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ABSTRACT 

Headquarters Air Force Studies, Analyses, and Assessments (AF/A9) supports Force Structure decisions 
by integrating analysis at various levels of resolution.  The Combat Forces Assessment Model (CFAM), is 
a mixed integer program incorporating results from higher-resolution models to identify an optimal force 
mix within Air Force resources.  CFAM is a deterministic model, but some input models are stochastic, 
such as the tactical air combat simulation BRAWLER.  Distributional information is lost when 
transferring output from BRAWLER as input for CFAM as point estimates.  These problems cannot be 
solved by standard comparison techniques (e.g. Tukey’s, Fisher’s) because they assume normally 
distributed data (which BRAWLER data does not satisfy) and both are “overwhelmed” by large number 
of comparisons. Combining bootstrapping techniques with clustering methods, AF/A9 has created point 
estimates for CFAM input data, maintaining data integrity.  This presentation describes the initial analysis 
and techniques for using this process in  other stochastic-to-deterministic model integrations.   
 

1 INTRODUCTION 

Simulating large systems and projects at high resolution poses a number of problems.  Increasing model 
complexity in even the smallest models can have significant impacts on run time and data requirements.  
To overcome this, smaller, higher resolution models are often used to provide data to simpler models that 
have a larger scope.  This process is used at Headquarters Air Force Studies, Analyses, and Assessments 
(AF/A9) to supports Force Structure decisions through the integration of engagement, mission, and 
campaign-level analysis.  Engagement-level models have a small scope and very high resolution.  One 
example is BRAWLER, a tactical combat air simulation, uses complex physics modeling in one-on-one 
or many-versus-many air combat simulations.  Analysis from models like BRAWLER is the incorporated 
in larger models that contain multiple engagements across an entire campaign.  One such model is the 
Combat Forces Assessment Model (CFAM) – a mixed-integer program that is used to identify an optimal 
mix of assets within projected or unconstrained Air Force Resources.  At each stage of analysis transfer – 
engagement to mission, mission to campaign, etc. – it is accepted that some information is lost; after all, 
“All models are wrong, some are useful.”  However, one area for improvement is the incorporation of 
distributional data in deterministic models.  BRAWLER is a stochastic model – force mix options (cases) 
are given as inputs, with multiple responses used to measure their effectiveness.  When this data is input 
into CFAM, however, only point estimates are used in the mixed-integer program.  This means that when 
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two cases have similar distributions but computationally different means, they are considered different 
under CFAM’s parameters.  Conversely, if two cases have the same calculated mean, but statistically 
different distributions, CFAM will treat them as having the same point estimates.  See Figures 1 and 2 for 
comparison.   

 

 
Figure 1: These cases would be treated as different in CFAM. 

 

 
Figure 2: These cases would be treated as the same in CFAM. 
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2 COMPARING DISTRIBUTIONS 

2.1 Bonferroni, Tukey, Fisher Comparisons 

The first step in mitigating these problems was to determine a methodology for comparing each case 
against the others.  This allows statistically similar cases to be grouped together so that their point 
estimates will be the same when input into CFAM.  One significant problem with the data is that for some 
studies the number of cases can be as high as 216.  This means that there would be 23,220 pairwise 
comparisons necessary.  One method for conducting multiple comparisons is the Bonferroni correction 
for confidence intervals, which accounts for the uncertainty across all comparisons (Montgomery, Peck, 
Vining, 2015): 
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In this formula for the 100(1-α)% confidence interval about the mean, x , the usual α-value is divided by 
twice the number of comparisons (p). With 216 individual cases, this would mean that the α-value for an 
individual  confidence interval would be 2.15 ∗ 10!!, resulting in inordinately wide confidence intervals.  
Two other often-used comparison methods, Tukey’s Honestly Significant Difference (HSD) and Fisher’s 
Least Significant Difference (LSD) (Montgomery, 2008) also fail to differentiate between cases because 
they assume normally-distributed data.  This means that Tukey’s and Fisher’s will be useful for cases like 
those in Figure 1, but will fail to differentiate the cases in Figure 2.  Additionally, if a case has sufficiently 
high variance, even if the data is normally-distributed (or at least normal-esque), neither test can 
differentiate that case from others, as seen in Figure 3. 
 

 
Figure 3: All four distributions are considered similar by Tukey’s and Fisher’s. 
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2.2 Bootstrapping 

The next method considered was bootstrapping.  Bootstrapping is a method of resampling the data (with 
replacement) and is useful for providing comparisons for when it cannot be assumed that the data is 
normally-distributed (Mooney, Duval, 1993).  Repeated “microsamples” of the original data are taken, the 
means of which are used to create a confidence interval (Montgomery, Peck, Vining, 2015).  Typical runs 
from BRAWLER have 100 replications for each case. These 100-run samples were used for 
bootstrapping code implemented in R.  Each case was resampled 10,000 times, creating “microsamples” 
of 100.  When the ith sample is taken, the mean, 𝑥!, for that sample is calculated. Once all 10,000 
microsamples are calculated, the simplest method for developing a confidence interval is taking the 
central 1 − 𝛼 ∗ 100%  of the microsamples (Montgomery, Peck, Vining, 2015).  These bootstrap 
intervals represent the uncertainty about the mean for each case.  Because of this, if there is any overlap 
between the bootstrap intervals, we cannot assume that the means are different.  Bootstrapping proved to 
be effective in estimating the case means, as well as providing a method for comparing cases against each 
other. 

3 CASE GROUPINGS 

3.1 Variance – Based Methods 

Simply determining those cases that have pairwise statistical similarities is insufficient for 
accommodating distributional data into the mixed-integer program.  Consider the case in Figure 4 below: 
 

 
Figure 4: Case A ≈ Case B, Case B ≈ Case C, Case A ≉ Case C. 

 
Case A and Case B have overlapping bootstrap intervals; Case B and Case C have overlapping bootstrap 
intervals, but there is no overlap between Case A and Case C.  The question now becomes how should 
these cases be grouped when transferring data to CFAM?  The initial attempt was simple: define cluster i 
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as all other cases that are statistically similar to case i (up to case 216 in our example).  Calculate the 
variance of the original means for each case in cluster i.  Determine the cluster with the lowest variance, 
which will be considered a group of statistically similar cases.  Remove all cases in cluster i from all other 
clusters, which ensures all groups will be mutually exclusive.  The mean for group i is the average of the 
means for all cases in group i.  Other options were considered, such taking the centroid of the confidence 
intervals in group i, but averaging the means was the simplest.  This action was repeated as long as 
clusters with more than 2 cases exist. 

. 

3.2 Clustering Methods 

In addition to this simple variance-based technique, two clustering methods were considered.  The first 
was Affinity Propagation Clustering (AP-clustering). AP-clustering iteratively focuses on determining 
“exemplars” in clusters of data and determining the clusters that best fit with potential exemplars (Frey, 
Dueck, 2007).  AP-clustering uses is based off of a similarity matrix, fortunately, the bootstrap intervals 
provided an excellent metric for similarity:  the relative overlap of the intervals.  Let the relative overlap 
between case i and case j, 𝜃!"be defined as  

 

𝜃!" =   
𝜃!"
𝑅!

 

 
Where 𝜃!"  is the actual overlap between the two bootstrap intervals, and 𝑅! is the range of the ith 

bootstrap interval.  This way, the relative overlap is always 1 when 𝑖 = 𝑗, and is closest to 1 two bootstrap 
intervals have the most overlap.  This also allows for asymmetrical similarity.  This way 𝜃!" ≠ 𝜃!"  if the 
bootstrap intervals are not equally long.  This metric was developed in order to avoid the problems that 
occur if one case has much higher variance than the others (as in Figure 3).  

This similarity matrix was also used to implement the Bayesian X-means clustering method (Pelleg, 
Moore, 2000).    X-means is an algorithm that increases the effectiveness of K-means clustering by 
optimizing the cluster locations and cluster space using either the Bayesian Information Criterion (BIC) or 
the Akaike Information Criterion (AIC) (Montgomery, Peck, Vining, 2015).  Between the two clustering 
methods, AP-clustering proved to be more reliable with the dataset used within BRAWLER and CFAM.  
In instances where many cases had the same mean low variance, X-means either provided the same 
groups as AP-clustering or grouped those cases with other clusters, increasing the overall variance for 
each group.   

 

4 IMPLEMENTATION AND FURTHER STUDY 

Both the variance-grouping and AP-clustering methods show promise in grouping similar cases together.  
Unfortunately, due to the complex nature of the cases and scenarios utilized in BRAWLER and CFAM, 
no single method will always prove to be the best technique.  One method for determining the validity of 
the groups is to compare the confidence interval for a given response with the sensitivity analysis of the 
mixed-integer program.  Once CFAM has concluded its run, sensitivity analysis provides the acceptable 
ranges for each coefficient.  If these coefficient ranges fall within the confidence interval for that response, 
it would suggest that the solution for CFAM is robust enough to account for the variance from 
BRAWLER.  If the coefficient range is not within the confidence interval, additional clustering and/or 
comparison methods may need to be tried. 
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5 CONCLUSION 

Integrating data from multiple modeling sources will always have complications.  As models increase in 
scope and decrease in resolution, information and fidelity is lost in order to gain insights into the effects 
of larger moving parts.  In the case of CFAM and BRAWLER, information about the nature of a given 
case’s performance is lost when point estimates are used as inputs for the mixed-integer program.  To 
account for this, a process has been put forward that is capable of conducting many comparisons of 
distributional data as well as three options for grouping cases based on the results of those comparisons.  
Using processes like this will hopefully improve model fidelity in other areas where stochastic models are 
used to provide inputs for deterministic models at higher levels.  In the case of BRAWLER and CFAM, 
this process will improve AF/A9’s ability to provide high-fidelity analysis to decision makers. 
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