the Benjamini-Hochberg algorithm in that it uses
a threshold policy on the p-values for each system while controlling the Efdr. We derive expressions for the
sample sizes needed for each system to obtain a desired probability that an alternate is correctly selected,
and assess the effect of variance estimation on these sample sizes. Future work will consider uncertainty
in the mean of the alternate distribution, and relax the normality assumption.
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