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ABSTRACT

In this paper, we study the effects of using smoothed variance estimates in place of the sample variances
on the performance of stochastic kriging (SK). Different variance estimation methods are investigated and
it is shown through numerical examples that such a replacement leads to improved predictive performance
of SK. An SK-based dual metamodeling approach is further proposed to obtain an efficient simulation
budget allocation rule and consequently more accurate prediction results.

1 INTRODUCTION

Consider the simulation outputs {Y j(xi)}ni
j=1 obtained at design point xi, generated by running ni simulation

replications at xi ∈ X ⊆ R
d , for i = 1,2, . . . ,k. Suppose that each random output Y j(xi) can be regarded

as being generated by the following heteroscedastic nonparametric model

Y j(xi) = m(xi)+ ε j(xi), j = 1,2, . . . ,ni, (1)

where Y j(xi) is a random observation of m(xi) disturbed by independent and identically distributed (i.i.d.)
zero-mean random errors ε j(xi) with variance V(xi). The variance of the simulation errors, V(x), typically
changes systematically and smoothly with x, rather than stays constant.

Suitable methods of variance modeling are required, for the variance function itself may be of interest
on its own right; and more importantly, the regression analysis must be adjusted to account for the
variance heterogeneity. A wealth of literature has been devoted to variance estimation. Assuming that the
heteroscedasticity is due to some smooth variance function, researchers extend the regression techniques
used for mean function estimation to estimate the variance function. Aitkin (1987) and Jobson and Fuller
(1980) investigate parametric dual modeling approaches to estimate both mean and variance functions, via
a pseudo-likelihood procedure and a weighted joint least squares estimation method, respectively. The
nonparametric modeling approaches for variance estimation are not sparse, and the methods typically fall
into two categories: difference-based and residual-based. The former type does not consider fitting a curve
for the mean function but instead tries to remove the mean-function effect by differencing (Brown and
Levine 2007, Gasser et al. 1986); the latter considers estimating the variance by a weighted average of
squared residuals, which are obtained after some initial mean function estimation steps (Fan and Yao 1998,
Hall and Carroll 1989).

In this paper, we focus on studying the effects of replacing the sample variances with smoothed variance
estimates on the predictive performance of stochastic kriging (SK). We further describe an SK-based dual
metamodeling approach that can simultaneously estimate the mean and variance functions and achieve
highly accurate prediction results. The remainder of the paper is organized as follows. Section 2 provides
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a review on the standard SK methodology. Section 3 introduces different variance estimation methods to
be investigated. Section 4 presents two examples to demonstrate the effects of using smoothed variance
estimates on the predictive performance of SK. Section 5 introduces an SK-based dual metamodeling
approach and demonstrates its usefulness through an example.

2 STOCHASTIC KRIGING

Stochastic kriging (SK) methodology proposed by Ankenman et al. (2010) is an effective metamodeling
tool for approximating a mean response surface implied by a stochastic simulation. SK is an extension of
the kriging methodology which is highly successful in the design and analysis of deterministic computer
experiments (Santner et al. 2003). SK distinguishes itself by its ability to correctly account for sampling
uncertainty inherent in a stochastic simulation in addition to the response-surface uncertainty.

Standard SK models the simulation response estimate obtained at a design point x ∈ X ⊂ R
d on the

jth simulation replication as

Y j(x) = Y(x)+ ε j(x) = f(x)�β +M(x)+ ε j(x) , (2)

where Y(x) represents the unknown true response that we intend to estimate at point x ∈ X , and the
term ε j(x) represents the mean-zero simulation error realized on the jth replication. The simulation errors
ε1(x),ε2(x), . . . are assumed to be independent and identically distributed (i.i.d.) across replications at a
given design point, and the variance of ε j(x), V(x), may depend on x.

The terms f(·) and β are, respectively, a p×1 vector of known functions of x and a p×1 vector of
unknown parameters. The term M(·) represents a second-order stationary mean-zero Gaussian random
field (Santner et al. 2003, Kleijnen 2008). That is, the spatial covariance between any two points in the
random field is typically modeled as

Cov(M(x),M(y)) = τ2R(x−y;θ) , (3)

where τ2 can be interpreted as the spatial variance of the random process M(·) at all x. One can think
of M(x) as being sampled from a space of mappings R

d → R, in which functions are assumed to exhibit
spatial correlation. The spatial correlation function R(·;θ) determines the smoothness properties of M(·)
and it depends on x and y only through their difference. The parameter vector θ = (θ1,θ2, . . . ,θd)

� controls
how quickly the spatial correlation diminishes as the two points become farther apart, and it measures
the roughness of the underlying response surface in each direction. Ankenman et al. (2010) refer to the
stochastic nature of M as extrinsic uncertainty, in contrast to the intrinsic uncertainty represented by ε that
is inherent in a stochastic simulation output.

An experimental design for SK consists of {(xi,ni), i = 1,2, . . . ,k}, a set of design points to run
independent simulations and the corresponding numbers of replications to apply. Denote the k×1 vector

of the sample averages of simulation responses by Ȳ =
(
Ȳ (x1), Ȳ (x2), . . . , Ȳ (xk)

)�
, in which

Ȳ (xi) =
1

ni

ni

∑
j=1

Y j(xi) = Y(xi)+ ε̄(xi), and ε̄(xi) =
1

ni

ni

∑
j=1

ε j(xi) i = 1,2, . . . ,k . (4)

That is, Ȳ (xi) is the resulting point estimate of the performance measure of interest obtained at design
point xi and ε̄(xi) is the simulation error associated with it. We write ε̄ as a shorthand for the vector

(ε̄(x1), ε̄(x2), . . . , ε̄(xk))
�. To do global prediction, standard stochastic kriging prescribes using the best

linear predictor of Y(x0) that has the minimum mean squared error among all linear predictors at a given
point x0 (see Ankenman et al. 2010, Appendix EC.1),

Ŷ(x0) = f(x0)
�β +ΣM(x0, ·)�Σ−1

(
Ȳ −Fβ

)
, (5)
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whose corresponding mean squared error is given by

MSE
(
Ŷ(x0)

)
= ΣM(x0,x0)−ΣM(x0, ·)�Σ−1ΣM(x0, ·), (6)

where Σ = ΣM+Σε , and F =
(
f(x1)

�, f(x2)
�, . . . , f(xk)

�)�. The k×k matrix ΣM records spatial covariances
across the design points, i.e., its (i,h)th entry ΣM(xi,xh) gives Cov(M(xi),M(xh)) as specified in (3). The
k×1 vector ΣM(x0, ·) contains the spatial covariances between the k design points and a given prediction
point x0. The k×k matrix Σε is the variance-covariance matrix of the vector of simulation errors associated
with the vector of point estimates Ȳ , ε̄ . As Chen et al. (2012) show that the use of common random
numbers (CRN) does not necessarily help improve the performance of the SK predictor, in this paper we
assume that CRN is not applied in simulation experiments. In this case Σε reduces to a k× k diagonal
matrix diag{V(x1)/n1,V(x2)/n2, . . . ,V(xk)/nk} with V(xi) := Var(ε j(xi)), j = 1,2, . . . ,ni.

To implement SK for the prediction, the standard practice is to first substitute Σ̂ε into Σ = ΣM+Σε ,

with the ith diagonal entry of Σ̂ε specified by the simulation output sample variances for i = 1,2, . . . ,k.
Prediction then follows (5) and (6) upon obtaining parameter estimates for τ2,θ and β through maximizing
the log-likelihood function formed under the assumption that (Y(x0), Ȳ �)� follows a multivariate normal
distribution (see, e.g., Ankenman et al. 2010, Chen and Kim 2014).

3 HETEROSCEDASTIC VARIANCE ESTIMATION

In this section, we consider several variance estimation methods that provide a smoothed estimator V̂(x) for
x ∈ X . First, we present a result similar to Theorem 1 of Ankenman et al. (2010) based on Assumption 1

given below. That is, estimating Σε with smoothed variance estimates V̂(xi)’s based on the sample variances
s2

i introduces no prediction bias. The proof is similar to that of Theorem 1 of Ankenman et al. (2010),
hence it is omitted.

Assumption 1 (Ankenman et al. (2010)) The random field M is a stationary Gaussian random field,
and ε1(xi),ε j(xi), . . . are i.i.d. N (0,V(xi)), independent of ε j(xh) for all j and h �= i (i.e., no CRN), and
independent of M.

Theorem 1 Let Σ̂ε = diag{V̂(x1), V̂(x2), . . . , V̂(xk)} and define

̂̂
Y(x0) = f(x0)

�β +ΣM(x0, ·)�
(

ΣM+ Σ̂ε

)−1 (
Ȳ −Fβ

)
, (7)

where the V̂(xi) is an estimator of V(xi) given by a metamodel built on the sample variances s2
i obtained

at design point xi, i = 1,2, . . . ,k. If Assumption 1 holds, then E[
̂̂
Y(x0)−Y(x0)] = 0 for any x0 ∈ X .

3.1 Variance Estimation via SK with Sample Variances

We consider building an SK metamodel for variance function estimation. According to Section 2, at design
point xi we need to obtain not only a point estimate of the simulation variance (e.g., the sample variance

s2
i = (ni−1)−1 ∑ni

j=1

(
Y j(xi)− Ȳ (xi)

)2
can be used) but also a variance estimate of such a point estimator.

Under Assumption 1, (ni −1)s2
i follows a chi-squared distribution with degrees of freedom ni −1. In

this case, the variance of the sample variance s2
i can be estimated by V̂s2(xi) = 2s4

i /(ni−1). With the sample

variance s2
i and its corresponding variance estimate V̂s2(xi) available at design point xi for i = 1,2, . . . ,k,

a variance SK metamodel can be built, and a pointwise predictor of the simulation variance V(x0) at any

x0 ∈ X , V̂(x0), follows conveniently from (5). Lastly, we note that this approach has also been studied
by Kamiński (2015).
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3.2 Variance Estimation via SK with Log-Transformed Sample Variances

We consider building an SK metamodel for the log-transformed variance function, as such a transformation
ensures the non-negativity of the resulting variance estimates. When the sample size at a design point
is not large, however, the log transformation of the sample variance may introduce bias which is not
negligible. Standard theory (e.g., Cox and Solomon 2003, Section 6.6.4) can be applied to estimate the bias
and variance of such a logarithm transformed variance estimator. Specifically, under Assumption 1, the
sampling variance s2

i obtained with ni i.i.d. simulation outputs can be written as s2
i := V(xi)Xν/ν , where

Xν is a chi-squared random variable with ν = ni −1 degrees of freedom. The mean and variance of the
log transformed sample variance ln(s2

i ) follow as

E[ln(s2
i )] = lnV(xi)+ψ(ν/2)− ln(ν/2), Var[ln(s2

i )] = ψ1(ν/2).

where ν = ni −1, the digamma function ψ is defined by ψ(u) = d logΓ(u)
du and ψ1 is the trigamma function

(Abramowitz and Stegun (1964), p. 943). It follows immediately that Bias[ln(s2
i )] = ψ(ν/2)− ln(ν/2).

In light of the aforementioned discussion, a bias-corrected estimator of the log-transformed variance

function value at xi can be given as ln(s2
i )−ψ

(
(ni−1)

2

)
+ ln

(
(ni−1)

2

)
, and its corresponding variance

estimator follows as V̂lns2(xi) = ψ1

(
(ni−1)

2

)
.

With the point estimate of log-transformed variance and the corresponding variance estimate V̂lns2(xi)
obtained at design point xi for i = 1,2, . . . ,k, an SK metamodel for the log-variance function can be built.

A pointwise predictor of the log-variance ln(V(x0)), l̂nV(x0), then follows from (5). A pointwise predictor

of the simulation variance at x0 can be obtained subsequently as V̂(x0) = exp{l̂nV(x0)}.

3.3 Variance Estimation via SK with Bootstrap Sample Variances

We consider employing the bootstrap sampling method to provide smoothed variance estimates based on the
sample variances s2

i , i= 1,2, . . . ,k (see, e.g., Cheng 2006 and references therein). Specifically, at design point
xi, denote the set of simulation outputs generated by S(xi) := {Y j(xi)}ni

j=1. We draw B bootstrap samples

each of size ni from S(xi), resulting in B bootstrap samples {S∗
b(xi)}B

b=1, where S∗
b(xi) = {Y ∗

j,b(xi)}ni
j=1,

for b = 1,2, . . . ,B. Then the bth sample variance, s2
i,b, can be calculated using S∗

b(xi), b = 1,2, . . . ,B. As a
result, a variance estimate of the sample variance can be given as

V̂s2(xi) =
1

B−1

B

∑
b=1

(
s2

i,b − s2
i,·
)2

, with s2
i,· =

1

B

B

∑
b=1

s2
i,b. (8)

With the sample variance s2
i and its corresponding variance estimate V̂s2(xi) for i = 1,2, . . . ,k, a variance

SK metamodel can be built, and a pointwise predictor of the simulation variance can be given as described
in Subsection 3.1.

3.4 Variance Estimation via SK with Bootstrap Log-Transformed Sample Variances

We consider building an SK metamodel for the log-transformed variance function and estimate the variance
function based on the metamodel constructed. Following the steps described in Subsection 3.3, we obtain B
bootstrap samples {S∗

b(xi)}B
b=1. Then the bth log-transformed sample variance can be calculated as ln(s2

i,b),

where s2
i,b is the sample variance obtained using the bth bootstrap sample, b = 1,2, . . . ,B. A variance

estimate of the log-transformed sample variance, V̂lns2(xi), can be obtained by replacing s2
i,b with ln(s2

i,b)
in (8).
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Following the discussion given in Subsection 3.2, a bias-corrected point estimate of lnV(xi) follows

as ln(s2
i )−ψ

(
(ni−1)

2

)
+ ln

(
(ni−1)

2

)
; and its corresponding variance estimate can be given as V̂lns2(xi) at

design point xi for i = 1,2, . . . ,k. As a result, an SK metamodel for the log-variance function can be built,

and a pointwise predictor V̂(x0) of the simulation variance at x0 can be obtained in a similar fashion as
described in Subsection 3.2.

3.5 Variance Estimation via Kernel Regression with Sample Variances

We consider fitting the variance function using the Nadaraya-Watson (NW) kernel regression estimator
which is independently proposed by Nadaraya (1964) and Watson (1964). The estimator for the variance
function value at x0 ∈ X ⊆ R

d is given by

V̂(x0) =
k

∑
i=1

wis2
i , with wi =

KH(x0 −xi)

∑k
j=1 KH(x0 −x j)

, (9)

where the NW kernel regression estimator is just a weighted sum of the sample variances s2
i , i= 1,2, . . . ,k. In

(9), H represents a d×d bandwidth matrix that is symmetric and positive definite, K(u) = K(u1,u2, . . . ,ud)
represents a d-variate kernel function such that

∫
K(u)du = 1, and for x ∈R

d , KH(x) := |H|−1/2K(H−1/2x).
Popular kernel functions include the Gaussian kernel, the cubic kernel, and the Epanechnikov kernel, among
others (Härdle 1990). The inclusion of off-diagonal elements in H allows the data to be arbitrarily rotated;
however, the estimation of a full bandwidth matrix is difficult when d is not small. Wand and Jones (1993)
argue that typically it suffices to smooth different directions independently by using a diagonal bandwidth
matrix H = diag(h1,h2 . . . ,hd) with hi �= h j for i �= j.

The choice of kernel function is not critical to the performance of the kernel regression estimator
whereas the choice of the bandwidths hi’s is (Härdle 1990, Wand and Jones 1993). There exists a rich
literature on bandwidth selection, and numerous methods have been developed (Härdle and Müller 2000),
which can be classified into two types: (1) plug-in approaches which minimize some criterion (such as
the mean integrated squared error) theoretically and estimate the minimizers directly; and (2) resampling
methods such as cross-validation (CV) and bootstrap techniques that estimate the integrated squared error
function and locate the minimizers correspondingly. In this paper we adopt the Gaussian kernel function
K(x) = (2π)−d/2 exp{−1

2
x�x} and a diagonal bandwidth matrix H with the rule-of-thumb bandwidths

given by Härdle and Müller (2000). Besides the NW estimator, we note that a local polynomial estimator
can also be constructed for variance function estimation (Fan and Gijbels 1992, Fan and Gijbels 1995),
which may enjoy a better behavior near the edges of the design region. We will only consider the NW
estimator in this paper.

4 NUMERICAL EXAMPLES

In this section, we present two numerical experiments to show the predictive performance of SK with
smoothed variance estimates obtained by methods described in Section 3. The examples considered are
an M/M/1 queue example and a three-dimensional synthetic example.

We give a brief description of the common experiment setup used in both examples. A simulation
experiment is performed with a total simulation budget of C replications to expend at k distinct design
points, with ni simulation replications assigned at design point xi, for i = 1,2, . . . ,k. Two budget allocation
schemes, i.e., the equal and unequal allocations, are considered. Specifically, the unequal budget allocation

scheme sets ni =
⌈ √

V(xi)

∑k
i=1

√
V(xi)

C
⌉

, whereas ni = 
C/k� is specified under the equal allocation scheme.

We note that the unequal allocation scheme assigns the simulation budget in accordance with the scale
function σ(x) :=

√
V (x) for x ∈ X ; it is proposed based on the optimal design density h∗(·) established
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for controlled nonparametric regression experiments. Specifically, h∗(x) = σ(x)/
∫
X σ(x)dx achieves the

asymptotic sharp minimax lower bound for the mean integrated squared error (MISE) when x ∈X = [0,1];
see Efromovich (2007) and references therein for more details.

For both examples, we repeat the simulation experiment for 100 independent macro-replications and
calculate the empirical root mean squared error (ERMSE) achieved by SK with different variance estimation
methods applied on each macro-replication. Specifically, a check-point set XK consists of K points in X
is generated by a space-filling design, and the predictive accuracy measure ERMSE is defined by

ERMSE� =

√
1

K

K

∑
i=1

(
Ŷ�(xi)−m(xi)

)2

, �= 1,2, . . . ,100, (10)

where Ŷ�(·) represents the prediction delivered by SK with a given variance estimation method on the �th
macro-replication; and m(·) denotes the underlying mean function of interest.

The variance estimation methods considered are labeled as s2, lns2 , s2-bs, lns2-bs, and kr, respectively,
in the order of which they are introduced in Section 3. We note that the parameters and their respective
values considered in the numerical examples are summarized in Table 1.

Table 1: Parameters for numerical experiments.

Parameter Interpretation Value

K number of prediction points 1000

C total computation budget 2000

k number of design points {10d, 50, 80, 100, 125, 200} for d = 1,3
ni sample size at design point xi 
C/k� for an equal allocation,⌈ √

V(xi)

∑k
i=1

√
V(xi)

C
⌉

for an unequal allocation

B bootstrap sample size for variance estimation 100

4.1 An M/M/1 Queue Example

Consider simulating an M/M/1 queue with arrival rate 1 and service rate x with x ∈X = [1.1,2]. It is well
known from queueing theory that the mean steady-state waiting time in the queue is m(x) = 1/

(
x(x−1)

)
;

this is the function we intend to estimate. The general experiment setup is as given at the beginning
of Section 4, and the example specific setup is given as follows. For each simulation experiment, a set
of k equispaced design points are chosen from X , among which x1 = 1.1 and xk = 2. Each simulation
replication (run) is initialized in steady-state, and the run length T is determined by the number of simulated
customers, with T ∈ {500,1000,3000}. The simulation output on the jth replication, Y j(x), is the average
waiting time of the T customers. For large T , the variance function V(x) = Var[Y j(x)]≈ 4/

(
x(1−1/x)4T

)
(Whitt 1989). A grid of K = 1000 equispaced check-points are chosen from X to calculate the ERMSEs.

Summary. The ERMSEs obtained for simulation experiments with T = 1000 and k ∈ {10,50,100} are
shown in Figures 1 and 2, but those for the cases with T ∈ {500,3000} and k ∈ {80,125,200} are left out,
based on which similar conclusions can be reached. First, a comparison of boxplots shown in Figures 1
and 2 indicates that all the methods perform better under the unequal allocation scheme for the M/M/1
example. Second, using smoothed variance estimates does help improve the predictive accuracy of SK as
compared to standard SK (using the sample variances directly); this is particularly true when the number
of design points k is not small (e.g., k > 20). We note without showing the details that this benefit is more
evident as the impact of the simulation variance becomes more pronounced, an observation made when
examining the results obtained with T = 500,1000, and 3000. Third, it seems that each method achieves
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orig s2 lns2 s2-bs lns2-bs kr
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(a) k = 10

orig s2 lns2 s2-bs lns2-bs kr
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(b) k = 50
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(c) k = 100

Figure 1: M/M/1: ERMSEs obtained with an equal allocation and the run length of 1000.
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(c) k = 100

Figure 2: M/M/1: ERMSEs obtained with an unequal allocation and the run length of 1000.

its best performance under the unequal allocation scheme with a moderately large number of design points
(e.g., k = 50 or 80).

Some observations can be made regarding the performance of SK with each variance estimation method
applied as well. (i) Variance estimation using the sample variances with their respective bootstrap variance
estimates seems to help SK achieve the best predictive performance when compared to the other variance
estimation methods. (ii) Variance estimation using the sample variances with their respective theoretical
variance approximates provides a comparable predictive performance relative to that of its bootstrap variance
estimation counterpart. (iii) Variance estimates generated by smoothing the log-transformed sample variances
(resp. the bootstrap log-transformed sample variances) do not seem to provide a noticeable improvement
on the predictive accuracy of SK as compared to the variance estimates obtained by smoothing the sample
variances (resp. bootstrap sample variances) without applying the logarithm transformation. (iv) The
performance of SK with variance estimates obtained by kernel regression is not competitive when the
number of design points k is small (say, k ≤ 20). However, the performance of SK with this variance
method applied is relatively robust to the experimental design used, as long as the number of design points
k is moderately large (say, k ≥ 40).

4.2 The Three-Dimensional Hartmann Example

Consider the following 3-dimensional Hartmann function:

m(x) =−
4

∑
i=1

ci exp

(
−

3

∑
j=1

ai j(x j − pi j)
2

)
, (11)
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where xi ∈ [0,1], i = 1,2,3; the parameter vector is c = (1,1.2,3,3.2)�, and ai j, pi j are respectively defined
in the 4×3 matrices A = {ai, j} and P = {pi, j} specified in Table 2.

Table 2: Parameters for the 3D-Hartmann example.

A P
3 10 30 0.3689 0.117 0.2673

0.1 10 35 0.4699 0.4387 0.747

3 10 30 0.1091 0.8732 0.5547

0.1 10 35 0.03815 0.5743 0.8828

The simulation output on each replication at a point x is generated as Y j(x) = m(x)+ε j(x), where the
ε j(x)’s are i.i.d. N (0,V(x)) random variables. The simulation variance is set as V(x) = δ |m(x)|, where
the parameter δ controls the magnitude of the simulation variance. The general experiment setup is as
described at the beginning of Section 4, and the example specific setup is given as follows. For each
simulation experiment, a Latin hypercube sample of k design points in X = [0,1]3 are generated. The
impact of the simulation variance is adjusted by varying δ in {0.1,1,10}. A Latin hypercube sample of
K = 1000 check-points in X is generated to calculate the predictive accuracy measure ERMSE.

Table 3: A summary of the ERMSEs obtained with an equal allocation for the 3-D example with V(x) =
|m(x)|.

k orig s2 lns2 s2-bs lns2-bs kr

200
0.197

(0.003)
0.155

(0.002)
0.221

(0.004)
0.164

(0.002)
0.229

(0.004)
0.195

(0.003)

125
0.209

(0.004)
0.194

(0.004)
0.225

(0.004)
0.203

(0.004)
0.220

(0.004)
0.215

(0.004)

100
0.213

(0.004)
0.172

(0.003)
0.221

(0.004)
0.176

(0.003)
0.218

(0.004)
0.193

(0.003)

80
0.214

(0.004)
0.198

(0.004)
0.227

(0.004)
0.200

(0.004)
0.233

(0.005)
0.214

(0.004)

50
0.242

(0.003)
0.227

(0.003)
0.242

(0.003)
0.227

(0.003)
0.244

(0.003)
0.240

(0.003)

30
0.325

(0.006)
0.319

(0.007)
0.326

(0.006)
0.299

(0.006)
0.308

(0.006)
0.322

(0.006)

Table 4: A summary of the ERMSEs obtained with an unequal allocation for the 3-D example with

V(x) = |m(x)|.
k orig s2 lns2 s2-bs lns2-bs kr

200
0.152

(0.002)
0.170

(0.003)
0.147

(0.002)
0.153

(0.003)
0.144

(0.002)
0.136

(0.001)

125
0.160

(0.002)
0.165

(0.002)
0.170

(0.002)
0.158

(0.002)
0.161

(0.002)
0.163

(0.002)

100
0.150

(0.002)
0.145

(0.002)
0.152

(0.002)
0.143

(0.002)
0.152

(0.002)
0.139

(0.002)

80
0.161

(0.002)
0.162

(0.002)
0.159

(0.002)
0.162

(0.002)
0.160

(0.002)
0.159

(0.002)

50
0.206

(0.003)
0.202

(0.003)
0.205

(0.002)
0.201

(0.002)
0.203

(0.002)
0.201

(0.003)

30
0.290

(0.004)
0.284

(0.004)
0.289

(0.004)
0.289

(0.006)
0.294

(0.006)
0.287

(0.004)
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Table 5: A summary of the ERMSEs obtained with an equal allocation for the 3-D example with V(x) =
10|m(x)|.

k orig s2 lns2 s2-bs lns2-bs kr

200
0.446

(0.009)
0.350

(0.005)
0.467

(0.009)
0.366

(0.005)
0.478

(0.010)
0.331

(0.005)

125
0.442

(0.009)
0.364

(0.005)
0.459

(0.009)
0.370

(0.005)
0.464

(0.009)
0.346

(0.006)

100
0.491

(0.009)
0.388

(0.007)
0.503

(0.009)
0.395

(0.007)
0.500

(0.009)
0.333

(0.006)

80
0.441

(0.008)
0.379

(0.006)
0.438

(0.008)
0.367

(0.004)
0.425

(0.007)
0.355

(0.006)

50
0.473

(0.009)
0.390

(0.006)
0.470

(0.009)
0.396

(0.006)
0.473

(0.008)
0.352

(0.006)

30
0.409

(0.008)
0.386

(0.007)
0.407

(0.008)
0.374

(0.005)
0.400

(0.006)
0.405

(0.008)

Table 6: A summary of the ERMSEs obtained with an unequal allocation for the 3-D example with

V(x) = 10|m(x)|.
k orig s2 lns2 s2-bs lns2-bs kr

200
0.376

(0.006)
0.430

(0.007)
0.356

(0.004)
0.380

(0.007)
0.324

(0.005)
0.291

(0.005)

125
0.302

(0.005)
0.318

(0.006)
0.325

(0.004)
0.313

(0.005)
0.321

(0.004)
0.317

(0.005)

100
0.324

(0.005)
0.320

(0.006)
0.341

(0.005)
0.314

(0.006)
0.339

(0.005)
0.299

(0.006)

80
0.327

(0.004)
0.310

(0.004)
0.335

(0.004)
0.325

(0.005)
0.336

(0.004)
0.309

(0.005)

50
0.332

(0.005)
0.318

(0.004)
0.327

(0.005)
0.316

(0.004)
0.324

(0.004)
0.333

(0.006)

30
0.359

(0.005)
0.358

(0.005)
0.358

(0.005)
0.355

(0.005)
0.356

(0.005)
0.395

(0.008)

Summary. A summary of the average ERMSEs obtained for the 100 macro-replications with δ = 1 and
10 are given in Tables 3 to 6; the values in parentheses are the corresponding standard errors. The results
for the cases with δ = 0.1 are omitted to economize on space. First, a comparison of Tables 3 and 5 with
Tables 4 and 6 indicates that all the methods perform better under the unequal allocation scheme. Second,
using smoothed variance estimates helps improve the predictive accuracy of SK as compared to standard
SK, especially when the number of design points k is not small (e.g., k > 30). It becomes more beneficial
as the simulation variances increase, as observed in the M/M/1 example. Third, regardless of the level
of the simulation variances, it seems that each method achieves its best performance under the unequal
allocation scheme with a moderately large number of design points (e.g., k ≥ 100).

Some observations follow regarding the performance of SK with each variance estimation method
applied. (i) The two variance estimation methods that use the sample variances without applying the
logarithm transformation and the kernel regression estimation method lead to the most accurate prediction
results, when applied with SK. (ii) Smoothing the log-transformed sample variances (resp. the bootstrap
log-transformed sample variances) does not seem to provide a noticeable improvement in the predictive
accuracy of SK as compared to smoothing the sample variances (resp. bootstrap sample variances) without
applying the logarithm transformation; this is particularly true under the equal allocation scheme. (iii) SK
with variance estimates due to kernel regression works best with a moderately large number of design
points (say, k ≥ 50).
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5 STOCHASTIC KRIGING-BASED DUAL METAMODELING

In this section, we propose an SK-based dual metamodeling approach for estimating the mean and variance
functions simultaneously, inspired by the literature on residual-based nonparametric variance estimation
(Fan and Yao 1998, Carroll and Ruppert 1988) and Gaussian process based prediction (Boukouvalas and
Cornford 2009, Kersting et al. 2007, Opsomer et al. 1999). One distinctive feature of this approach is that it
intends to make an efficient budget allocation of C simulation replications based on the initial estimation of
the variance function by smoothing the squared residuals resulting from an earlier fit of the mean function.
The approach is briefly summarized by Algorithm 1.

Algorithm 1 SK-based dual metamodeling

Step 1 Given an initial space-filling design consisting of k design points, perform a single simulation

replication at each one of them to obtain the simulation output Y0(xi), i = 1,2, . . . ,k. Build a kriging

model with nugget effect using the dataset {(xi,Y0(xi))}k
i=1, and make an initial prediction at the k

design points, Ŷ0(xi), i = 1,2, . . . ,k.

Step 2 Calculate the residual r0(xi) resulting from this initial prediction at xi using r0(xi) =Y0(xi)− Ŷ0(xi),
for i = 1,2, . . . ,k. Construct a metamodel for variance function estimation by smoothing the squared

residuals r2
0(xi)’s using kernel regression and obtain the variance estimate V̂1(xi) at design point xi for

i = 1,2, . . . ,k.

Step 3 Allocate the remaining budget of C−k simulation replications to the k design points. Specifically,

run ni replications at xi, where ni =
⌈ √

V̂1(xi)

∑k
i=1

√
V̂1(xi)

(C− k)
⌉

and obtain the outputs {Y j(xi)}ni
j=1. At xi,

based on the simulation outputs obtained S (xi) = {Y j(xi)}ni
j=0, calculate the sample variance and

sample mean s2
i and Ȳ (xi), for i = 1,2, . . . ,k.

Step 4 Build a new metamodel for variance function estimation based on {(xi,s2
i )}k

i=1 using a variance

estimation method (e.g., those given in Section 3). Obtain the updated variance estimates V̂2(xi) at xi,

for i = 1,2, . . . ,k.

Step 5 Construct an SK metamodel with {xi, Ȳ (xi), V̂2(xi)/(ni +1)}k
i=1 and obtain an SK predictor Ŷ(xi)

at any x0 ∈ X .

Let us revisit the M/M/1 example given in Subsection 4.1; recall that the unequal allocation scheme
is found to be more efficient than the equal budget allocation scheme. However, the unequal allocation
given in Section 4 is unavailable due to our lack of knowledge of the variance function. The SK-based
dual metamodeling approach can be utilized as a remedy to achieve an efficient budget allocation rule that
would otherwise be impossible to apply.

The experimental setup is as described in Subsection 4.1. Figures 3(a)–(c) show the ERMSEs obtained
for 100 macro-replications. The boxplots with labels “origeq” and “origuneq” respectively summarize the
ERMSEs obtained by SK with the equal and unequal budget allocation schemes given in Subsection 4.1;
in particular, “origuneq” corresponds to SK applied with the unequal allocation scheme specified assuming
that the variance function is given. The remaining boxplots summarize the ERMSEs obtained by the
aforementioned SK-based dual metamodeling approach, with the variance estimation method (specified by
the label) applied in Step 4. We observe that when the number of design points k is moderately large, the
proposed SK-dual metamodeling approach can achieve a predictive accuracy as high as that of SK with
the “ideal” unequal allocation scheme, if not better.

We make a few remarks on Algorithm 1. First, one can use other methods (such as kernel regression,
local polynomial regression and least-squares support vector machine, Suykens et al. (2002)) in Steps 1
and 2 for an initial fit of the mean function and the subsequent estimation of the variance function. Second,
a relatively dense initial space-filling design is recommended to provide a good coverage of the design
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space X , hence k should be reasonably large (e.g., k ≥ 20d). Third, one can modify Step 3 and iterate the
algorithm a few times, until the total simulation budget C is exhausted. In particularly, one can choose to
focus on a subset of the k design points for budget allocation, based on some selection criterion. For more
details, see Wang and Chen (2016).

origeq origuneq s2 lns2 s2-bs lns2-bs kr
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) k = 10

origeq origuneq s2 lns2 s2-bs lns2-bs kr
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(b) k = 50

origeq origuneq s2 lns2 s2-bs lns2-bs kr
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0.15

0.2

0.25
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(c) k = 100

Figure 3: ERMSEs obtained by the SK dual metamodeling approach for the M/M/1 example with the

simulation run length of 1000.
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