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ABSTRACT

We study the use of robust optimization (RO) in approximating joint chance-constrained programs (CCP),
in situations where only limited data, or Monte Carlo samples, are available in inferring the underlying
probability distributions. We introduce a procedure to construct uncertainty set in the RO problem that
translates into provable statistical guarantees for the joint CCP. This procedure relies on learning the high
probability region of the data and controlling the region’s size via a reformulation as quantile estimation.
We show some encouraging numerical results.

1 INTRODUCTION

Consider a joint chance-constrained program (CCP)

min f (x)
subject to P(g(x;ξ ) ∈A )≥ 1−α

(1)

where x ∈ Rm is the decision variable, ξ ∈ Rd is some random variable under the probability measure P,
and g(x;ξ ) : Rm×Rd → Ω with A ∈ Ω. CCPs arise in many different application areas, e.g., reservoir
system design (Prékopa 1978), cash matching (Dentcheva 2004) and wireless cooperative network (Shi
et al. 2015). They were first proposed by Charnes et al. (1958), Miller and Wagner (1965) and Prékopa
(1970), and have been studied extensively in the stochastic programming literature (see Prékopa (2003) for
a thorough introduction).

We are primarily interested in situations where P is unknown but limited data are available. As known
in the CCP literature (Prékipa 2003), directly solving (1) is difficult unless in few restrictive conditions. In
the case of limited data (or Monte Carlo samples), the problem becomes even more challenging. Existing
approach includes scenario generation (SG) (Calafiore and Campi 2005, 2006), mixed integer programming
(MIP) (Luedtke et al. 2007), and sequential convex approximation (SCA) (Hong et al. 2011). The SG
approach requires a specific sample size to satisfy the chance constraint and does not provide the flexibility
if the sample size differs from the number. The MIP approach is computationally challenging and it can
hardly solve problems with more than a few hundred samples. The SCA approach converges to a KKT
point of (1) only asymptotically and it does not provide any finite-sample statistical guarantee.

In this paper, we explore the use of robust optimization (RO) to approximate (1), namely

min f (x)
subject to g(x;ξ ) ∈A for all ξ ∈U

(2)

By choosing U such that P(ξ ∈U )≥ 1−α , the feasible region of (2) is subsisted by (1), and hence the
optimal solution from (2) is feasible for (1). Moreover, with a suitably selected shape of U , (2) can be
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reformulated into a tractable optimization program, and thus provides a tractable upper approximation for
(1).

The idea of using RO to approximate CCP has been suggested in the RO literature (see, for instance,
the monograph of Ben-Tal et al. (2009)). In this literature, the size of the uncertainty set U is commonly
calibrated via the use of concentration bounds that take into account information of the random object ξ

(e.g., support, mean, variance etc.), which is often loose in practice. Our goal is to study a new approach for
constructing U in a way that can ensure a prescribed level of statistical guarantees, and moreover follows
closely the geometry of the data, thus resulting in tight upper approximation. As our analysis reveals, our
approach tends to require much less samples than SG in achieving a similar level of statistical accuracy,
and shows competitive numerical performance regarding optimality.

2 TWO-PHASE PROCEDURE IN CONSTRUCTING UNCERTAINTY SETS

We introduce our procedure to construct U . We assume a given i.i.d. data set D = {ξ1, . . . ,ξn}, where
ξi ∈ Rd are sampled under P. Our basic requirement is that U = U (D) is a 1−α prediction set for P,
with a prescribed level of confidence 1−β . In other words,

PD(P(ξ ∈U (D))≥ 1−α))≥ 1−β (3)

where PD(·) is the probability taken with respect to the data D. This basic requirement clearly translates
to the implication that the optimal solution of (2) is feasible for (1) with confidence 1−β .

Note that (3) only focuses on feasibility guarantee for (1), and the resulting solution, even though
feasible, can be very conservative. This issue can be alleviated via judiciously choosing U in two aspects:
1) We prefer U such that P(ξ ∈U (D)) is close to, not just larger than, 1−α with high confidence. 2)
We prefer U that has smaller volume. Note that this leads to a larger feasible region in (2), which in turn
results in a less conservative approximation to (1). Also note that, with a fixed α , a small U means a U
that contains a high probability region of ξ .

The above discussion motivates us to propose a two-phase strategy in constructing U . We first split
the data D into two groups, denoted D1 and D2, with sizes n1 and n2 respectively. Say D1 = {ξ 1

1 , . . . ,ξ
1
n1
}

and D2 = {ξ 2
1 , . . . ,ξ

2
n2
}. These two data groups are used in the following two phases:

Phase 1 We use D1 to calibrate the shape of the high probability region with tractable geometric tools.
Two common choices are:

1. Ellipsoid: Take the sample mean µ of D1 and some covariance matrix Σ, e.g., the sample covariance
matrix, diagonalized covariance matrix, or identity matrix. Set the shape as (ξ −µ)′Σ−1(ξ −µ)≤ ρ

for some ρ > 0.
2. Polytope: Form a convex hull of the data in D1, or alternately, a convex hull of the data that leaves out
bn1αc of D1 that are in the “periphery”, e.g. having the smallest Tukey depth (e.g., Serfling (2002)
and Hallin et al. (2010)). This results in a polytope represented by S = {ξ : a′iξ ≤ bi, i = 1, . . . ,m}
where ai ∈ Rd and bi ∈ R.

Phase 2 We use D2 to calibrate the size of the uncertainty set so that it satisfies (3) and moreover
P(ξ ∈U (D))≈ 1−α with high confidence. To do so, we first express our geometric shape calibrated in
Phase 1 in the form {ξ : t(ξ )≤ s}, where t(·) : Rd → R is a transformation mapping from the space of ξ

to R, and s ∈ R. For the two geometric shapes we have considered above,

1. Ellipsoid: We set t(ξ ) = (ξ −µ)′Σ−1(ξ −µ).
2. Polytope: Find a point (e.g. the Chebyshev center (Boyd and Vandenberghe 2004)), say µ , in S ◦,

the interior of S . Let

t(ξ ) = max
i=1,...,m

a′i(ξ −µ)

bi−a′iµ
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which is well-defined since µ ∈S ◦. Note that {ξ : t(ξ )≤ 1} is equivalent to S defined above.

Our key step is to choose the value of s in the representation {ξ : t(ξ ) ≤ s}. We use the following
lemma:
Lemma 1 Let Y1, . . . ,Yn be i.i.d. continuous data in R. Let Y(1) <Y(2) < · · ·<Y(n) be the ordered statistics.
A 1−β confidence upper bound for the γ-quantile of the underlying distribution is Y(r∗), where

r∗ = min

{
r :

r−1

∑
k=0

(
n
k

)
γ

k(1− γ)n−k ≥ 1−β

}

If ∑
n−1
k=0

(n
k

)
γk(1− γ)n−k < 1−β , then none of the Y(r)’s is a valid confidence upper bound.

Similarly, a 1−β confidence lower bound for the γ-quantile of the underlying distribution is Y(r∗),
where

r∗ = max

{
r :

n

∑
k=r

(
n
k

)
γ

k(1− γ)n−k ≥ 1−β

}
If ∑

n
k=1
(n

k

)
γk(1− γ)n−k < 1−β , then none of the Y(r)’s is a valid confidence lower bound.

Proof. Let qγ be the γ-quantile. Consider

P(Y(r) ≥ qγ) = P(≤ r−1 of the data {Y1, . . . ,Yn} are < qγ)

=
r−1

∑
k=0

(
n
k

)
F(qγ)

kF̄(qγ)
n−k

=
r−1

∑
k=0

(
n
k

)
γ

k(1− γ)n−k

by the definition of qγ . Hence any r such that ∑
r−1
k=0

(n
k

)
γk(1− γ)n−k ≥ 1−β is a 1−β confidence upper

bound for qγ , and we pick the smallest one. Note that if ∑
r−1
k=0

(n
k

)
γk(1− γ)n−k < 1−β for all r, then none

of the Y(r) is a valid confidence upper bound.
Similarly, we have

P(Y(r) ≤ xp) = P(≥ r of the data {Y1, . . . ,Yn} are ≤ qγ)

=
n

∑
k=r

(
n
k

)
F(qγ)

kF̄(qγ)
n−k

=
n

∑
k=r

(
n
k

)
γ

k(1− γ)n−k

by the definition of qγ . Hence any r such that ∑
n
k=r
(n

k

)
γk(1− γ)n−k ≥ 1−β will be a 1−β confidence

lower bound for qγ , and we pick the largest one. Note that if ∑
n
k=r
(n

k

)
γk(1− γ)n−k < 1−β for all r, then

none of the Y(r) is a valid confidence lower bound.

Using Lemma 1, with t(·) defined using D1, we consider the one-dimensional transformed Phase 2
data t(ξ 2

1 ), . . . , t(ξ
2
n2
). Order them as t(ξ 2

(1))< · · ·< t(ξ 2
(n2)

). Set s = t(ξ 2
(r∗)), where

r∗ = min

{
r :

r−1

∑
k=0

(
n
k

)
(1−α)k

α
n−k ≥ 1−β

}
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The set U = {ξ : t(ξ )≤ s} now satisfies (3).
Note that Lemma 1 indicates that n2 need to satisfy ∑

n2−1
k=0

(n2
k

)
γk(1−γ)n2−k ≥ 1−β , otherwise no valid

confidence upper bound would exist. The choice of s above is the smallest among all ordered statistics
t(ξ 2

(r)) that can provide the guarantee (3). It makes PD(P(ξ ∈U )≈ 1−α)≥ 1−β when n2 is large. For
any finite sample, this choice of s can be complemented by the number t(ξ 2

(r∗)
) with

r∗ = max

{
r :

n

∑
k=r

(
n
k

)
(1−α)k

α
n−k ≥ 1−β

}

which, according to Lemma 1 again, provides a lower bound on the size of the uncertainty set in covering
1−α portion of ξ with confidence 1−β .

3 VISUALIZATION OF UNCERTAINTY SETS

We have mentioned two choices of uncertainty sets, ellipsoidal and polyhedral. This section visualizes their
coverage on the data and also shows some numerical performance. Note that the shape of the uncertainty
set does not affect the statistical validity enforced by (3). However, choosing an appropriate shape provides
a better solution in terms of optimization. Moreover, it could avoid some computation issues, such as
encountering singular covariance matrices.

Throughout this section we consider ξ generated from a bivariate normal distribution with mean
µ = [1,2] and covariance Σ = [2.5,0.5;0.5,1]. We use a sample size N = 300, and use n1 = 150 and
n2 = 150 for Phases I and II. The chance constraint parameter and the confidence level is α = 0.05 and
β = 0.05 respectively.

For each experiment that corresponds to a specific geometric shape, we generate 1,000 different
data sets of size N, and uses our uncertainty set generation procedure to get 1,000 U ’s. To assess the
coverage of each U , we independently generate 10,000 data points from the same distribution to estimate
α̃ = P̂(ξ /∈U ). We then estimate the mean set prediction probability α̂ as the average of all 1,000 α̃’s,
and β̂ = P̂(α̃ > α) as the number of times from the 1,000 replications where α̃ > α . We mention that
the quantity PD(P(ξ ∈ U (D)) ≥ 1−α) guaranteed by our procedure, which we denote as βtheoretical , is
actually explicitly known and is equal to 0.0182 for α = 0.05 and n2 = 150. This calculation will be
elaborated in the next section, and the bottom line here is that the uncertainty set we construct should have
β̂ approximately equal to 0.0182.

3.1 Ellipsoidal Uncertainty Set

3.1.1 General Ellipsoidal Uncertainty Set

A general ellipsoidal set (ξ − µ)′Σ−1(ξ − µ) is constructed by putting µ as the sample mean and Σ as
the sample covariance of D1. Figure 1 shows a general ellipsoidal set constructed from our two-phase
procedure applied on one realization of 300 data points. Our set seems to cover the high density region of
the data very well, which is not surprising since the data set comes from a normal distribution. For this
particular data set, α̃ = 0.0348, with a corresponding 95% confidence interval (CI) [0.0312,0.0384]. This
means that over approximately 96% of the data are covered in the ellipsoidal set we constructed.

Note that the α̃ above is for only one data set realization and is therefore subject to statistical fluctuation.
More meaningful estimates are the averages across 1,000 different realizations of data sets. From these we
get α̂ = 0.0202, and β̂ = 0.0200 with 95% CI [0.0112,0.0288]. Notice that β̂ is close to βtheoretical = 0.0182,
which supports the validity of our algorithm.
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Figure 1: Ellipsoid uncertainty set. Figure 2: Ball uncertainty set.

Figure 3: α̂ of three types of uncertainty
set for 20 replications.

3.1.2 Ball Uncertainty Set

When sample size is small, constructing a general ellipsoidal set might cause computation difficulty since
the estimated covariance matrix could be singular. In this case, we can replace the estimated covariance
matrix Σ by an identity matrix. This gives us a ball uncertainty set. In other words, the construction of a
ball only needs to estimate the center of the ball, which is taken to be the sample mean.

The downside of using a ball is also obvious. Since less parameters are included, the uncertainty set
could not represent the high probability region of the data as well as the general ellipsoid. This is observed
in Figure 2, where the constructed ball is much larger than the general ellipsoid and covers some area
where not many data points are located at.

From 1,000 replications, we obtain α̂ = 0.0201 and β̂ = 0.0230 with 95% CI [0.0136,0.0324]. Note
that these numbers are similar to those of the general ellipsoidal set. This confirms the theoretical ground
discussed before that the shape of the uncertainty set does not affect its statistical validity. The similar
performances between general ellipsoids and balls could also be observed from Figure 3, which shows no
significant pattern of differences in the value of α̃ across 20 different data sets.

3.1.3 Scaled Ball Uncertainty Set

Scaled ball is a compromise between general ellipsoid and ball. It reduces the data size requirement for
Phase I compared to general ellipsoid, while providing a richer shape than ball. For a d dimensional
problem, the number of estimator reduces from d(d +1)/2 to d. A scaled ball is an ellipsoid with center
set as the sample mean, and its covariance matrix is set as a diagonal matrix where each diagonal entry is
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Figure 4: Scaled ball uncertainty set. Figure 5: Polytope uncertainty set.

the sample variance of each dimension of the data. From a statistical perspective, using such a covariance
matrix is equivalent to assuming that different dimensions of the data are independent. It can also be viewed
as applying the ball set on the data standardized by the marginal variances. These two approaches lead to
the same result.

For the scaled ball in Figure 4, we have α̃ = 0.0091 with 95% CI [0.0072,0.0110]. This value is
rather small compared with the general ellipsoid and the ball we used before, indicating that the scaled
ball we constructed covers more data than needed. But again, this is only for one data realization. The
overall performance across 1,000 replications, measured by α̂ = 0.0201 and β̂ = 0.0160 with 95% CI
[0.0081,0.0239], is similar to the general ellipsoid and the ball used before. The similar performance is
also confirmed by Figure 3, which shows the value of α̃ across 20 replications for all three types of sets.

Although scaled ball provides a richer model than ball, the performance of these two types of sets still
depend largely on the problems to solve. For example, if the marginal variances of different dimensions
are similar and the data set is not large, it is possible that ball has a better fit than scaled ball. The selection
of uncertainty set geometry should be based on data exploration.

3.2 Polytope Uncertainty Set

Constructing a polytope using the convex hull of data set can be computationally intense for high-dimensional
data. In an example we have tried with 10 dimensions(not shown here), the number of constraints for a
single polytope set was 2,450,072. Comparing the tractability of RO reformulation (will be discussed more
shortly), polytope is more tractable for single constraint but is less tractable than ellipsoid for multiple
constraint problems.

Figure 5 shows the shape of a polytope set, whose size and coverage look similar to those of a general
ellipsoidal set. The polytope in the figure has α̃ = 0.0388 with 95% CI [0.0350,0.0426]. Over 1,000
replications, we get α̂ = 0.0204 and β̂ = 0.0190 with 95% CI [0.0105,0.0275]. These statistics are similar
to those of the ellipsoidal sets.

4 TRACTABILITY OF UNCERTAINTY SETS

In this section, we present some tractability results in implementing the RO. We first focus on a single
linear chance constraint, whose RO relaxation is a robust linear program. In this case, both ellipsoidal and
polytope uncertainty sets can be reformulated into tractable optimization problems.
Theorem 1 (Ben-Tal and Nemrovski 1999). Given c ∈ Rd and b ∈ R, the RO

min c′x
subject to a′x≤ b ∀a ∈U

(4)
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where U = {a = ā+∆u : ‖u‖2 ≤ ρ} for some fixed ā ∈Rd , ∆ ∈Rd×d , ρ ∈R, for u ∈Rd , is equivalent to

min c′x
subject to a′x+ρ‖∆x‖2 ≤ b.

Following our previous notation, ξ = a is the random object, ρ =
√

s ∈ R and ∆ =
√

Σ ∈ Rd×d for an
ellipsoid (ξ − ā)′Σ−1(ξ − ā)≤ s. As discussed in Section 3.1, the matrix Σ can be the sample covariance
matrix, diagonized covariance, or the identity matrix.

On the other hand, we have
Theorem 2 (Bertsimas et al. 2011). Given c ∈Rd and b ∈R, the RO in (4) where U = {a ∈Rd : Da≤ e}
for fixed D ∈ Rl×d , e ∈ Rl is equivalent to

min c′x
subject to p′e≤ b

p′D = x
p≥ 0.

where x ∈ Rd and p ∈ Rl are the decision variables.
For multiple linear joint chance constraints with dependence among the constraints, only ellipsoidal

set is tractable. More precisely, for a robust linear constraint Ax ≤ b with uncertain A ∈ Rl×d , we can
construct an ellipsoidal set on the vectorization of the matrix A.
Theorem 3 (Bertsimas et al. 2004). Given c ∈ Rd and b ∈ Rl , the RO

min c′x
subject to Ax≤ b ∀A ∈U

where
U = {A : ‖M(vec(A)− vec(Ā))‖2 ≤ ρ},

for fixed Ā ∈ Rl×d , M ∈ Rld , ρ ∈ R, and vec(A) as the vectorization of A, is equivalent to

min c′x
subject to Ā′ix+ρ‖(M′)−1xi‖2 ≤ bi, i = 1, ...,m,

where Āi ∈Rd is the i-th row of Ā, and xi ∈R(ld)×1 contains x ∈Rd in entries (i−1)d+1 through id and
0 elsewhere.

5 STRATEGY FOR SPLITTING DATA

This section presents some comparison of numerical performances among different data sizes for Phases
I and II. As we have discussed previously, Phase I data are used to calibrate the shape of the uncertainty
set, and its geometric type and the sample size at this phase affects the optimality level of the RO in
approximating the CCP.

Using our previous notation, the random object ξ is a random matrix A in this case.
The joint CCP we consider in this section is linear with 11 variables and 15 constraints:

min c′x
subject to P(Ax≤ b)≥ 1−α

x≥ 0
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where A∈Rl×d is a random matrix generated using vec(A)∼N (vec(Ā),Σ), with Σ created by multiplying
a random matrix by its own transpose, and

Ā =



14 18 15 14 14 10 15 18 26 15 34
98 24 14 14 14 0 0 30 0 0 0
40 4 14 14 14 0 40 0 30 0 0
28 6 13 14 15 55 0 20 0 20 0
22 4 13 15 12 0 55 0 0 50 0
22 4 13 13 12 0 0 55 0 0 0
22 6 13 13 12 0 10 0 55 0 0
26 58 15 15 12 0 0 10 0 55 0
6 40 13 0 0 0 0 0 30 0 55
6 12 13 13 26 0 0 0 0 0 0
6 18 12 12 12 0 20 0 0 10 0
6 18 15 14 14 0 0 0 10 0 0
16 0 0 12 35 50 50 0 0 0 0
20 0 10 36 50 0 0 50 50 0 0
16 0 0 12 35 0 10 0 0 50 50



b =



5200
4150
3550
3450
1600
950
3800
3950
2700
2300
3100
4200
5200
5200
3600



c =



−139
−88
−133
−137
−165
−80
−120
−150
−100
−150
−110



.

Even though this is a specific example, its numerical results will provide some general insights. As in
Section 3, we perform 1,000 replications for each setting. For each replication, we compute α̃ = P̂(A /∈U )
from 10,000 independently generated data points to approximate the coverage of U . We output the sample
mean and standard deviation of α̃ across 1,000 replications, and also β̂ = P̂(α̂ > α) as an estimate of the
confidence level. In addition, we also look at the mean and standard deviation of the optimal values (o.v.)
across these replications.

5.1 Phase I Data

We first investigate the effect of sample size in Phase I. Fixing n2 = 554 and using different values for n1,
we run our experiments using ball and general ellipsoid. The results are in Table 1.

Table 1: Optimality performances when fixing n2 and changing n1.

n2=554
Ball n1 o.v. mean o.v. std

15 -2720.9 147.0181
200 -2782.6 99.1025
500 -2786.4 102.4721

Ellipsoid n1 o.v. mean o.v. std
200 -1108.5 69.5881
500 -2488.9 79.0381
4000 -2788.7 98.4885

Note that using ball sets gives much better performances than general ellipsoids in the case of small
sample. General ellipsoids only catch up the performance of balls for n1 = 15 when n1 is large as 4000.
This can be explained by the fact that constructing a ball only requires estimating its center, whereas
constructing a general ellipsoid requires additionally estimating a covariance matrix, which has a lot more
parameters. With small sample, estimation of the covariance matrix tends to be poor, thus downgrading
the capability of the ellipsoid to cover a high probability region of the distribution. On the other hand,
however, the room for improvement is not significant for a ball as we increase n1, as shown by the similar
o.v. means for n1 = 200 and 500. This is because ball is a simple geometry that is parametrized by only
few parameters.
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5.2 Phase II Data

We investigate the effect of sample size in Phase II. Note that for a given n2, we can compute, using the
argument in Lemma 1,

βtheoretical = PD(P(A ∈U )≥ 1−α) = 1−
r∗−1

∑
k=0

(
n
k

)
(1−α)k

α
n−k

which represents the theoretical confidence level in using our procedure. Figures 6 and 7 illustrate how
βtheoretical changes with n2.

Figure 6: βtheoretical against n2 when β =
0.05 and α = 0.05.

Figure 7: βtheoretical against n2 when β =
0.01 and α = 0.01.

Note that βtheoretical is not strictly increasing with n2. In the case β = 0.05 and α = 0.05, local maximum
of βtheoretical occurs at n2 =59, 93, 124 ,153, 181... In theory, these are the preferred values of n2. Table 2
shows how n2 affects the optimal solution, with fixed n1 = 500.

Table 2: Optimality and feasibility performances when fixing n1 and changing n2.

n1=500
n2 β̂ βtheoretical mean of α̃ std of α̃ o.v. mean o.v. std
59 0.039 0.0485 0.0159 0.0155 -2402.3 101.0091
124 0.047 0.0495 0.0241 0.0137 -2446.1 86.4363
312 0.043 0.0484 0.0319 0.0097 -2475.5 83.135
553 0.037 0.0312 0.0343 0.0079 -2481 81.2055
554 0.057 0.0491 0.0362 0.0083 -2488.9 79.0381
555 0.05 0.0482 0.0361 0.0078 -2487.4 81.2099

As n2 increases, α̃ has a trend to go closer to 0.05, which leads to a better solution. However, if we
compare the last 3 rows, we observe that the local maximum of βtheoretical (i.e., n2 = 554) we mentioned
above gives better results both on the mean of α̃ and the optimal value.

5.3 Balance of Two Phases

We now fix the total sample size N and investigate the balance between n1 and n2. We first set N = 500,
and use ball sets. Table 3 shows our performances using different partitions of n1 and n2.

Since only few parameters in the center needs to be estimated in Phase I, the importance of n2 dominates
n1 in this case. It appears that n1 = 66 and n2 = 434 gives the best solution among all.

We next increase N to 5,000, and use general ellipsoidal sets. Table 4 shows that generally more
n1 is preferable, which coincides with our intuition that more data now supports better shape estimation
and hence better solutions. As a comparison, using a ball set with n1 = 500 and n2 = 4500 only gives an
optimal solution with mean value -2.90E+03.
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Table 3: N = 500 using ball set.

n1 n2 β̂ βtheoretical mean of α̃ std of α̃ o.v. mean o.v. std
400 100 0.033 0.0371 0.0189 0.013 -2.49E+03 237.699
375 125 0.068 0.0478 0.0248 0.0144 -2.60E+03 220.9415
240 260 0.055 0.0499 0.0309 0.0105 -2.71E+03 143.3216
164 336 0.048 0.0487 0.0326 0.01 -2.73E+03 131.694
66 434 0.055 0.0488 0.0345 0.0091 -2.75E+03 119.9492
18 482 0.059 0.0488 0.0356 0.0088 -2.73E+03 134.5421

Table 4: N = 5,000 using general ellipsoid set.

n1 n2 β̂ βtheoretical mean of α̃ std of α̃ o.v. mean o.v. std
4740 260 0.051 0.0499 0.03 0.0108 -3.03E+03 39.9961
4000 1000 0.054 0.0433 0.0389 0.0067 -3.04E+03 35.8851
3000 2000 0.058 0.0423 0.0418 0.0049 -3.02E+03 39.4966
2000 3000 0.066 0.0488 0.0436 0.0043 -2.98E+03 48.1733

6 COMPARISON WITH SCENARIO GENERATION APPROACH

In this section we further illustrate the strength of our approach under a small dataset. We use a linear
programming problem that has only a single chance constraint and d decision variables. We use a single
chance constraint because the optimal solution and the left-hand side of the constraint for any solution can
be evaluated easily. This makes it convenient to compare the performance of our approach and the scenario
generation (SG) approach of Calafiore and Campi (2005). In addition, we also compare the performance
of different types of uncertainty sets used in our approach.

We assume that there are only N = 120 data points and the problem is

min c′x
subject to P(a′x≤ b)≥ 1−α

where a∼N (ā,Σ), Σ is created by multiplying a random matrix by its own transpose, and c is set initially
by randomly generated as ci = 20(1+ εi), where εi ∼ N(0,1) and a =−c, b = 1200. In addition, we set
α = β = 0.05, and we split the data equally between the first and second phases, i.e., n1 = n2 = 60.

We consider three instances of the problem, each with a different dimension d, i.e., d = 11,50,100,
and for each instance, we use independently generated data to solve the problem 1,000 times. We use the
average and standard deviation of the optimal value as the measure of the “optimal level” of each algorithm.
We then compute the left-hand side of the chance constraint at the obtained solution xu, i.e., α̃ = P(a′xu > b)
(note that this definition of α̃ is different from in Sections 3 and 5, and captures the conservativeness
relative to the solution), and estimate the constraint violation probability, i.e., β̃ = PD(α̃ > α). Note that,
by the definitions of α and β , we expect α̃ ≤ α and β̃ ≤ β for our approach. We also compute α̃ and β̃ of
the SG approach with the given dataset to see whether they satisfy α̃ ≤ α and β̃ ≤ β . For each instance,
we run our approach 1,000 times, each with an independently generated dataset, and report the estimated
mean and standard deviation of the optimal values (o.v.), the estimated mean and standard deviations of
α̃ , and the estimated β̃ and its 95% lower and upper confidence bounds in corresponding tables (Tables
5, 6 and 7 correspond to the instances d = 11, 50 and 100).

We first consider the instance where d = 11, the true optimal value of the problem is −1196.7, and the
results are reported in Table 5. Because the sample size is not sufficient for the SG approach to deliver the
desired α and β levels, we observe that its average α̃ is above α = 0.05 and its solution violates the chance
constraint with a high probability β̃ . Among the three types of uncertainty sets used in our approach, the
ellipsoidal set has the best performance, while the scaled ball and ball sets are more conservative. As well
known in the literature, RO approach gives conservative solutions. This also appears in our results, as both
α̃ and β̃ are close to zero, indicating a high level of conservativeness.
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Table 5: The instance with d = 11.
SG ellipsoid scaled ball ball

o.v. mean -1196.60 -1189.30 -946.25 -934.12
o.v. std 0.465 1.456 31.918 31.031
α̃ mean 0.0924 1.27E-05 1.85E-04 1.68E-04
α̃ std 0.0277 4.58E-05 5.90E-04 5.49E-04
β̃ 0.9620 0 0 0
β̃ CI lower 0.9500 0 0 0
β̃ CI upper 0.9740 0 0 0

Table 6: The instance with d = 50.
SG ellipsoid scaled ball ball

o.v. mean -1197.90 -1152.05 -924.31 -922.93
o.v. std 0.695 12.847 13.485 12.510
α̃ mean 0.4108 1.18E-04 5.07E-17 3.87E-17
α̃ std 0.0402 5.46E-04 7.19E-16 7.02E-16
β̃ 1.0000 0 0 0
β̃ CI lower 1.0000 0 0 0
β̃ CI upper 1.0000 0 0 0

Table 7: The instance with d = 100.
SG scaled ball ball

o.v. mean - -831.50 -828.15
o.v. std - 11.582 11.253
α̃ mean - 0 0
α̃ std - 0 0
β̃ - 0 0
β̃ CI lower - 0 0
β̃ CI upper - 0 0

We now increase d to 50, and the true optimal value is −1195.01. Among the 1,000 replications of
the experiments, SG approach detects that its sample problem is unbounded for 28 times. Even though we
eliminate those unbounded cases in the results reported in Table 6, the solution given by SG still violates the
chance constraint in every replications, i.e., β̃ = 1. In the meanwhile, the solutions found by our approach
satisfy the constraint and the performance is similar to the instance of d = 11.

When d = 100, the true optimal value is −1196.32. For this instance, SG approach encounters
unbounded sample problems in all 1,000 replications. Therefore, we have no results to report in Table 7
for SG approach. Because the dimension is too large for 60 Phase I data to give a valid estimate of the
covariance matrix, we only apply the scaled ball and ball sets in our approach. Again, our approach finds
solutions that satisfy the constraint but are conservative.
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Prékopa, A. 1970. “On probabilistic constrained programming”. Proceedings of the Princeton Symposium
on Mathematical Programming, 113-138.
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