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ABSTRACT

In this work, we propose a methodology for calibrating a dependent failure model to compute the reliability
in a telecommunication network. We use the Marshall-Olkin (MO) copula model, which captures failures
that arise simultaneously in groups of links. In practice, this model is difficult to calibrate because it
requires the estimation of a number of parameters that is exponential in the number of links. We formulate
an optimization problem for calibrating an MO copula model to attain given marginal failure probabilities
for all links and the correlations between them. Using a geographic failure model, we calibrate various
MO copula models using our methodology, we simulate them, and we benchmark the reliabilities thus
obtained. Our experiments show that considering the simultaneous failures of small and connected subsets
of links is the key to obtaining a good approximation of reliability, confirming what is suggested by the
telecommunication literature.

1 INTRODUCTION

The topological design and evaluation of telecommunication networks have been addressed in many studies
since the 1980s. Among the various definitions of reliability, in this work, we focus on the reliability of
a network in terms of the probability that a given set of components will remain in the same connected
component of the network at a given time, considering that these components may become inoperative
over time.

To evaluate the reliability of a network, a failure model is required. Even for the simplest failure model,
in which each component fails independently with some probability, it is difficult to directly evaluate
the reliability; more precisely, it is a #P-complete problem (Provan and Ball 1983). Hence, Monte Carlo
simulation techniques have become indispensable for computing such reliabilities (see, for instance, Kroese,
Taimre, and Botev (2013), or the on-line proceedings of the WSC).

A natural next step is to address topological network design. This problem can also be easily stated;
given a set of nodes and potential links, choose a subset of those links to construct a network such that the
total cost is minimized and the reliability is maximized. If the evaluation of reliability is already a difficult
problem, the design problem of maximizing reliability is even more so; thus, to tackle the latter problem,
many simplification are assumed, the most common being the independent failure of the components.

However, empirical analyses of networks have revealed that a dependence exists among the failures
of different components, which could significantly affect reliability computations. Gonzalez et al. (2010)
analyzed data from a Norwegian optical network, showing that significant correlations are observed in
an important number of pairs of components and that this correlation decays with an increasing distance
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between them. Gill, Jain, and Nagappan (2011) found that simultaneous failures of n links become more
rare as n increases. Similar conclusions were obtained by Turner et al. (2010) in a study of internet
provider networks. These studies show that the dependence among component failures is significant, even
for networks based on different technologies.

The question of how to choose a dependency model has been studied by Singpurwalla (2002), who dis-
cussed various models, such as the Freund’s bivariate exponential distribution, multivariate Weibull/Gamma
models and the Marshall-Olkin (MO) copula model. The MO model was proposed by Marshall and Olkin
(1967), and it assumes that failures occur in groups of components. This model offers many advantages
that make it very flexible and realistic (see the discussion in Botev et al. (2016) and references therein).
Botev et al. (2016) proposed rare-event simulation techniques to compute the reliability of a network in
which failures arise according to the MO model. For the design problem, Barrera, Cancela, and Moreno
(2014) recently proposed an optimization formulation to design networks under MO-type failure models
and causal failure models. With the publication of these works, it could be supposed that at least for certain
networks, the problem of evaluation and design under mutually dependent failures has been addressed.
However, both works assume that the parameters of the MO copula failures are available. Singpurwalla
(2002) has already noted that although the MO model is a realistic failure model, it is not scalable because
the number of parameters to be calibrated grows exponentially with the number of components. Therefore,
the calibration of the MO copula parameters is an important issue to overcome, and this is the problem
that we address in this article.

As noted by Hagstrom and Ross (2001), correlation data for existing network are scarce; hence, suitable
models should consider this lack of data. In addition, the techniques discussed above are intended to be
applied for the design of a network before its construction. Therefore, it is natural to assume that only partial
information can be gathered, mostly from similar existing networks. Our main result is a methodology
for calibrating an MO failure model to approximate the reliability of a network. In our methodology, we
assume that only the marginal failure probabilities and correlations are available for each component. We
evaluate the proposed methodology by means of an experiment in which the reliabilities obtained using
two failure models are compared: we directly simulate a phenomenon that affects the network, causing
dependent failures, and we compare the results with simulations using the calibrated MO model. The
article is organized as follows. In Section 2, we introduce the notation and formally introduce the MO
model; we discuss the cases of serial and parallel components under the MO failure model to quantify the
errors that can be produced by the assumption of independence and the differences that can arise between
two different MO models with the same marginal failure probabilities and correlations. In Section 3, we
present an optimization problem for obtaining an MO model with the desired calibration parameters. We
also discuss the behaviors observed in different networks and how to obtain MO models that emulate these
behaviors. In Section 4, we introduce a physical failure model and compare it with various MO models.
Finally, in Section 5, we present the conclusions of our study.

2 NOTATION AND MARSHALL-OLKIN MODEL
2.1 Marshall-Olkin (MO) Copula Model for Dependent Failures

Let ¢ be a graph with set of nodes .4, and let ¥ = {1,2,...,n} denote the set of links or components
connecting distinct pairs of nodes. We assume that nodes cannot fail. Links, however, are subject to failure,
and at any time ¢ > 0, they can be in one of two states, either operational (up) or not operational (down). At
time ¢t = 0, all components are operational. After random lifetimes in the up state, links fail, moving into
the down state, in which they remain forever (that is, we consider non-repairable systems). For each link i,
we define its lifetime 7; as the random time at which it fails. In the standard model of network reliability,
the random variables 71, ..., 7, are assumed to be independent. Here, the model is much more general. Let
& be a collection of subsets of ¢, which are not necessarily disjoint. For each subset V € &2, we define
a positive random variable Wy, that represents the instant at which all links in V fail simultaneously. We
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refer to such an event as a shock. The result of a shock associated with subset V is that at time Wy, all
links in V are in the down state (if they were already down, they remain down, that is, nothing happens).
Hence, the lifetime of a link i corresponds to the earliest time at which a shock that affects i occurs, that
is, T; = min;ey {Wy }. In the MO copula model, the random variables {Wy }yc » are mutually independent
with exponential distributions. Hence, T; also follows an exponential distribution for all i € ¥.

At any time ¢ > 0, the entire network is either up or down, depending on whether a certain connectivity
property is satisfied. In this paper, we illustrate our approach using the basic s,7-connectivity: two nodes
in .4, denoted by s and ¢, are marked, and the network is up if and only if there exists a path connecting
them that is composed only of operational links. We assume that the graph ¢ is connected, so, at time t =0
the network is operational. When all links are down, that is, at any time ¢ > max;cy {Wy }, the network is
down.

The metric of interest here is the probability that the network will be up at time 7, R(z). In some
cases, the main instant 7 of interest is the so-called “mission time”, the maximal time value until which
we wish the network to continue operating without problems. Because ¢ is mathematically arbitrary here,
we choose to develop our technique using a value of 1 for simplicity. Equivalently, we can also think of ¢
as the mission time and consider that the time unit we are using is precisely equal to that mission time.

There is another reason that a value of 1 is interesting. Consider the classical setting with independent
components and a static model in which time is not an explicit variable. Components and systems are
either up or down; we are given the graph and the individual probabilities for the components to be, say,
down, denoted by p; for component i, and we measure the network dependability using some measure of
the capability of the network to provide communication services, for instance, the probability that s and ¢
will be connected in the implicit random partial graph of ¢. This measure is typically called the network
reliability. Then, consider our initial dynamic model, with & = {{1},...,{n}}, where the random variable
W(;) has arate A; = —In(1 — p;). It can be seen that the probability that link i will have failed at time ¢ is
Pr(T; <t)=1—exp(—Ait), and P(T; < 1) = 1l —exp(—A;) = 1 — (1 — p;) = p;. Thus, in this case, the static
s,t-network reliability is equal to R(1). This is essentially the Creation Process of Elperin, Gertsbakh, and
Lomonosov (1991), or rather, its complement, considering that in the formulation of Elperin, Gertsbakh,
and Lomonosov (1991), the system’s components all start in the failed state and are repaired until the
system becomes operational.

As explained in the introduction, we are interested in calibrating an MO copula model that represents
the behavior of a communication network based on the marginal failure probabilities and the correlations
between failures. In principle, these values are easy to measure in an operating communication infrastructure.

Lemma 1 Let X; denote the state of link i at time 1. Let p; be the marginal failure probability of
link i, that is, p; = P(X; = 0), and let pi,j be the correlation between the failures of links i and j, that is,

pij = Cov(X;,X;)/(y/Var(X;)\/Var(X;)). Then, an MO copula model with these marginal distributions and
correlations must satisfy the following set of equations, where the set of unknown variables is {Ay: V C ¢'}:

Y Jv=I PVPVPL 1) ijesist ), (1a)
VCE:{i,jtev (I=pi)(1=pj)
Y Av=-In(1-p), Vie?, (1b)
VC&iieV
Ay >0, VWCE. (1c)
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Proof. This result is obtained directly by expressing the covariances and marginal failure probabilities
in terms of the links’ lifetimes,

E(Xl) =1 — pPi = €Xp ( Z lv) and

VC%:ieV

E(X;-X;) =Pr(T; > IAT; > 1) =exp| — Z Av
VCE:ieVvjeV

=(1-pi)(1 —pj)-eXp< Y lv) ,

VCE:{i,jev
and isolating the corresponding terms. O

Note that this linear system contains n(n+ 1)/2 equations and 2" — 1 variables, so in general, it will
have an infinite number of solutions. For this reason, it is important to know the accuracy of estimation
of the system’s reliability for each of these solutions.

Henceforth, we will denote the network reliability at # = 1 simply by R, such that R = R(1). Moreover,
we will abuse the notation and refer to the subsets V as “copulas”, as the shock times {Wy } couple the
links’ lifetimes.

2.2 Relevance of Choosing Different MO Copula Parameters

Before imposing specific criteria on which to choose an MO model from among all possible solutions for
system (1), we will demonstrate the impact of choosing different MO copula parameters on the reliability.
We consider the extreme cases of a system with n components: one is a system in which all components
are in series, and the other is a system with all components in parallel. For each system, we also consider
the two extreme cases of sets of copulas that satisfy the equation given in (1): one in which shocks affect
only one or two components at once and one in which only shocks that affect either one component or all
components simultaneously are considered.

We are interested in showing that for different sets of copulas that satisfy the system of equations given
in (1), the resulting reliabilities can be very different even if correlations are not that high, indicating that
it is important not only to satisfy these equations but also to choose sets of copulas that are representative
of the possible failures in the system.

Let G| and G, denote networks composed of n links in series (G1) and in parallel (G). Let p be the
marginal unreliability of any link, and let p be the correlation between the states of any pair of links. For
both networks, we obtain two different solutions to Equation (1): the solution obtained using only copulas
of a size of at most 2, and the solution obtained using copulas of size 1 and one copula that includes all n
links.

Then, by solving the system of equations given in (1) using the restricted set of valid copulas for each
case, we can compute the exact reliability R between the two terminal nodes of each network, yielding the
following formulas:

1. Gj: n links in series.
(a) Copulas of one or two components:

n(n—1) n(3—n)
R=(pp+1-p) = (1-p) 2
(b) Copulas of one or n components:
R=(pp+1-p)"'(1-p). 3)
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Figure 1: Reliabilities of series and parallel networks with n =5 components, as functions of the correlation
between any pair of link states, for various values of the elementary reliability p and for two choices of
copulas: either only copulas of size <2 or only copulas of size 1 or n (all components).

2. Gy: n links in parallel.
(a) Copulas of one or two components:

4 n
r=Y | ()1 ort1-p)
i1 L\K
(b) Copulas of one or n components:

g L-P(—p)
ppt+1—p

k(k—1) k(k=3)

- o)

(I—=p). &)

Figure 1 shows the difference between the two solutions for various values of p and p and for the
two types of networks with n =5 components. Continuous lines represent the reliabilities for one- or
all-component copulas, and dashed lines represent the corresponding values obtained using one- or two-
component copulas. Only small correlations can be considered using copulas of size 1 or 2. However, note
that the difference between the results for the different copula subsets can be considerable even for small
correlations (greater than 10% for correlations smaller than 0.1). Moreover, if we ignore the correlations,
we obtain the reliability calculated for a correlation of p = 0O (the intersection with the Y axis in the figures).
Hence, ignoring the correlation produces an underestimation of the reliability for the series case and an
overestimation of the reliability for the parallel case, and the difference grows as the correlation increases.

3 CHOOSING AN APPROPRIATE SET OF COPULA PARAMETERS
3.1 An Optimization Problem for Choosing MO Copula Parameters

In this section, we discuss how to obtain a set of copula parameters that satisfies the system of equations
given in (1). Note that this is not a simple problem, because the system has an exponential number of
variables. To find a solution to this system, we rewrite (1) as the following optimization problem:
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min Z (tfjr +ti;) (6a)
i,jeC
7w+t5—ti§=ln( PirvPrybs +1) Vi j €G] (6b)
VCE:{i,jleV (1=pi)(1—pj)

Y A+t =—In(1—p), Vie? (6¢)
VC%iicV

Ay 20, WCE (6d)

it >0, Vi, jeg. (6¢)

That is, we add slack variables t;; and tl.; for each equation, and we minimize the sum of these slack
values. If we obtain a solution with an objective value equal to 0O, then it is an exact solution to equation
(1). A solution to this linear optimization problem with an exponential number of variables can be obtained
using a technique known as column generation (Dantzig and Wolfe 1960). That is, we solve the problem
with a reduced set of variables Ay, called the “master” problem. To verify whether an additional variable
should be included in the problem, we need to find a variable with a negative reduced cost. The reduced
cost associated with a variable Ay is given by

CVZ—ZHi— Z Vij;
iV ijev

where y; and v;; are the dual variables of equations (6¢) and (6b), respectively.
We can formulate an integer programming model to find a variable Ay with the minimum reduced cost
by solving the following “pricing” problem:

min— Y pixi— Y Vijvij (7a)
i€¢ i,jeEC

Vij<xi Vi,jeE (7b)

vij<xj VYi,je¥ (7¢)

xi+xj<yijj+1 Vi,je? (7d)

xi,vij €{0,1} Vi,je?. (7e)

The binary variable x; indicates whether link i should be included in the copula V. The variable y;; takes a
value of 1 if and only if x; and x; are included in the copula. The objective function is equal to the reduced
cost associated with V. An optimal value of the objective function smaller than O indicates that the new
copula defined by {x;};c¢ should be included in the master problem. Then, we solve the master problem
again and iterate until all variables with a negative reduced cost have been included.

Note that this pricing problem is NP-hard (by reduction of the Independent Set problem), but our
implementation shows that optimization software can solve large-scale instances of this pricing problem
in a few seconds by virtue of the structure of the pricing problem that is exploited by such solvers.

Note also that additional constraints can be included in the pricing problem. For example, we can
limit the size of the copula V by adding a cardinality constraint (} ;e x; < k). This allows us to impose
additional criteria on the set of copulas used to calibrate the model. Note that these additional criteria
could lead us to an optimal solution that does not satisfy the system of equations given in (1), but such a
solution does provide a good approximation of the desired marginal distributions and correlations.
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3.2 Empirical Failure Behaviors in Telecommunication Networks

As mentioned in the introduction, empirical analyses of networks have shown that the probability of
simultaneous failure in a network decreases as the number of components involved in the simultaneous
failure increases. For the data center studied in Gill et al. (2011), §4.6, the authors showed that failures
involving up to four links accounted for 90% of all failures. Gonzalez et al. (2010), §IV.B, showed that
the number of simultaneous failure events decreases with increasing distance between the components
involved. Turner et al. (2010), §4.2.2, reported that simultaneous failures occur in links that share a node,
or more precisely, a router. A similar behavior was reported by Markopoulou et al. (2008) for IP backbone
networks. These studies provide evidence that among all models that satisfy equation (1), we should
preferentially choose a model with copulas that include only links that share a node, thereby limiting the
maximum copula size. To do so, we restrict the set of available copulas in model (6) to consider only
subsets V that satisfy the desired conditions. Note that in this case, the solution to the problem (6) could
be different from zero (i.e., the resulting copulas would not satisfy the system of equations given in (1)).
Nevertheless, as we show in the following section, this solution still provides a good approximation of the
reliability of the network.

4 COMPUTATIONAL EXPERIMENTS

To compare the performances of different methods of selecting the MO copula parameters, we must
benchmark our results against another simulation model that naturally induces correlations between failures.
To do so, we simulate a physical model of failures similar to that proposed by Agarwal et al. (2013), and
we attempt to replicate the obtained reliabilities using the MO copula model based on only the empirical
marginal probabilities of failure and their correlations.

In the physical model, the network can be affected by physical disasters such as earthquakes, storms
or electromagnetic pulses. These disasters occur at random locations and with random intensities. When
an event occurs, we assign to each component a probability of failure that decays with increasing distance
from the location of the disaster.

In this model, the disaster position ¢ is given by a uniform random variable over the square area of
the network and the intensity of the event is given by an independent exponential random variable D, as
suggested by Gutenberg and Richter (1954).

The probability of failure for each component, as a consequence of the disaster, is inversely proportional
to its distance from the event location and directly proportional to the intensity of the event. Hence, given
a disaster located in a position ¢ with intensity D, the failure probability of a component in a position u is

given by
d(q,u)
D )

fu = max {O, 1— (8)
where d(q,u) is the Euclidean distance between u and g.

We apply the model described above to the network shown in Figure 2, which consists of 12 nodes
and 16 links. We sample the position g of the event from a uniform distribution over [0, 16] x [0, 16],
and we independently sample the intensity D from an exponential distribution with the parameter A = 5.
Using these parameters, we compute the failure probability of each link f;,, where u is the midpoint of the
link, and we sample the state of each link (operative or failed) using a Bernoulli random variable with the
corresponding probability f,. This process represents one simulation of the physical model. We denote
this model by PHYSICALM.

From the resulting simulations, we compute the empirical marginal failure probabilities p; and the
empirical correlations between failures p;; for all i, j € ¢, which will be used to calibrate the MO copula
parameters.

We calibrate six different MO copula models based on the marginal probabilities and correlations, as
follows:
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Figure 2: Example network for computational experiments.

Model INDEPM  This model considers only copulas of size 1, with the corresponding marginal failure
probabilities obtained from the physical model. This model mimics the assumption of independence
between failures.

Model COLGENM  This model considers both the empirical marginal failure probabilities and the
correlations between failures from the physical model. We obtain an exact solution for system (1)
using the proposed column generation algorithm, as explained in Section 3.1.

Models SC-2, SC-3 and SC-4  Following the discussion in Section 3.2, we solve the problem defined
in (6) by considering only copulas that share a node, with sizes of at most 2, 3 and 4 components,
respectively.

Model COLGENM-4  To demonstrate the relevance of the proximity between the links in each copula,
we solve problem (6) via column generation while including a constraint in the pricing problem that
limits the maximum copula size to 4 links. Note that this approach produces small copulas (with
few components), but the distances between the components of each copula are not necessarily
small.

For all models, we simulate multiple scenarios and evaluate the reliability by computing the existence
of an operative path between each pair of nodes in the network for each scenario. A total of 10 simulations
yield errors bounded by 1073.

The results are presented in Figure 3, where the color of each cell in the figure represents the resulting
reliability between each pair of nodes in the network. Additionally, in Table 1, we compute the mean
difference and the maximum difference (in both absolute and relative terms) between the physical model
and each other model.

Table 1: Differences in reliability between the physical model and the other models.

INDEPM | COLGENM | SC-2 | SC-3 SC-4 | COLGENM-4
Mean absolute diff. | 0.0742 0.0116 0.0267 | 0.0163 | 0.0115 0.0539
Mean relative diff. 0.0848 0.0135 0.0302 | 0.0184 | 0.0132 0.0621
Max. absolute diff. | 0.1006 0.0326 0.0631 | 0.0369 | 0.0257 0.1087
Max. relative diff. 0.1198 0.0388 0.0689 | 0.0403 | 0.0285 0.1293

As seen, both COLGENM and SC-4 provide very good approximations of the reliabilities obtained
using the physical model, with mean absolute differences in reliability of close to 1%. This indicates
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Figure 3: Reliabilities between all node pairs for the different models.

that a model with copulas composed of a small number of connected components can approximate the
physical model, although the parameters only approximate the right-hand side of the equations in (1).
Moreover, the reliabilities produced by COLGENM-4 indicate that small-sized copulas are not a guarantee
of a good approximation. This suggests that the connectivity of the components in the copulas is probably
the key property that determines whether good approximations can be obtained, which is consistent with the
observations reported in the literature discussed in Section 3.2. We can also see that the INDEPM model,
which ignores the correlations, overestimates the reliability of the network, with differences of up to 10%
compared with the physical model. Finally, we note that increasing the size of the connected copulas from
2 to 4 (models SC-2, SC-3 and SC-4) also enhances the quality of their approximations.

S CONCLUSIONS

It is important to consider the dependencies between component failures in networks. We show that ignoring
these correlations can considerably affect computations of network reliability. We also show that by using
techniques such as column generation, it is possible to calibrate an MO copula model to obtain the required
marginal failure probabilities and failure correlations. However, different calibration solutions can lead
to considerable differences in the resulting reliabilities. By calibrating a physical model, we find that, as
suggested by the literature, considering the simultaneous failures of small and connected sets of components
provides a good approximation of the reliability, even if the obtained correlations are not exactly identical
to those in the physical model. Further experiments should be conducted using different networks and
failure models to confirm this finding. Finally, we remark that knowledge of the correlations is equivalent
to knowledge of the probability that two links will fail at the same time. The proposed methodology could
be easily extended if more information were available, such as the probability that three or more links will
fail at the same time, but the empirical values required to calibrate an MO model of this type can be more
difficult to obtain in real networks.
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