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ABSTRACT

We consider the problem of estimating via Monte Carlo simulation the misclassification probabilities of two
sequential multiple testing procedures. The first one stops when all local test statistics exceed simultaneously
either a positive or a negative threshold. The second assumes knowledge of the true number of signals, say
m, and stops when the gap between the top m test statistics and the remaining ones exceeds a threshold.
For each multiple testing procedure, we propose an importance sampling algorithm for the estimation of
its misclassification probability. These algorithms are shown to be logarithmically efficient when the data
for the various statistical hypotheses are independent, and each testing problem satisfies an asymptotic
stability condition and a symmetry condition. Our theoretical results are illustrated by a simulation study
in the special case of testing the drifts of Gaussian random walks.

1 INTRODUCTION

One of the prototypical applications of rare-event simulation is the computation of the error probabilities
of hypothesis testing procedures. In fact, the motivation for the celebrated, asymptotically efficient,
importance sampling algorithm of Siegmund (1976) for the estimation of gambler’s ruin probabilities
was the computation of the type-I and type-II error probabilities of Wald’s Sequential Probability Ratio
Test (Wald 1945). More recently, Chan and Lai (2005) and Chan and Lai (2007) proposed asymptotically
efficient importance sampling algorithms for the type-I error probability of truncated sequential tests based
on the generalized likelihood ratio statistic.

Our work differs from the previous papers in that we consider a sequential multiple testing problem,
where the goal is to solve simultaneously a multitude of binary testing problems. Specifically, we are
interested in controlling the misclassification rate, that is the probability of at least one error, of two
sequential multiple testing procedures that have been introduced in De and Baron (2012a) and Song and
Fellouris (2016). The first procedure stops when all log-likelihood ratio test statistics exceed simultaneously
either a positive or a negative threshold, and selects the alternative hypothesis in those streams with positive
log-likelihood ratios upon stopping. The second one assumes knowledge of the true number of signals, say
m, stops when the gap between the top m log-likelihood ratio statistics and the remaining ones is larger
than a user-specified threshold, and selects the alternative hypotheses that correspond to the streams with
the top m statistics.

Critical values for these testing procedures can be derived based on general, non-asymptotic upper
bounds for the corresponding misclassification probabilities that have been obtained in De and Baron
(2012a), Song and Fellouris (2016). However, due to the crudeness of these bounds, the critical values are
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very conservative and lead to sub-optimal performance compared to the one that could be achieved for
the given tolerance to error. This can be avoided if the error probabilities can be computed efficiently via
Monte Carlo simulation, in which case non-conservative critical values can be determined numerically.

In this work we propose a Monte Carlo approach, based on importance sampling, for the estimation
of the misclassification probabilities of interest. Our main contribution is that we establish the asymptotic
(logarithmic) efficiency of the proposed algorithms when the data streams that correspond to the various
hypotheses are independent and each testing problem satisfies a symmetric and an asymptotic stability
condition. To our knowledge, these are the first optimality results regarding the efficient simulation of
error probabilities in sequential multiple testing, even in the special case of independent and identically
distributed (i.i.d.) observations, where the corresponding test statistics become random walks. Indeed,
the problem of interest is to estimate the probability that a multi-dimensional stochastic process (random
walk in the case of i.i.d. observations) exits a set in a “wrong” way. This is fundamentally different from
the probability that the same process ever hits a “rare” set, which has been considered for example by
Glasserman and Wang (1997), Collamore (2002), Blanchet and Liu (2010). However, it is worth noting
that the proposed importance sampling algorithms are based on (finite) mixtures of measures, which are
known to be useful for estimating the probabilities of unions of rare events, as for example in Glasserman
and Juneja (2008).

The rest of the paper is organized as follows: In Section 2 we formulate the problem of interest. In
Section 3 we introduce and analyze the proposed importance sampling algorithm for a multiple testing
procedure without any prior information on the number of signals. In Section 4 we do the same for a
multiple testing procedure that knows a priori the number of signals. In Section 5 we present a simulation
study that illustrates our theoretical results. In Section 6 we discuss potential generalizations of our work.
Finally, we present a technical lemma and its proof in the Appendix.

2 PROBLEM FORMULATION

Consider K independent streams of observations, Xk = {Xk
n : n ∈ N}, where k ∈ [K] := {1, . . . ,K}

and N := {1, 2, . . .}. We denote by Fn the σ-field generated by all streams up to time n, i.e., Fn :=
σ(X1, . . . , Xn), where Xn := (X1

n, . . . , X
K
n ) is the observed vector at time n. For each k ∈ [K], we

denote by Pk the distribution of Xk and consider two simple hypotheses for it:

Hk
0 : Pk = Pk0 versus Hk

1 : Pk = Pk1. (1)

We will say that there is “noise” in the kth stream under Pk0 and “signal” under Pk1 . For each k ∈ [K]
and n ∈ N, the probability measures Pk0 and Pk1 are assumed to be equivalent, i.e., mutually absolutely
continuous, when they are both restricted to the σ-algebra Fkn := σ(Xk

1 , . . . , X
k
n) and we denote by λk(n)

the corresponding log-likelihood ratio, i.e.,

λk(n) := log
dPk1
dPk0

(Fkn). (2)

Moreover, we assume that the two hypotheses in each stream are well-separated, in the sense that

Pk0

(
lim
n→∞

λk(n) = −∞
)

= Pk1

(
lim
n→∞

λk(n) =∞
)

= 1, for each k ∈ [K]. (3)

We denote by PA the underlying probability measure when A ⊂ [K] is the true subset of signals, i.e.,

PA :=

K⊗
k=1

Pk; Pk =

{
Pk0, if k /∈ A
Pk1, if k ∈ A

. (4)
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For any C ⊂ [K] and n ∈ N we denote by λA,C(n) the log-likelihood ratio of PA versus PC when both
measures are restricted to Fn; from (4) it is clear that

λA,C(n) := log
dPA
dPC

(Fn) =
∑

k∈A\C

λk(n)−
∑
j∈C\A

λj(n). (5)

We assume that data are acquired sequentially in all streams and that the goal is to stop sampling
(simultaneously in all streams) as soon as there is sufficient evidence in order to identify the correct
hypothesis in all K testing problems of interest. Formally, a sequential multiple testing procedure is a
family of pairs {(Tb, Db) : b > 0}, where b is a user-specified parameter, Tb is an {Fn}-stopping time at
which we stop sampling in all streams, and Db := (D1

b , . . . , D
K
b ) is an FTb-measurable, K-dimensional

random vector with values in {0, 1}K , which represents the decision upon stopping. Specifically, for each
k ∈ [K] hypothesis Hk

i is selected on the event {Dk
b = i, Tb <∞}, i = 0, 1. With an abuse of notation, we

will also identify Db with the subset {k ∈ [K] : Dk
b = 1} of streams in which the alternative hypothesis

is selected upon stopping.
If A is the true subset of signals, then α(b) := PA(Db 6= A) is the misclassification probability of

(Tb, Db), i.e., its probability of making at least one mistake. We will assume that α(b) → 0 as b → ∞;
thus, the user can control α(b) at arbitrarily small levels with an appropriate selection of the parameter b.
In the absence of closed-form expressions, sharp bounds, or good approximations for α(b), Monte Carlo
simulation provides an attractive method for its computation. The plain Monte Carlo approach suggests
averaging independent realizations of the indicator of the event {Db 6= A}, generated under PA. However,
it is well understood that this approach is inefficient when α(b) is very small as the number of simulations
required to guarantee a certain relative error is inversely proportional to α(b).

An alternative way to estimate α(b) via Monte Carlo simulation is based on Wald’s likelihood ratio
identity. For any probability measure P̄ under which the stopping time Tb is almost surely finite we have

α(b) = Ē
[
Λ̄−1b ; D̄b 6= A

]
,

where Ē is expectation under P̄, and Λ̄b is the likelihood ratio of P̄ versus PA when both measures are
restricted to the σ-algebra generated by all observations up to time Tb. This identity suggests that an
alternative way to estimate α(b) is to average independent realizations of ᾱ(b), generated under P̄, where

ᾱ(b) := Λ̄−1b I{D̄b 6= A}.

We would like to select P̄ such that the second moment, and consequently the variance, of ᾱ(b) under P̄
goes to 0 at the fastest possible rate. From the non-negativity of the variance it is clear that for every b > 0
we have Ē

[
ᾱ2(b)

]
≥ α2(b), and consequently

lim sup
b→∞

| log Ē
[
ᾱ2(b)

]
|

| logα2(b)|
≤ 1.

We will say that P̄ is asymptotically efficient or asymptotically optimal (Asmussen and Glynn 2007) if

lim inf
b→∞

| log Ē
[
ᾱ2(b)

]
|

| logα2(b)|
≥ 1,

in which case the equality holds and lim inf can be replaced by lim. This notion of asymptotic optimality
is also known as logarithmic efficiency, and it is well known to be equivalent to

lim sup
b→∞

Ē
[
ᾱ2(b)

]
α2−ε(b)

= 0, ∀ε > 0.
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Our main goal in this paper is to propose logarithmically efficient importance sampling estimators for
the misclassification probabilities of two specific multiple testing procedures, which have been proposed
by De and Baron (2012a) and Song and Fellouris (2016). In order to do so, we need to make certain
assumptions on the distributions of the observed processes and the structure of the testing problems. In
particular, we will assume that

1. there are positive numbers {Ik0 , Ik1 : k ∈ [K]} such that for every k ∈ [K] and ε > 0,

∞∑
n=1

Pk0

(∣∣∣ 1
n
λk(n) + Ik0

∣∣∣ > ε

)
<∞,

∞∑
n=1

Pk1

(∣∣∣ 1
n
λk(n)− Ik1

∣∣∣ > ε

)
<∞, (6)

2. the null and the alternative hypothesis in each stream are symmetric, in the sense that

Ik0 = Ik1 = Ik for every k ∈ [K]. (7)

Condition (6) guarantees the asymptotic stability of the log-likelihood ratio in each testing problem,
in the sense that it satisfies a strengthened version of the Strong Law of Large Numbers. Indeed, from the
Borel–Cantelli Lemma it follows that (6) implies

Pk0

(
lim
n→∞

1

n
λk(n) = −Ik0

)
= 1, Pk1

(
lim
n→∞

1

n
λk(n) = Ik1

)
= 1.

The stronger notion of convergence described in (6) was introduced by Hsu and Robbins (1947) and is
known as complete convergence. It is satisfied by a large class of stochastic models with possibly dependent
observations, such as hidden Markov models and autoregressive models (see, e.g. Sections 3.4.6 and 3.4.7
in Tartakovsky, Nikiforov, and Basseville (2014)). In the special case that each λk is a random walk, i.e.,
the increments {λk(n)−λk(n−1);n ∈ N} are i.i.d. under Pki , then it is well known that (6) is equivalent to
the finiteness of the second moment of λk(1) under Pki , where i = 0, 1 (Hsu and Robbins 1947, Erdos 1949).

Condition (7) is clearly satisfied when the distribution of λk under Pk1 is the same as the distribution of
−λk under Pk0 . This is in particular the case in the fundamental problem of testing the means of Gaussian
i.i.d. observations, which we consider in more detail in Section 5.

3 INTERSECTION RULE

In this section we focus on the so-called “intersection rule”, (T̃b, D̃b), according to which we stop when
all local log-likelihood ratio statistics are either above b or below −b. Formally,

T̃b := inf
{
n ∈ N : |λk(n)| ≥ b for every k ∈ [K]

}
,

D̃k
b :=

{
1, if λk(T̃b) ≥ b
0, if λk(T̃b) ≤ −b

k ∈ [K].

In order to compute the misclassification probability of the intersection rule,

αint(b) := PA(D̃b 6= A),

we suggest an importance sampling approach that is based on a change of measure from PA to a uniform
mixture over measures of the form {PC , |C4A| = 1}, i.e.,

P̃ :=
1

K

∑
j /∈A

PA∪{j} +
∑
k∈A

PA\{k}

 . (8)
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That is, we suggest estimating αint(b) by averaging independent realizations of

α̃(b) := Λ̃−1b I{D̃b 6= A},

generated under P̃, where Λ̃b is the likelihood ratio of P̃ versus PA when both measures are restricted to
the σ-algebra generated by all observations up to time T̃b, which takes the form

Λ̃b :=
1

K

∑
j /∈A

exp{λj(T̃b)}+
∑
k∈A

exp{−λk(T̃b)}

 .
Our goal in this section is to show that, under certain assumptions on the testing problem, this is a
logarithmically efficient importance sampling estimator for αint(b).

Lemma 1 For any b > 0 we have P̃(T̃b <∞) = 1. Moreover,

lim sup
b→∞

logαint(b)

b
≤ −1, lim inf

b→∞

| log Ẽ
[
α̃2(b)

]
|

b
≥ 2. (9)

Proof. Fix b > 0. In order to prove that T̃b terminates almost surely under P̃, it suffices to show that
this is the case under any measure of the form PC . Fix C ⊂ [K]. Then,

T̃b ≤ T̃ ′b := inf{n ≥ 1 : λk(n) ≥ b and λj(n) ≤ −b for any k ∈ C, j /∈ C}

and condition (3) guarantees that T̃ ′b, and consequently T̃b, is almost surely finite under PC . Now, we turn
to the proof of the two asymptotic bounds in (9). On the event {D̃b 6= A}, either there is a j /∈ A such
that λj(T̃b) ≥ b or there is a k ∈ A such that λk(T̃b) ≤ −b, and consequently Λ̃b ≥ eb/K. Therefore,
α̃(b) ≤ Ke−b, which implies that

αint(b) = Ẽ [α̃(b)] ≤ Ke−b, Ẽ
[
α̃2(b)

]
≤ K2e−2b. (10)

Taking logarithms, dividing by b and letting b→∞ in these two inequalities completes the proof.

Remark 1 From (9) it follows that to establish the logarithmic efficiency of P̃, it suffices to show that

lim inf
b→∞

1

b
logαint(b) ≥ −1. (11)

Indeed, this asymptotic lower bound together with the first inequality in (9) implies that

lim
b→∞

1

b
| logαint(b)| = 1,

which, together with the second inequality in (9), guarantees the logarithmic efficiency property, i.e.,

lim
b→∞

| log Ẽ
[
α̃2(b)

]
|

| logα2
int(b)|

= 1. (12)

Theorem 1 Suppose that assumptions (6)–(7) hold. Then, the mixture distribution P̃, defined in (8),
is logarithmically efficient for the estimation of the misclassification probability of the intersection rule,
i.e., (12) holds.
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Proof. Based on Remark 1, it suffices to show that the asymptotic lower bound in (11) holds under the
conditions of the theorem. In order to do so, we set

L0(A) := min
j 6∈A
Ij , L1(A) := min

k∈A
Ik, L(A) := min{L0(A), L1(A)}, (13)

and we adopt the convention that L0([K]) = L1(∅) := ∞. Then, either there is some j0 /∈ A such that
Ij0 = L(A), or some k0 ∈ A such that Ik0 = L(A). Without loss of generality, we assume the existence
of j0, and set C = A ∪ {j0}. Clearly,

αint(b) = PA(D̃b 6= A) ≥ PA(D̃b = C).

From representation (5) it follows that for every n ∈ N we have λA,C(n) = −λj0(n). Therefore, from
Wald’s likelihood ratio identity we have

PA(D̃b = C) = EC

[
exp{−λj0(T̃b)}; D̃b = C

]
.

Then, for every η > 0 we have

αint(b) ≥ EC

[
exp{−λj0(T̃b)}; D̃b = C, λj0(T̃b) < (1 + η)b

]
≥ e−(1+η)b PC

(
D̃b = C, λj0(T̃b) < (1 + η)b

)
,

and consequently,
1

b
logαint(b) ≥ −(1 + η) +

1

b
log
[
PC

(
D̃b = C, λj0(T̃b) < (1 + η)b

)]
.

Since η is an arbitrary positive number, it suffices to show that the probability in the right-hand side goes
to 1 as b→∞. Since this is the probability of an intersection, it suffices to show that as b→∞ we have

PC(D̃b 6= C)→ 0 and PC

(
λj0(T̃b) ≥ (1 + η)b

)
→ 0.

From (10) it is clear that the first convergence holds; therefore it suffices to show that the second holds as
well. From the definition of the stopping rule T̃b, it follows that

{λj0(T̃b) ≥ (1 + η)b} =
⋃
k∈[K]

{
|λk(T̃b − 1)| < b

} ⋂
{λj0(T̃b) ≥ (1 + η)b}.

Therefore, due to Boole’s inequality, it suffices to show that for every k ∈ C and j /∈ C we have

PC

(
λk(T̃b − 1) ≤ b, λj0(T̃b) ≥ (1 + η)b

)
→ 0,

PC

(
−λj(T̃b − 1) ≤ b, λj0(T̃b) ≥ (1 + η)b

)
→ 0.

(14)

Fix k ∈ C and j 6∈ C. Then, from assumptions (6)–(7) we have
∞∑
n=1

PC

(∣∣∣ 1
n
λk(n)− Ik

∣∣∣ > ε

)
<∞,

∞∑
n=1

PC

(∣∣∣ 1
n
λj(n) + Ij

∣∣∣ > ε

)
<∞.

If k = j0, trivially Ik = Ij0 ; otherwise, k ∈ A, in which case we have

Ik ≥ L1(A) ≥ L(A) = Ij0 ,
where the first two inequalities follow from the definition of L1(A) and L(A) in (13), and the last from
the definition of j0. On the other hand, since j /∈ C implies j /∈ A, again from (13) we have

Ij ≥ L0(A) ≥ L(A) = Ij0 .
Thus, from Lemma 3 in the Appendix it follows that (14) holds, which completes the proof.

319



Song and Fellouris

4 GAP RULE

In this section we assume that we know a priori that there are exactly m signals, for some 1 ≤ m ≤ K−1,
and we focus on the “gap rule”, (T̂b, D̂b), which stops when the gap between them-th and the (m+1)-th top
log-likelihood ratio statistics is larger than some positive threshold b, and selects the alternative hypothesis
in the m streams with the top log-likelihood ratios upon stopping. Formally,

T̂b := inf
{
n ≥ 1 : λ(m)(n)− λ(m+1)(n) ≥ b

}
,

D̂b := {i1(T̂b), . . . , im(T̂b)},

where λ(1)(n) ≥ . . . ≥ λ(K)(n) are the ordered log-likelihood ratio statistics at time n, and i1(n), . . . , iK(n)

are the corresponding stream indices, i.e., λ(k)(n) = λik(n)(n) for every k ∈ [K]. For the estimation of
the misclassification probability of the gap-rule

αgap(b) := PA(D̂b 6= A)

for some A ⊂ [K] such that |A| = m, we propose an importance sampling approach based on a change
of measure from PA to a uniform mixture over {PC : |C \A| = |A \ C| = 1}, i.e.,

P̂ :=
1

m(K −m)

∑
k∈A

∑
j /∈A

P(A\{k})∪{j}, (15)

Specifically, we suggest estimating αgap(b) by averaging independent realizations of

α̂(b) := Λ̂−1b I{D̂b 6= A},

where Λ̂b is the likelihood ratio of P̂ versus PA when both measures are restricted to the σ-algebra generated
by all observations up to time T̂b, i.e.,

Λ̂b :=
1

m(K −m)

∑
k∈A

∑
j /∈A

exp
{
λj(T̂b)− λk(T̂b)

}
.

We will show that, under the same conditions as the ones we imposed in the previous section, this is a
logarithmically efficient estimator of αgap(b).

Lemma 2 For any b > 0 we have P̂(T̂b <∞) = 1. Moreover,

lim sup
b→∞

logαgap(b)

b
≤ −1, lim inf

b→∞

| log Ê
[
α̂2(b)

]
|

b
≥ 2. (16)

Proof. Fix b > 0. A similar argument as in the proof of Lemma 1 can be used to show that the gap
rule terminates almost surely under P̂. On the event {D̂b 6= A} there exist k0 ∈ A and j0 /∈ A such that
λj0(T̂b)− λk0(T̂b) ≥ b, and consequently

Λ̂b ≥
1

m(K −m)
eb.

Therefore, α̂b ≤ m(m−K)e−b, which clearly implies

αgap(b) = Ê [α̂(b)] ≤ m(m−K)e−b, Ê
[
α̂2(b)

]
≤ (m(m−K))2 e−2b. (17)

Taking logarithms, dividing by b and letting b→∞ in these two inequalities implies the asymptotic upper
bounds in (16).
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Theorem 2 Assume that (6)–(7) hold. The importance distribution P̂, defined in (15), is logarithmically
efficient, that is,

lim
b→∞

| log Ê
[
α̂2(b)

]
|

| logα2
gap(b)|

= 1.

Proof. From (16), and by similar argument as in Remark 1, it suffices to show that

lim inf
b→∞

1

b
logαgap(b) ≥ −1.

Fix b > 0 and recall the definitions of L0(A) and L1(A) in (13). Then, there exist k0 ∈ A and j0 6∈ A
such that L0(A) = Ij0 and L1(A) = Ik01 . We set C = (A \ {k0}) ∪ {j0}. Clearly, |C| = m. Then, for
any η > 0 we have

αgap(b) = PA(D̂b 6= A) ≥ PA(D̂b = C)

= EC

[
exp{−(λj0(T̂b)− λk0(T̂b))}; D̂b = C

]
≥ EC

[
exp{−(λj0(T̂b)− λk0(T̂b))}; D̂b = C, λj0(T̂b)− λk0(T̂b) < (1 + η)b

]
≥ e−(1+η)b

[
1− PC(D̂b 6= C)− PC

(
λj0(T̂b)− λk0(T̂b) ≥ (1 + η)b

)]
.

From (17) it follows that PC(D̂b 6= C)→ 0 as b→∞. Since η is arbitrary, by a similar argument as in
the proof of Theorem 1, it suffices to show that as b→∞ we have

PC

(
λj0(T̂b)− λk0(T̂b) ≥ (1 + η)b

)
→ 0.

At time T̂b−1, there exist k ∈ C, j /∈ C such that λk(T̂b−1)−λj(T̂b−1) < b. Thus, by Boole’s inequality
it suffices to show that for every k ∈ C and j /∈ C we have

PC

(
λk(T̂b − 1)− λj(T̂b − 1) < b, λj0(T̂b)− λk0(T̂b) ≥ (1 + η)b

)
→ 0. (18)

Fix k ∈ C and j /∈ C. Due to assumption (6) we have

∞∑
n=1

PC

(∣∣ 1
n

(λk(n)− λj(n))− (Ik + Ij)
∣∣ ≥ ε) <∞,

∞∑
n=1

PC

(∣∣ 1
n

(λj0(n)− λk0(n))− (Ij0 + Ik0)
∣∣ ≥ ε) <∞.

If k 6= k0 and j 6= j0, then k ∈ A and j /∈ A, and from (13) we have

Ik + Ij ≥ L1(A) + L0(A) = Ik0 + Ij0

Clearly, if either k = k0 or j = j0, then Ik + Ij ≥ Ik0 + Ij0 still holds. Thus, by Lemma 3 in the
Appendix we have that (18) holds, which completes the proof.
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5 A SIMULATION STUDY

Our goal in this section is to illustrate the theoretical results of the previous two sections with a simulation
study. To this end, suppose that, for each k ∈ [K], {Xk

n : n ∈ N} is a sequence of independent random
variables with common density fk relative to some σ-finite measure µk. In this context, for each stream
k ∈ [K] the hypothesis testing problem (1) takes the form

Hk
0 : fk = fk0 versus Hk

1 : fk = fk1 ,

where fk0 and fk1 are densities with common support. Further, the log-likelihood ratio process λk, defined
in (2), becomes a random walk. Thus, assumption (6) is satisfied if and only if λk(1) has a finite second
moment under both Pk0 and Pk1 , and Ik0 and Ik1 reduce to the Kullback-Leibler numbers between fk0 and
fk1 , i.e.,

Ik0 =

∫
log

(
fk0
fk1

)
fk0 dµ

k and Ik1 =

∫
log

(
fk1
fk0

)
fk1 dµ

k.

The assumption (7) requires that the two hypotheses are symmetric, in the sense that Ik0 = Ik1 for every
k ∈ [K]. This assumption is satisfied in the fundamental problem of testing the drifts of Gaussian random
walks, that is when fk0 = N (θk0 , σ

2
k) and fk1 = N (θk1 , σ

2
k) for some σk > 0 and real numbers θk0 6= θk1 . In

this case, the distribution of λk under Pk1 is the same as the distribution of −λk under Pk0 , and

Ik0 =
(θk1 − θk0)2

2σ2k
= Ik1 .

We will illustrate our theoretical results in this context. Although this is not needed for the logarithmic
efficiency of the proposed algorithms, we will further assume that the hypotheses are homogeneous and
set θk0 = θ0 = 0, θk1 = θ1 = 0.5 and σk = σ = 1. This is a convenient assumption, because in this case the
misclassification probability of the intersection rule, αint(b), does not depend on the true subset of signals,
A. The same is true for the relative error of the proposed estimator of αint(b), i.e., the standard deviation
of the estimator divided by the estimate itself. In Figure 1a we plot this relative error against the estimate
of | log10 αint(b)| for different values of b when K = 20 and K = 100.

The symmetry and homogeneity of this testing problem also guarantees that the misclassification
probability of the gap rule, αgap(b), is the same whenever the true subset of signals has size m and K−m.
Therefore, for a given (even) K it suffices to simulate the gap rule for m = {1, . . . ,K/2}. In Figures 1b
and 1c we plot the relative error of the proposed importance sampling estimator against the estimate of
| log10 αgap(b))| for K = 20 and K = 100, respectively.

From Figure 1, we can see that even when the misclassification probability of the intersection rule is
as small as 10−20, the relative error of the proposed estimator is roughly 1% when K = 20, and 2.5%
when K = 100. On the other hand, when the misclassification probability of the gap rule is as small as
10−20, the maximum relative error of the proposed estimator is achieved when m = K/2 and is roughly
2.5% when K = 20 and 10% when K = 100. Therefore, it is clear that the difficulty of the estimation
problem increases as the number streams increases.

6 DISCUSSION

It is easy to see that the logarithmic efficiency still holds if we employ non-uniform mixtures over
{PC : |C4A| = 1}, and {PC : |C \ A| = |A \ C| = 1} for the estimation of αint(b) and αgap(b),
respectively, and it would be interesting to understand the potential gains of such a non-uniform mixture.
One direction of future work is to consider the computation of alternative error probabilities, such as the
familywise type-I and type-II errors that have been considered by De and Baron (2012b), Bartroff and
Song (2014), Song and Fellouris (2016). Finally, it is interesting to extend the results of the current paper
to a more general framework where the processes {λk} are not necessarily log-likelihood ratios.
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Figure 1: The x-axis is the estimate of | log10 αint(b)| in (a) and | log10 αgap(b)| in (b) and (c). The y-axis
is the relative error, that is the standard deviation of the proposed estimator divided by the estimate itself.
Each curve is computed based on 100, 000 realizations.
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A APPENDIX

In this Appendix we state and prove a general lemma that was used in order to obtain asymptotic lower
bounds on the error probabilities of interest.
Lemma 3 Let {ξi(n) : n ∈ N} (i = 1, 2) be two stochastic processes on some probability space (Ω,F ,P).
The two processes can have arbitrary dependence structure. Suppose that there are positive constants
I1 ≥ I2 > 0 such that for every ε > 0 we have

∞∑
n=1

P

(∣∣∣ 1
n
ξ1(n)− I1

∣∣∣ ≥ ε) <∞, and P

(
lim
n→∞

1

n
ξ2(n) = I2

)
= 1.

Then, for any random time T with P(T <∞) = 1 and any q > 0 we have

lim
b→∞

P (ξ1(T ) ≤ b, ξ2(T + 1) ≥ (1 + q)b) = 0.

Proof. Fix any c ∈ (0, q), and let nb = db(1 + c)/I2e be the smallest integer ≥ b(1 + c)/I2. Notice
that P (ξ1(T ) ≤ b, ξ2(T + 1) ≥ (1 + q)b) is upper bounded by Ib + IIb, where

Ib := P (ξ1(T ) ≤ b, T ≥ nb) , IIb := P (ξ2(T + 1) ≥ (1 + q)b, T < nb) .

Thus it’s sufficient to show as b → ∞, Ib → 0 and IIb → 0. For the first term, we notice that for any
n ≥ nb,

b

n
≤ b

nb
≤ I2

1 + c
≤ I1

1 + c
< I1.

Let ε = c
1+cI1 > 0, then

Ib =
∑
n≥nb

P (ξ1(n) ≤ b, T = n) ≤
∑
n≥nb

P

(
1

n
ξ1(n) ≤ b

n

)
≤
∑
n≥nb

P

(
1

n
ξ1(n) ≤ I1

1 + c

)
=
∑
n≥nb

P

(
1

n
ξ1(n)− I1 ≤ −ε

)
≤
∑
n≥nb

P

(∣∣∣ 1
n
ξ1(n)− I1

∣∣∣ ≥ ε) .
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As b→∞, we have nb →∞. Since by assumption ξ1 convergences completely, we have Ib → 0.
For the second term, since c ∈ (0, q), there exists ε′ > 0 such that for large enough b we have

(1 + q)b

nb
=

(1 + q)b

db(1 + c)/I2e
≥ (1 + ε′)I2.

As a result,

IIb ≤ P

(
max

1≤n≤nb

ξ2(n) ≥ (1 + q)b

)
≤ P

(
1

nb
max

1≤n≤nb

ξ2(n) ≥ (1 + ε′)I2
)
.

By Lemma A.1 of Fellouris and Tartakovsky (2016), we have as nb →∞,

P

(
1

nb
max

1≤n≤nb

ξ2(n) ≥ (1 + ε′)I2
)
→ 0,

which implies IIb → 0. Thus the proof is complete.
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