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ABSTRACT 

The modeling of complex service systems entails capturing many sub-components of the system, and the 

dependencies that exist among them in the form of a joint probability distribution. Two common methods 

for constructing joint probability distributions from experts using partial information include maximum 

entropy methods and copula methods. In this paper we explore the performance of these methods in 

capturing the dependence between random variables using correlation coefficients and lower-order pairwise 

assessments. We focus on the case of discrete random variables, and compare the performance of these 

methods using a Monte Carlo simulation when the variables exhibit both independence and non-linear 

dependence structures. We show that the maximum entropy method with correlation coefficients and the 

Gaussian copula method perform similarly, while the maximum entropy method with pairwise assessments 

performs better particularly when the variables exhibit non-linear dependence. 

1 INTRODUCTION 

Decision making in today’s complex and integrated environment is an ever-challenging task. Constructing 

an appropriate joint probability distribution for a complex system, is an important part of this decision-

making task (Howard and Abbas 2015). Bayes’ rule offers a systematic way to construct the joint 

probabilities. In this method, the joint probabilities are computed based on the assessed marginal 

distributions and conditional probabilities. The exponential growth of number of assessments with the 

number of variables, makes the use of this method difficult for complex systems (Zacks 1971, Ferguson 

1973). To overcome this issue, many methods have been introduced to construct joint distributions using 

lower order assessments. The maximum entropy methods and the copula methods have gained recent 

popularity because they require fewer assessments than the typical marginal-conditional approach. 

 The maximum entropy methods (Jaynes 1957) select the probability distribution that has maximum 

entropy subject to the available information. The information provided can be of many forms (Abbas 2003, 

Abbas 2005, Abbas 2006, Abbas and Aczél 2010).  

This paper discusses the accuracy of approximations of joint probability distributions when capturing the 

linear and non-linear dependence between the variables. It compares the performance of the maximum 

entropy method and the Gaussian copula method using Monte Carlo simulation. We show that extra effort 
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is needed when constructing joint probability distributions in the presence of non-linear dependence 

structures, and discuss the accuracy of the approximations. 

The remainder of this paper is organized as follows. Section 2 reviews maximum entropy and copula 

methods for constructing joint distributions. Sections 3, 4 and 5 discuss the simulation steps for comparing 

the performance of each method using uniform sampling, independent sampling and non-linear dependence 

sampling. Section 6 compares of the accuracy of the methods using conditional probability distributions. 

Section 7 summarizes the results and main conclusions. 

2 REVIEW OF MAXIMUM ENTROPY AND COPULA METHODS 

2.1 The Maximum Entropy Method 

For a discrete random variable 𝑋, the entropy (Shannon 1949) is defined as: 

 

𝐻(𝑥) = − ∑ 𝑝(𝑥𝑖)

𝑛

𝑖=1

log 𝑝(𝑥𝑖) 

 

where 𝑝(𝑥𝑖) represents the probability of outcome 𝑥𝑖, for 𝑖 = 1, … , 𝑛.  

The Kullback-Leibler divergence (Kullback and Leibler 1951) determines the amount by which the entropy 

increases when a reference distribution Q is estimated with another distribution P: 

 

𝐾(𝑃: 𝑄) =  ∑ 𝑝(𝑥𝑖)

𝑛

𝑖=1

log
𝑝(𝑥𝑖)

𝑞(𝑥𝑖)
 

 

where 𝑝(𝑥𝑖) and 𝑞(𝑥𝑖) represent the probabilities for outcome 𝑥𝑖, for 𝑖 = 1, … , 𝑛, for distributions P and Q 

respectively. The Kullback-Leibler measure is non-negative and is equal to zero if and only if the 

distributions P and Q are identical. 

2.1.1 The Maximum Entropy Formulation with Correlation Coefficients 

This model assumes that the marginal distributions and the pairwise correlation coefficients are available.    

The objective function is Shannon’s entropy for the joint probability distribution. The marginal distributions 

and the pairwise correlation coefficients form the constraints. For three discrete random variables, 𝑋, 𝑌 and 

𝑍 , the assessed marginals are 𝑃(𝑋), 𝑃(𝑌)  and 𝑃(𝑍) . The 𝜌𝑥𝑦, 𝜌𝑥𝑧  and  𝜌𝑦𝑧  represent the pairwise 

correlations between the pairs, (𝑋, 𝑌), (𝑋, 𝑍) and (𝑌, 𝑍) respectively.  

 

𝑝∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 − ∑ 𝑝(𝑥, 𝑦, 𝑧)
𝑥,𝑦,𝑧

log(𝑝(𝑥, 𝑦, 𝑧)) 

Subject to 

∑ 𝑝(𝑥, 𝑦, 𝑧)
𝑥,𝑦,𝑧

= 1 

    ∑ 𝑝(𝑥, 𝑦, 𝑧)
𝑦,𝑧

= 𝑃(𝑋) 

    ∑ 𝑝(𝑥, 𝑦, 𝑧)
𝑥,𝑧

= 𝑃(𝑌) 

   ∑ 𝑝(𝑥, 𝑦, 𝑧)
𝑥,𝑦

= 𝑃(𝑍) 

𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 𝜌𝑥𝑦,   𝐶𝑜𝑟𝑟(𝑋, 𝑍) = 𝜌𝑥𝑧,   𝐶𝑜𝑟𝑟(𝑌, 𝑍) = 𝜌𝑦𝑧 
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where 𝑝(𝑥, 𝑦, 𝑧)  represents the joint probability for (𝑋, 𝑌, 𝑍)  and 𝐶𝑜𝑟𝑟(∙,∙)  is the Pearson’s product-

moment correlation coefficient between the variables. For simplicity, we refer to this model as ME-CC. 

2.1.2 Maximum Entropy Formulation with Pairwise Probability Assessments 

The maximum entropy formulation with the pairwise assessments (ME-PA)  is as follows 

 

𝑝∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 − ∑ 𝑝(𝑥, 𝑦, 𝑧)
𝑥,𝑦,𝑧

log(𝑝(𝑥, 𝑦, 𝑧)) 

Subject to 

∑ 𝑝(𝑥, 𝑦, 𝑧)
𝑥,𝑦,𝑧

= 1 

    ∑ 𝑝(𝑥, 𝑦, 𝑧)
𝑧

= 𝑃(𝑥, 𝑦)  𝑓𝑜𝑟 ∀ 𝑥, 𝑦 

    ∑ 𝑝(𝑥, 𝑦, 𝑧)
𝑦

= 𝑃(𝑥, 𝑧)  𝑓𝑜𝑟 ∀ 𝑥, 𝑦 

    ∑ 𝑝(𝑥, 𝑦, 𝑧)
𝑥

= 𝑃(𝑦, 𝑧)  𝑓𝑜𝑟 ∀ 𝑥, 𝑦 

 

2.2. Copula Methods 

A multivariate function, 𝐶 , expresses the joint probability distribution of 𝑛  random variables, 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛), in terms of their marginal distributions. It is defined as: 

 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)). 

 

where 𝐹𝑖(𝑥𝑖) represents the marginal distribution for the 𝑖𝑡ℎ random variable. In this paper, we focus on the 

Gaussian copula method for constructing the joint probability distribution. 

 

2.1.3 Gaussian Copula Method 

The Gaussian copula (GC), representing the joint probability distribution of 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛), can be written 

as: 

 

𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)) = Φ𝑅(Φ−1(𝐹1(𝑥1)), Φ−1(𝐹2(𝑥2)), … , Φ−1(𝐹𝑛(𝑥𝑛))). 

 

where Φ𝑅 represents the joint cumulative distribution function of a multivariate normal distribution with 

mean vector zero and the correlation matrix 𝑅 and Φ−1 is the inverse cumulative distribution function of a 

standard normal distribution. 

 To construct the joint probability distribution using the Gaussian copula for discrete random variables, 

we follow (Wang and Dyer 2013). We assume that random variables 𝑋, 𝑌 and 𝑍 each has three outcomes 

{−1,0,1} with associated probabilities of {𝑝.(−1), 𝑝.(0), 𝑝.(1)} where the “.” represents one of  the three 

random variables. The closed-form solution for joint probabilities is: 
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𝐹(𝑋 = 𝑖, 𝑌 = 𝑗, 𝑍 = 𝑘) = ∫ ∫ ∫ 𝜙(𝑧1, 𝑧2, 𝑧3, Σ𝑧)

𝑢𝑝𝑧

𝑙𝑏𝑧

𝑢𝑝𝑦

𝑙𝑏𝑦

𝑢𝑝𝑥

𝑙𝑏𝑥

𝑑𝑧1𝑑𝑧2𝑑𝑧3. 

 

where 𝑖, 𝑗, 𝑘 ∈ {−1,0,1}  and 𝑧1, 𝑧2  and  𝑧3  represent the standard normal variables with Σ𝑧  as the 

covariance matrix for the Gaussian copula. It is important to note that the correlation between the original 

variables is 𝑟𝑖𝑗. It should be transformed to the correlation for the Gaussian copula 𝜌𝑖𝑗 in order to be used. 

The correlation matching algorithm described in (Cario and Nelson 1997) can be used for this purpose. In 

this paper we use 𝑟𝑖𝑗  as a rough approximation of  𝜌𝑖𝑗 . The upper bounds and lower bounds for the 

integration can be calculated from the following expressions: (the same expression can be used for 𝑌 and 

𝑍.) 

 

𝑙𝑏𝑥 =  {

Φ−1(𝑝𝑥(−1) + 𝑝𝑥(0))        𝑖𝑓 𝑋 = 1

Φ−1(𝑝𝑥(−1))                        𝑖𝑓 𝑋 = 0

−∞                                           𝑖𝑓 𝑋 = −1

 

 

and 

  

𝑢𝑏𝑥 =  {

∞                                                        𝑖𝑓 𝑋 = 1

Φ−1(𝑝𝑥(−1) + 𝑝𝑥(0))                  𝑖𝑓 𝑋 = 0

Φ−1(𝑝𝑥(−1))                                𝑖𝑓 𝑋 = −1

 

 

3 UNIFORM SAMPLING ON THE SIMPLEX 

Monte Carlo simulation will be implemented in order to compare the performance of three mentioned 

methods. We use more general sampling method, uniform sampling on simplex (Abbas 2006) in this 

section. Linear and non-linear dependence sampling will be discussed in Sections 4 and 5. We consider the 

case of three discrete random variables with outcomes of {−1, 0, 1} for each random variable. We denote 

the random variables 𝑋, 𝑌 and Z. We generate a test distribution, based on uniform sampling method, at 

each iteration of the simulation and then reconstruct the joint probabilities using  ME-PA, ME-CC and GC 

methods.  

3.1 Uniform Sampling on the Simplex  

For generating a test joint distribution for 𝑛 random variables with 3 outcomes, 3𝑛 joint probabilities are 
needed. We follow the uniform sampling on the simplex method as follows 
 

1. Generate (3𝑛-1) independent samples from a uniform [0, 1] distribution, 𝑥1, 𝑥2, … , 𝑥3𝑛−1 

2. Sort the generated samples in decreasing order, 𝑢1, 𝑢2, … , 𝑢3𝑛−1   

3. Take the difference between each two consecutive elements of the ordered sample: 

𝑢1 − 0, 𝑢2 − 𝑢1, … , 1 − 𝑢3𝑛−1 

The differences form the joint probability for 𝑛 random variables with 3 outcomes. 

3.2 Monte Carlo Simulation  

The steps of the Monte Carlo simulation that we implement in this section can be summarized as follows: 
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1. Generate a joint probability distribution using the uniform sampling for 3 random variables with 

three outcomes {−1,0,1} is generated. 

2. Calculate the marginal distribution for each random variable. 

3. Calculate the correlation coefficients between the random variables. 

4. Reconstruct an approximate distribution using the calculated marginal distributions and pairwise 

correlation coefficients once using the ME-CC; once using the GC, and once using the ME-PA. 

5. Calculate the Kullback-Leibler divergence between the reconstructed distribution and the original 

distribution. 

6. Calculate the total variation between the reconstructed distribution and original distribution. The 

total variation between distributions 𝑃 and 𝑄 is: 

 

∑ |𝑝𝑖 − 𝑞𝑖|

𝑛

𝑖=1

. 

 

where 𝑝𝑖 and 𝑞𝑖 represent the probabilities associated with the 𝑖-th outcome of 𝑃 and 𝑄 respectively. 

 The fmincon function in MATLAB was used to solve the optimization problem for the maximum 

entropy formulations. The simulation will run for 1000 times (1000 different samples). 

3.3 Simulation Result for Uniform Sampling on the Simplex 

The simulation results based on uniform sampling are shown in Table 1. Two main observations can be 

made from Table: 

 

1. The results suggest that the ME-PA performs better than the ME-CC and the GC methods in case of 

the uniform sampling, with respect to the defined divergence measures. This should not come as a 

surprise because pairwise assessments include more information than merely the marginal distributions 

and correlation coefficients. Therefore, the approximated  joint probability constructed by this method 

is closer to the test distribution than approximation constructed by the ME-CC and the GC methods. 

2. Another observation from Table 1 is that both the GC and the ME-CC methods perform relatively close 

in the case of uniform sampling on the simplex. This observation can be explained with the fact that 

both methods use the information about the pairwise correlation coefficients and the marginal 

distributions. Hence, the approximations are close.  

Table 1: Simulation results for uniform sampling. 

Divergence Measure 
GC vs. Simulated 

Distribution 

ME-CC vs. simulated 

Distribution 

ME-PA vs. Simulated 

Distribution 

K-L Divergence 

 

Average Deviation:   

0.367 

Standard Deviation: 

0.140 

Average Deviation: 

0.355 

Standard Deviation: 

 0.133 

Average Divergence: 

0.134 

Standard Deviation: 

0.080 

Total Deviation 

 

Average Deviation:   

0.579 

Standard Deviation: 

 0.100 

Average  Deviation: 

0.548 

Standard Deviation: 

0.098 

Average  Deviation: 

0.303 

Standard Deviation: 

0.092 

3.4 A Note on the Sampling Size 

The Monte Carlo simulation described in Section 3.2, samples (iterated) 1000 times (for each sampling 

method discussed later). Although this number seems small for this type of simulation, we observed that 

the both Kullback-Leibler divergence and the total deviation converge to a constant value after about 300 
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iterations. Figures 1 and 2 depict the average K-L divergence and the total deviation for the ME-CC method 

and ME-PA method respectively. Although, figures present the result for uniform sampling, but the same 

holds for the independent sampling and the non-linear sampling discussed in Section 4 and Section 5.  

 

Figure 1: The average KL-measure vs. number of iterations. 

 

 

Figure 2: The average total deviation measure vs. number of iterations. 

 

4 INDEPNDENCE STRUCTURE 

As discussed in the previous section, uniform sampling on simplex, is a general sampling method that 

samples the whole space of distributions. In this section we investigate the case where there is no 

dependence between the variables and random variables, 𝑋, 𝑌 and 𝑍 are independent. We study this case as 

a simple baseline to demonstrate the accuracy of the calculations and illustrate the case where the 

reconstructed distribution is the same as the test distribution.  

4.1 Independence Structure Sampling  

Three random variables are said to be independent if: 

 

𝑃(𝑋 = 𝑖, 𝑌 = 𝑗, 𝑍 = 𝑘) = 𝑃(𝑋 = 𝑖)𝑃(𝑌 = 𝑗)𝑃(𝑍 = 𝑘). 
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In this section we focus on the cases when the three random variables, 𝑋, 𝑌 and 𝑍,  are independent in the 

test distribution. We generate joint probability distributions where the underlying random variables are 

independent. The algorithm for generating such a distribution can be summarized as following:  

 

1. Generate 3-outcome probabilities for 𝑋 using uniform sampling (refer to Section 3.1). 

2. Generate 3-outcome probabilities for 𝑌 using uniform sampling. 

3. Generate 3-outcome probabilities for 𝑍, using uniform sampling. 

4. For every outcome of the joint probability distribution: 

 

𝑃(𝑋 = 𝑖, 𝑌 = 𝑗, 𝑍 = 𝑘) = 𝑃(𝑋 = 𝑖)𝑃(𝑌 = 𝑗)𝑃(𝑍 = 𝑘), ∀𝑖, 𝑗, 𝑘 ∈ {−1,0,1}. 

 

4.2 Simulation Results for Independence Structure Sampling  

In order to examine the performance of three methods, the ME-PA, the ME-CC and the GC, we follow the 

Monte Carlo simulation described in Section 3.2: sample joint probability distributions are generated using 

the independence sampling and reconstructed using the ME-PA, the ME-CC and the GC methods. The 

divergence measures defined in Section 3.2 are then calculated between the simulated joint probability 

distributions and the reconstructed one for each method. Table 2 summarizes the simulation results for 1000 

samples. Comparing the results in Table 5 reveals that all three methods, the ME-PA, the ME-CC and the 

GC perform very close to each other. This is expected as all the three methods are expected to recover the 

true underlying joint probability distribution. The magnitude of the divergence measures, suggests that all 

the approximations by three methods are very close to the test distribution. Also, the comparison between 

Table 1 and Table 2 suggests that all three methods perform much better in case of the independence 

sampling than case of the uniform sampling on the simplex. The previous argument holds for this 

observation as well: the joint probability distribution with the independence structure only needs marginal 

distributions to be recovered exactly. Hence, the three methods perform better in this case than any other 

dependence structure.  

Table 2: Simulation results for independence structure sampling. 

Divergence Measure 
GC vs. simulated 

Distribution 

ME-CC vs. simulated 

Distribution 

ME-PA vs. Simulated 

Distribution 

K-L Divergence 

 

Average Deviation: 

1.91 × 10−10 

Standard Deviation:  

2.37 × 10−9 

Average Deviation: 

1.64 × 10−7 

Standard Deviation:  

1.08 × 10−6 

Average Divergence: 

1.0 × 10−6 

Standard Deviation: 

9.4 × 10−6 

Total Deviation 

 

Average  Deviation: 

2.97 × 10−10 

Standard Deviation: 

2.09 × 10−9 

Average  Deviation: 

1.89 × 10−5 

Standard Deviation: 

4.49 × 10−5 

Average  Deviation: 

4.62 × 10−5 

Standard Deviation: 

0.00039 

5 NON-LINEAR DEPENDENCE STRUCTURE  

In this section we focus on the performance of the approximation methods when the test distributions 

exhibit non-linear dependence between the variables.   

5.1 Non-Linear Dependence Sampling 

The non-linear dependence structure we aim to impose in this section has a simple structure. We sort the 

conditional probabilities, 𝑃(𝑌|𝑋) and 𝑃(𝑍|𝑋, 𝑌) in decreasing and increasing orders alternatively. This 
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way, we make sure that the random variables, do not exhibit any particular linear dependence (positive or 

negative correlation) between them. Figure 3, is an example of a non-linear dependence structure between  

3 random variables, shown on a probability tree. The probability distributions which satisfy the increasing 

order, are distinguished by dashed circle around them. The rest, follow the decreasing order. To clarify 

what we mean by decreasing order, we make sure that as the value of the outcome increases for one random 

variable, its conditional likelihood decreases. The increasing order is the reverse order relation between the 

variables. This structure, will guarantee that throughout the simulation, that no pair of two random variables 

have any particular linear dependence (see Figure 3). 

 The following steps describe the algorithm for generating the joint probability distribution with non-

linear dependence structure (resembling the one shown in Figure 3): 

 

1. Generate 3 outcome probabilities for 𝑋 using uniform sampling. 

2. Sort the generated values in decreasing order: 𝑃(𝑋 = 1) < 𝑃(𝑋 = 0) < 𝑃(𝑋 = −1) 

3. Generate 3 outcome probabilities for 𝑃(𝑌|𝑋) using uniform sampling for each outcome of 𝑋; We 

will need to generate 9 different outcomes for this step 

4. For three outcomes of 𝑋, {−1,0,1}, we sort the generated values of 𝑃(𝑌|𝑋) in Step 3 in decreasing, 

increasing and decreasing order alternatively. 

5. Generate 3 outcome probabilities for 𝑃(𝑍|𝑋, 𝑌) using uniform sampling for each pair of (𝑋 =
𝑖, 𝑌 = 𝑗)  for , 𝑗 = −1,0,1  ; The total number of outcomes needed to be generated will be 27 

outcomes. 

6. Sort the generated values of 𝑃(𝑍|𝑋, 𝑌) in increasing order for the pairs (𝑋 = 𝑖, 𝑌 = 0), 𝑖 = −1,0,1, 

and the rest in decreasing order. For example the following relations hold (refer to Figure 3): 

 

𝑃(𝑍 = −1|𝑋 = −1, 𝑌 = −1) >  𝑃(𝑍 = 0|𝑋 = −1, 𝑌 = −1) > 𝑃(𝑍 = 1|𝑋 = −1, 𝑌 = −1), 

𝑃(𝑍 = −1|𝑋 = −1, 𝑌 = 0)   <  𝑃(𝑍 = 0|𝑋 = −1, 𝑌 = 0)    <  𝑃(𝑍 = 1|𝑋 = −1, 𝑌 = 0). 

 

5.2 Simulation Result for Non-Linear Dependence Sampling 

We use the Monte Carlo simulation, described in Section 3.2 to evaluate the performance of the ME-PA, 

the ME-CC and the GC in approximating the test joint probability distribution. Same as previous 

simulations, it samples (iterates) 1000 times. Results for this simulation are presented in Table 3. The results 

are similar to previous simulations: 

 

1. The ME-PA method performs better than both the ME-CC and the GC methods in the case of non-

linear dependence structure sampling. This is an expected result as this method is using more 

information in order to reconstruct the joint probability distribution than other two methods, the 

ME-CC and the GC method. 

2. Also, we notice that ME-CC and GC methods perform close in this case as well. This is explained 

with the fact that the pairwise correlation coefficients and the marginal distributions are used in 

both methods in order to approximate the test distribution. 

3. Comparing the results of Table 1, 2 and 3 shows that performance of all three methods is the best 

with the independence sampling. This is due to the fact that in this method, all three methods are 

expected to reconstruct the true underlying joint probability distribution with respect to the 

available information. 
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Table 3: Simulation results for non-linear sampling. 

Divergence Measure 
GC vs. Simulated 

Distribution 

ME-CC vs. simulated 

Distribution 

ME-PA vs. Simulated 

Distribution 

K-L Divergence 

 

Average Deviation: 

0.531 

Standard Deviation: 

0.227 

Average Deviation: 

0.522 

Standard Deviation: 

0.229 

Average Divergence: 

0.015 

Standard Deviation: 

0.013 

Total Deviation 

 

Average Deviation: 

0.642 

Standard Deviation: 

0.143 

Average  Deviation: 

0.627 

Standard Deviation: 

0.147 

Average  Deviation: 

0.073 

Standard Deviation: 

0.038 

 

 

 

Figure 3: Probability tree with non-linear dependence structure. 

 

6 ACCURACY OF THE ESTIMATED CONDITIONAL PROBABILITIES: 𝑷(𝒁|𝑿, 𝒀) 

The comparison made in the previous sections, considered the divergence between the final values of the 

approximated and simulated joint probabilities. The objective of this paper is to compare the performance 

of methods on their ability to capture the underlying dependence structure, conditional probabilities in 

specific. In this section, we take a closer look at the conditional probabilities, specifically 𝑃(𝑍|𝑋, 𝑌). We 

calculated the Kullback-Leibler divergence and the total deviation of 𝑃(𝑍|𝑋, 𝑌) for the test distribution and 

the reconstructed ones.  

0.223 

0.496 

0.5 

0.118 

0.619 

0.04 

0.4 
0.32 

0.344 𝑃(𝑋 = −1) = 0.765 

0.1251 
0.107 

0.0377 

0.0542 
0.017 

0.025 

 0.00165 

0.0162 

0.022 

0.0063 
0.004 

0.0006 

0.0001 

𝑃(𝑋 = 0) = 0.765 

𝑃(𝑋 = 1) = 0.029 

𝑃(𝑌 = −1|𝑋 = −1) = 0.515 

𝑃(𝑌 = 0|𝑋 = −1) = 0.303 

𝑃(𝑌 = 1|𝑋 = −1) = 0.187 

𝑃(𝑌 = 0|𝑋 = 0) = 0.355 

𝑃(𝑌 = 1|𝑋 = 0) = 0.447 

𝑃(𝑌 = −1|𝑋 = 1) = 0.726 

𝑃(𝑌 = 0|𝑋 = 1) = 0.251 

𝑃(𝑌 = 1|𝑋 = 1) = 0.046 

𝑃(𝑌 = −1|𝑋 = 0) = 0.202 

0.1576 

0.079 
0.1141 

0.0717 

0.01399 

0.026 
0.03 

0.0452 
0.0232 

0.016 

0.0029 
0.0005 
0.0064 

0.0005 
0.453 
0.408 
0.138 

0.5059 
0.3009 
0.193 

0.0407 
0.068 
0.89 

0.361 
0.4147 

0.255 
0.248 

0.379 

0.34 

0.27 

0.162 

0.49 
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6.1 Simulation Results for Accuracy of 𝑷(𝒁|𝑿, 𝒀) 

We examine the divergence of conditional probabilities, between the approximated and simulated 

distribution, using Monte Carlo simulation explained in Section 3.2. We use three sampling methods 

described before in this paper. Then, for each sampling method, we reconstruct the joint probabilities with 

three mentioned method: the ME-PA, the ME-CC and the GC. We then calculate the conditional 

probabilities of 𝑃(𝑍|𝑋, 𝑌)  for each approximation and compare them with the simulated ones. It is 

important to note that 𝑃(𝑍|𝑋, 𝑌) comprised of  9 different probability distributions as there are 9 possible 

(𝑋 = 𝑖, 𝑌 = 𝑗) pairs for 𝑖, 𝑗 = −1,0,1. Therefore, reported values are much larger than previous reported 

values. Tables 4 and 5 summarize the simulation results for uniform and non-linear dependence sampling 

respectively. 

 The results reflect our expectation: the ME-PA performs better in reconstructing the conditional 

probabilities than the ME-CC and the GC in all the sampling methods. The divergence values are smaller 

for the ME-PA. It again shows the importance of providing more information, in the form of pairwise 

probabilities assessment, in approximating the joint probability distribution. Also the same observation can 

be seen here as in the previous sections: the GC method and the ME-CC method have similar performance 

with respect to divergence measures. We dropped the result for the case of independence sampling as all 

three methods are capturing the true conditional probabilities in this case. 

Table 4: Deviation measures for conditional probabilities, 𝑃(𝑍|𝑋, 𝑌), using uniform sampling. 

Divergence Measure 
GC vs. Simulated 

Distribution 

ME-CC vs. simulated 

Distribution 

ME-PA vs. Simulated 

Distribution 

K-L Divergence 

 

Average Deviation:   

3.112  

Standard Deviation: 

1.175 

Average Deviation: 

2.887 

Standard Deviation:  

1.107 

Average Divergence: 

1.661 

Standard Deviation: 

0.923 

Total Deviation 

 

Average Deviation:   

4.8565  

Standard Deviation: 

 0.8522 

Average  Deviation: 

4.632 

Standard Deviation: 

0.813 

Average  Deviation: 

3.268 

Standard Deviation: 

0.869 

Table 5: Deviation measures for conditional probabilities, 𝑃(𝑍|𝑋, 𝑌), using non-linear sampling. 

Divergence Measure 
GC vs. Simulated 

Distribution 

ME-CC vs. simulated 

Distribution 

ME-PA vs. Simulated 

Distribution 

K-L Divergence 

 

Average Deviation:   

3.58 

Standard Deviation: 

1.31 

Average Deviation: 

3.70 

Standard Deviation:  

1.36 

Average Divergence: 

0.67 

Standard Deviation: 

0.45 

Total Deviation 

 

Average Deviation:   

5.03 

Standard Deviation: 

 0.65 

Average  Deviation: 

5.06 

Standard Deviation: 

0.697 

Average  Deviation: 

1.72 

Standard Deviation: 

0.524 

7 CONCLUSIONS 

In this paper, we studied the performance of three common methods for reconstructing the joint probability 

distribution using partial information: the maximum entropy formulation with pairwise probability 

assessments (ME-PA), the Gaussian copula method (GC), and the maximum entropy formulation with 

pairwise correlation coefficients and marginal distributions (ME-CC) were the studied methods. We 

explored the approximations when different types of dependence structures were present. For the purpose 

of study, we assumed the case of three discrete random variables with three possible outcomes, {-1,0,1}.  
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As a recurring observation throughout our simulation, we noticed that both the ME-CC and the GC 

methods perform quite close to each other. One explanation can be that both method rely on the pairwise 

correlation coefficients and the marginal distributions in order to reconstruct the joint probability 

distributions. Although the dependence structure, imposed by the sampling methods, played an important 

role in the performance of each method, we demonstrated that ME-CC and the GC approximate the 

underlying joint probability distribution similarly in each sampling scenario. 

Also, we observed that the ME-PA performs better than both the GC and the ME-CC methods in 

reconstructing the joint probability distributions, with regard to defined divergence measures, in both the 

uniform sampling on simplex and the non-linear dependence structure scenarios. The reason the ME-PA 

performed better, lies within the fact that this method utilizes more information to reconstruct the joint 

probability distribution than both the ME-CC and the GC methods. It uses the experts assessment of the 

pairwise probabilities, which provides more information than the pairwise correlation coefficients. 

Although, providing more information by experts means spending more time and resource, but the results 

of this paper suggest that it might be a worthwhile effort in some cases. 

We also noticed that all three method perform very well with the case on independence structure than 

the uniform sampling and the non-linear dependence structure sampling. This was expected, as only 

information regarding the marginal distributions is needed to reconstruct the joint probability distribution 

when the underlying random variables are independent. 
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