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ABSTRACT

A method to produce new families of probability distributions is presented based on the incomplete gamma
function ratio. The distributions distributions produced also can include a number of popular univariate
survival distributions, including the gamma, chi-square, exponential, and half-normal. Examples that
demonstrate the generation of new distributions are provided.

1 INTRODUCTION

The gamma function

Γ(α) =
∫ ∞

0
e−ttα−1 dt

for α > 0 is a generalization of the factorial function that is prevalent in probability and statistics. When
the lower limit of the integral is replaced by x, the resulting function is defined as the incomplete gamma
function

Γ(α,x) =
∫ ∞

x
e−ttα−1 dt

for α > 0 and x > 0. The incomplete gamma ratio

Γ(α,x)
Γ(α)

for α > 0 and x > 0 is bounded below at 0 and bounded above at 1, as the numerator is always smaller than
the denominator. Let g(x) be a monotonic and increasing function that assumes nonnegative values on the
interval (0,∞). Furthermore, assume that limx→0+ g(x) = 0 and limx→∞ g(x) = ∞. Likewise, let r(x) be a
monotonic and decreasing function that assumes nonnegative values on the interval (0,∞). Furthermore, let
g and r be differentiable on the interval (0,∞). Also, assume that limx→0+ r(x) = ∞ and limx→∞ r(x) = 0. A
family of survival distributions for a random variable X is generated with cumulative distribution functions

F(x) = 1− Γ(α,g(x))
Γ(α)

x > 0 (1)
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for any α > 0, and

F(x) =
Γ(α,r(x))

Γ(α)
x > 0

for any α > 0. The conditions on g(x) and r(x) ensure that F(x) will be a monotonically increasing function
with F(0) = 0 and limx→∞ F(x) = 1.

The probability density function for this family when g(x) is specified is found by differentiating the
cumulative distribution function:

f (x) = F ′(x) =
d
dx

(
1−

∫ ∞

g(x)
e−ttα−1dt

)/
Γ(α)

which by the chain rule of differentiation reduces to

f (x) = e−g(x)g(x)α−1g′(x)
/

Γ(α) x > 0

for α > 0. When r(x) is specified, the probability density function is found as

f (x) = F ′(x) =
d
dx

(∫ ∞

r(x)
e−ttα−1dt

)/
Γ(α)

which reduces to

f (x) =−e−r(x)r(x)α−1r′(x)
/

Γ(α) x > 0

for α > 0.
This method of creating new distribution functions from this ratio of gamma functions has a very nice

graphical representation. The integrand of the gamma function b(x) = e−xxα−1 can be considered the base
function of the ratio. It is a positive function and has finite area underneath it on the interval (0,∞). Thus
the denominator of (1) is the entire area under b(x). The numerator is the right tailed area under b(x) on
the interval (g(x), ∞). Clearly the ratio of (1) is bounded between 0 and 1, thus it represents the probability
from a survivor function of a random variable. Figure 1 shows this relationship where the shaded area
represents a portion of the entire area under the base, b(x).

b(x)

g(x)

| x

Figure 1: The base function has finite area underneath it and the shaded area represents the portion of that

area to the right of g(x).
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A number of popular lifetime distributions can be derived using probability density functions of this
form. Table 1 shows the appropriate g(x) or r(x) functions and α values associated with a number of
popular density functions, many of which are defined in Meeker and Escobar (1998). In the table and the
analysis and examples that follow, let n be a positive integer and let α,λ ,κ , and σ be positive parameters.

Table 1: Parametric special cases.

Distribution g(x) or r(x) α f (x)
exponential g(x) = λx α = 1 λe−λx

Weibull g(x) = (λx)κ α = 1 λ κxκ−1κ e−(λx)κ

Rayleigh g(x) = (λx)2 α = 1 2λ 2xe−(λx)2

Lomax g(x) = ln((λx+1)κ) α = 1 λκ/(1+λx)κ+1

Muth g(x) = (1/λ )eλx −λx−1/λ α = 1 (eλx −λ )e−(1/λ )eλx+λx+1/λ

half-normal g(x) = x2/(2σ2) α = 1/2
√

2e−x2/(2σ2)
/(

σ
√

π
)

chi-square g(x) = x/2 α = n/2 2−n/2xn/2−1e−x/2
/

Γ(n/2)

Erlang g(x) = x/λ α = n xn−1e−x/λ/(λ n(n−1)!)

gamma g(x) = x/λ — λ−αxα−1e−x/λ
/

Γ(α)

generalized gamma g(x) = (x/λ )κ — κλ−καxκα−1e−(x/λ )κ
/

Γ(α)

inverse gamma r(x) = (λx)−1 — λ−αx−α−1e−1/(λx)
/

Γ(α)

While this paper primarily is concerned with a base function b(x) that is the gamma function, any
positive function with finite area underneath it would serve as a proper b(x) to use this method to create
new distributions. In the special case where the base function b(x) is a probability distribution function of
a continuous random variable B, then Figure 1 gives us a graphical depiction of the probability statement
P(B > g(X)). Further, since P(B > g(X)) = P(g−1(B)> X) or P(X < g−1(B)), one can see the relationship
of B and X as the inverse of a transformation of an input random variable, i.e., X = g−1(B). Transformations
are studied in great detail in many mathematical statistics books, see Hogg et al, (2013) and Casella and
Berger (2008) for examples. Because the base functions are not limited to probability distribution functions
of random variables, this method a superset of univariate transformations. The method also provides a
graphical explanation of such operations.

2 ANALYSIS

The chosen function g(x) or r(x) is related to the hazard function of the resulting distribution. Let f (x),
F(x), S(x), and h(x) = f (x)/S(x) be the population probability density function, cumulative distribution
function, survivor function, and hazard function respectively. These three results follow.

Result 1. Let the random variable X have probability density function as defined above for a specified g(x)
and α = 1. Then the hazard function h(x) = g′(x), for x > 0, which implies the g(x) is the cumulative
hazard function for the distribution.
Proof. The hazard function of X is

h(x) =
f (x)
S(x)

=
f (x)

1−F(x)
=

e−g(x)g′(x)
Γ(1,g(x))

=
e−g(x)g′(x)∫ ∞

g(x) e−tdt
=

e−g(x)g′(x)
e−g(x)

= g′(x)

for x > 0. �

Result 2. Let the random variable X have probability density function as defined above for a specified r(x)
and α = 1. Then the hazard function h(x) =−r′(x)/(er(x)−1), for x > 0.
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Proof The hazard function of X is

h(x) =
f (x)

1−F(x)
=

−e−r(x)r′(x)
1−Γ(1,r(x))

=
−e−r(x)r′(x)

1− ∫ ∞
r(x) e−tdt

=
−e−r(x)r′(x)

1− e−r(x)
=

−r′(x)
er(x)−1

for x > 0. �

Comparing the well-known distributions in Table 1 to their hazard functions confirms these results.
For example, the exponential distribution has a constant hazard rate h(x) = λ for x > 0. The Weibull
distribution has a hazard rate λ κκxκ−1 for x > 0. It is well-known that the Weibull distribution has an
increasing failure rate when κ > 1 and a decreasing failure rate when κ < 1. This can be seen from the
corresponding function g(x) = (λx)κ . When κ > 1, g′(x) will be a monotonically increasing function.

These results tell us that a distribution specified by g(x) and α = 1 will have an increasing failure rate
if g′′(x) > 0 for all x > 0. The distribution will have a decreasing failure rate if g′′(x) < 0 for all x > 0.
Although the result in the r(x) case is less tractable, similar conclusions can be made.

Next we consider taking transformations of random variables in this family. We will show that the
proposed family of distributions is closed under certain 1–1 transformations. The following result holds in
the case where g(x) is specified.

Result 3. Let the random variable X have probability density function as defined above for a specified g(x)
and unspecified α . If Y = φ(X) is a 1–1 transformation from {x |x > 0} to {y |y > 0}, then the probability
density function of Y is in the same family.
Proof. Let the random variable X have probability density function

fX(x) = e−g(x)g(x)α−1g′(x)
/

Γ(α) x > 0,

for α > 0 and g(x) for which the properties in Section 1 hold. Consider first the case of Y = φ(X)
monotonically increasing. So Y = φ(X) is a 1–1 transformation from {x |x > 0} to {y |y > 0} with inverse

X = φ−1(Y )

and Jacobian

J =
dX
dY

=
d

dY
φ−1(Y ).

By the transformation technique, the probability density function of Y is

fY (y) = fX
(
φ−1(y)

) · J
=

e−g(φ−1(y))g(φ−1(y))α−1g′(φ−1(y))
Γ(α)

· d
dy

φ−1(y)

=
e−g(φ−1(y))g(φ−1(y))α−1

Γ(α)
· d

dy
g(φ−1(y)) y > 0

because
d
dy

g
(

φ−1(y)
)
= g′

(
φ−1(y)

)
· d

dy
φ−1(y)

by the chain rule of differentiation. This probability density function can be recognized as being from the
proposed family and is constructed using the g(x) function g(φ−1(y)). The case of Y = φ(X) monotonically
decreasing is handled in a similar fashion. �

A similar result can be shown for the case where r(x) is specified. This means that the proposed family
is closed under transformations such as, for example, Y = φ(X) = c0 Xc1 for positive, real constants c0

and c1.
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3 EXAMPLES

New distributions can be developed by defining g(x) or r(x) functions satisfying the conditions in Section 1
that may fit a particular purpose. Here we present three examples of new distributions. Each example
displays different design features that make the new distributions desirable. While each could be further
developed (as in publications such as Forbes et al., 2001), the following examples demonstrate how new
distributions with certain useful properties are generated.

Example 1. A new life distribution with determinable hazard function properties can be derived. Let
g(x) = (λx)κ , for λ ,κ > 0. Let α > 0 be unspecified. This creates a distribution with probability density
function

f (x) =
κe−(λx)κ

xκα−1λ κα

Γ(α)
x > 0.

When α = 1, this reduces to the Weibull(λ ,κ) distribution. When α = 2, this creates a “semi-Weibull”
distribution with probability density function of X

f (x) = κλ 2κx2κ−1e−(λx)κ
x > 0.

This probability density function is quite similar to that of a Weibull(λ ,κ) random variable. The hazard
function in this case is

h(x) =
κλ 2κx2κ−1

(λx)κ +1
x > 0.

The cumulative distribution function and survivor function can also be obtained in closed form. This
distribution will have a decreasing failure rate when κ ≤ 1 and an increasing failure rate when κ ≥ 1.
Another special case of this family occurs when we further assume that κ = 1. The probability density
function reduces to

f (x) = λ 2xe−λx x > 0,

which is the probability density function of an Erlang random variable with rate λ and n = 2 stages.

Example 2. New distributions can be created by expanding existing distributions with the α parameter.
Consider the Lomax distribution with the new parameter α . Let g(x) = ln(x+1). This example introduces
some likelihood calculations. The probability density function is

f (x) =
1

Γ(α)(x+1)2
[ln(x+1)]α−1 x > 0.

The log likelihood function is

L(α) =
n

∏
i=1

f (xi) = [Γ(α)]−n

(
n

∏
i=1

1

(1+ xi)2

)[
n

∏
i=1

ln(1+ xi)

]α−1

and the log likelihood function is

lnL(α) =−n ln(Γ(α))−2
n

∑
i=1

ln(1+ xi)+(α −1)
n

∑
i=1

ln(ln(1+ xi)) .

The score is
∂ lnL(α)

∂α
=−nΓ′(α)

Γ(α)
+

n

∑
i=1

ln(ln(1+ xi)) .
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The equation
Γ′(α)

Γ(α)
=

1

n

n

∑
i=1

ln(ln(1+ xi))

must be solved numerically to compute the maximum likelihood estimator α̂ for a particular data set.

Example 3. New distributions with closed–form moments are possible. Let g(x) = λx1/α . This yields the
probability density function

f (x) =
exp(−λ x1/α)λ α

Γ(α +1)
x > 0.

This distribution has mean

μ =
λ−α4αΓ(α +1/2)

2
√

π
.

and variance

σ2 =
λ−2α

(
4πΓ(3α)−16α (Γ(α +1/2))2 Γ(α)

)
4πΓ(α)

.

Furthermore, all integer moments about the origin can be calculated with the moment function

E(Xn) =
∫ ∞

0
xn f (x)dx =

λ−nαΓ(α +αn)
Γ(α)

.

4 CONCLUSIONS

An unlimited number of survivor distributions can be generated using the incomplete gamma function
ratio. Several popular survivor distributions, such as the Weibull and gamma distributions, are included in
this class. The class is closed under monotonic transformations. Furthermore, any positive function with
finite area can be used as a base. One can imagine ten base functions and ten g(x) functions can be used
to create 100 new distributions. Additionally, one is not limited to survivor distributions. Any positive
function truncated to a domain of (0,1) can be used to create new families of distributions with support
(0,1) which could possibly be an alternate to the beta distribution. Similarly, distributions with ad hoc
support (a,b) or infinite support (−∞,∞) are also possible with appropriate base functions.
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