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ABSTRACT

We consider a system subjected to multiple loads with corresponding capacities to withstand the loads, where
both loads and capacities are random. The system fails when any load exceeds its capacity, and the goal
is to apply Monte Carlo methods to estimate the failure probability. We consider various combinations of
variance-reduction techniques, including stratified sampling, conditional Monte Carlo, and Latin hypercube
sampling. Numerical results are presented for an artificial safety analysis of a nuclear power plant, which
illustrate that the combination of all three methods can greatly increase statistical efficiency.

1 INTRODUCTION

Consider a system with several random loads and corresponding random capacities, and the system fails
when any load exceeds its capacity. The problem is motivated by nuclear power plant (NPP) safety analyses,
and our goal is to estimate the failure probability using Monte Carlo simulation. Current rules of the U.S.
Nuclear Regulatory Commission (2010) (NRC; paragraph 50.46(b)) specify that during a hypothesized
loss-of-coolant accident (LOCA), the peak cladding temperature (PCT) must lie below 2200◦F with at least
0.95 probability. To study a postulated LOCA, nuclear engineers have developed deterministic computer
codes (Hess et al. 2009), which take as input random variables having a given joint distribution and output
a PCT during the LOCA. The input random variables may specify the timing and location of events during
the LOCA, e.g., when and where a pipe break occurs. Each code run is computationally expensive as it
numerically solves systems of differential equations, limiting the number of runs that can be done. To
account for the statistical variability of the Monte Carlo estimates, the NRC also requires that the analysis is
carried out with 95% confidence. Nuclear engineers currently perform such a safety analysis by comparing
a 95% upper confidence bound (UCB) for the 0.95-quantile of the PCT to the fixed capacity 2200◦F. This
is known as a 95/95 analysis; e.g., see Section 24.9 of U.S. Nuclear Regulatory Commission (2011). The
difference between the fixed capacity and the UCB provides a type of safety margin. In addition to the
PCT, the NRC further indicates limits on the core-wide oxidation (CWO < 1%) and the maximum local
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oxidation (MLO < 17%). Thus, NPP safety analyses currently consider q = 3 criteria (PCT, CWO, and
MLO) with their corresponding (random) loads and (fixed) capacities.

Important recent changes in NPPs have prompted exploring alternative approaches to assess risk. Many
NPPs are now aging past their original 40-year operating licences, with resulting component wear, and
licensees are applying for extensions. Also, plants are sometimes being run at higher output levels, known
as power uprates (Dube et al. 2014), to increase their economic viability. These developments can lead
to degradations in safety margins that were previously deemed acceptable. To better understand their
impacts, the Nuclear Energy Agency Committee on the Safety of Nuclear Installations (2007) developed
a framework called risk-informed safety-margin characterization (RISMC). The approach differs from the
previous 95/95 analysis in several key aspects. First, rather than assuming fixed capacities, RISMC allows
them to be random (with specified distributions). Moreover, instead of focusing on quantiles, RISMC
considers the failure probability θ that at least one load exceeds its capacity. RISMC also partitions the
sample space of a hypothesized accident into a finite collection of scenarios based on an event tree, where
each scenario has a known probability of occurring but the failure probability within each scenario still
needs to be estimated. The sample-space decomposition leads to applying stratified sampling (SS) to
estimate θ . To account for the sampling error of the Monte Carlo results, we further want a UCB for θ .

The current paper combines SS with other variance-reduction techniques (VRTs)—Latin hypercube
sampling (LHS) and conditional Monte Carlo (CMC)—with the goal of estimating the failure probability
with q≥ 1 criteria. (See Chapter 4 of Glasserman 2004 and Chapter V of Asmussen and Glynn 2007 for
overviews of these and other VRTs.) We provide asymptotically valid (as the total sample size grows large)
UCBs for θ when applying replicated LHS (Iman 1981). An important modeling issue when q > 1 is how
to incorporate dependencies among the criteria, especially for the capacities. In actual NPP safety analyses,
detailed computed codes (Hess et al. 2009) simultaneously generate the multiple criteria’s loads, thereby
inducing particular dependencies. But there have not been any previous multi-criteria RISMC studies, so
the issue of how to specify dependence among the capacities needs to be addressed. In our numerical
experiments we apply Gaussian copulas (Nelsen 2006) to model the dependence structure, but this is a
topic that deserves further study. Our numerical experiments show that the combination of the three VRTs
can work synergistically to greatly reduce variance compared to applying smaller combinations of VRTs.

Our work builds and extends results of several previous papers. The initial studies with the RISMC
approach in Sherry, Gabor, and Hess (2013) and Dube et al. (2014) consider only a single criterion (PCT,
so q = 1). They apply a combination of SS and LHS, omitting CMC. Moreover, they do not present UCBs
to account for statistical error. Nakayama (2015) considers the combination of all three VRTs in the current
paper and provides an asymptotically valid UCB, but for only a single criterion (PCT, so q = 1). Avramidis
and Wilson (1996) study the combination of LHS and CMC but omit SS, which plays a critical role in
RISMC; also, the authors do not provide UCBs.

The rest of the paper unfolds as follows. Section 2 lays out the mathematical framework of the problem.
Section 3 reviews the use of simple random sampling to estimate θ . Sections 4, 5, and 6 develop the
VRTs SS, LHS, and CMC, respectively, in combinations. Numerical results for a synthetic model of a
RISMC analysis are presented in Section 7. In Section 8, we provide concluding remarks. The proofs of
the theorems and additional numerical results appear in a follow-up paper (Alban et al. 2016).

2 MATHEMATICAL FRAMEWORK

For a fixed number q≥ 1 of criteria, let L = (L[1],L[2], . . . ,L[q]) (resp., C = (C[1],C[2], . . . ,C[q])) be a random
vector of q loads (resp., capacities). (Throughout the paper, all vectors are column vectors.) For a
nuclear safety analysis, we have q = 3 criteria, with (L[1],C[1]), (L[2],C[2]), and (L[3],C[3]) representing
load-capacity pairs for the PCT, CWO, and MLO criteria, respectively. Let H be the (unknown) joint
cumulative distribution function (CDF) of (L,C), and let F (resp., G) denote the marginal CDF of the vector
L (resp., C). Let P (resp., E) be the probability (resp., expectation) operator, and let I be the indicator
function, which returns 1 (resp., 0) for a true (resp., false) argument.

303



Alban, Darji, Imamura, and Nakayama

We define θ as the probability that any load exceeds its capacity:

θ = P
(
∪q

k=1

{
L[k] ≥C[k]

})
= E

[
I
(
∪q

k=1

{
L[k] ≥C[k]

})]
. (1)

When estimating an expectation, we call the quantity whose expectation is desired a response function,
which in (1) is an indicator function. Our goal is to determine if the failure probability is acceptably small,
i.e., if θ < θ0 for some given 0 < θ0 < 1. We further require establishing this with a given confidence level
0 < γ < 1. Thus, we summarize the requirements for an acceptably safe system as follows:

given constants 0 < θ0 < 1 and 0 < γ < 1, determine with confidence level γ if θ < θ0. (2)

The values of θ0 and γ may be specified by a regulator, e.g., θ0 = 0.05 and γ = 0.95.
We can use a hypothesis test to satisfy requirement (2). Let H0 : θ ≥ θ0 be the null hypothesis and

H1 : θ < θ0 be the alternative. We perform the hypothesis test at a significance level α = 1−γ by carrying
out a total of n simulation runs. From the output of the n runs, we construct a point estimator θ̂(n) of θ ,
along with a γ-level upper confidence bound B(n), i.e., P(θ ≤ B(n)) = γ . Our methods to build UCBs are
derived from central limit theorems (CLTs), so that B(n) is instead an asymptotic γ-level UCB:

lim
n→∞

P(θ ≤ B(n)) = γ. (3)

Therefore, we can asymptotically satisfy requirement (2) with the following decision rule:

reject H0 if and only if B(n)< θ0, (4)

3 SIMPLE RANDOM SAMPLING

We first consider estimating θ with simple random sampling (SRS), which is also known as naive simulation,
standard simulation, or crude Monte Carlo. To do this, generate a sample of n ≥ 2 independent and
identically distributed (i.i.d.) copies (Li,Ci), i = 1,2, . . . ,n, of (L,C) ∼ H, where Li = (L[1]

i ,L[2]
i , . . . ,L[q]

i ),
Ci = (C[1]

i ,C[2]
i , . . . ,C[q]

i ), and ∼ means “has distribution.” Then the SRS point estimator of θ in (1) is
θ̂SRS(n) = (1/n)∑

n
i=1 I(∪q

k=1{L
[k]
i ≥C[k]

i }), which estimates the expectation in (1) by averaging i.i.d. copies of
the response function. Because I(∪q

k=1{L
[k]
i ≥C[k]

i }), i = 1,2, . . . ,n, are i.i.d. and bounded, the ordinary CLT
(e.g., Theorem 27.1 of Billingsley 1995) implies [

√
n/σ̂SRS(n)]

[
θ̂SRS(n)−θ

]
⇒ N(0,1) as n→ ∞, where

⇒ denotes weak convergence (e.g., see Chapter 5 of Billingsley 1995), N(a,b2) is a normal random variable
with mean a and variance b2, and σ̂2

SRS(n) = θ̂SRS(n)[1− θ̂SRS(n)] consistently estimates σ2
SRS = θ [1−θ ];

i.e, σ̂2
SRS(n)⇒ σ2

SRS as n→∞. Let zγ be the γ-level upper one-sided critical point of N(0,1), which satisfies
P(N(0,1)≤ zγ) = γ , e.g., z0.95 = 1.645. Then BSRS(n)≡ θ̂SRS(n)+ zγ σ̂SRS(n)/

√
n is an asymptotic γ-level

UCB satisfying (3). A simple modification of the well-known sign test (e.g., Example 3.2.4 of Lehmann
1999), this approach has been proposed for multi-criteria nuclear safety analyses with fixed capacities in
Section 4.2 of Pál and Makai (2013), while our setup allows for random C.

4 STRATIFIED SAMPLING

One key aspect of RISMC (see Section 1) is decomposing the sample space into a finite number of scenarios
through an event tree. Figure 1 portrays an example of an event tree, originally from Dube et al. (2014),
with t = 4 scenarios for a hypothesized station blackout (SBO). The event tree has 3 intermediate events
E1,E2,E3, which determine how the SBO progresses. For example, the lower (resp., upper) branch of E2
denotes that a safety relief valve is stuck open (resp., closes properly), the number in each case indicating its
probability of occurrence, which is assumed known. Thus, the t = 4 scenarios are determined by following
paths from left to right, and the probability of a scenario is computed as the product of the branches taken
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Scenario

1

3

4

2

Initiating
Event E E E

SBO 0.99938

6.2E-4

1.9E-3

0.9981
0.919

8.1E-2

1 2 3

Intermediate Events

Figure 1: An event tree for a hypothesized station blackout.

for the intermediate events along the path. For example, scenario 4 has probability 0.99938×1.9E-3. But
each scenario’s failure probability is unknown and is estimated via some form of Monte Carlo.

The event-tree framework is well suited for applying stratified sampling. In general, SS partitions the
sample space into t ≥ 1 strata, where each stratum has a known probability of occurring; see Section 4.3 of
Glasserman (2004) for an overview of SS. To apply SS, define a stratification variable A, which is generated
along with (L,C) during the simulation, and partition the support R of A into t ≥ 1 subsets R1,R2, . . . ,Rt ,
with R = ∪t

s=1Rs and Rs∩Rs′ = /0 for s 6= s′. Let λ = (λs : s = 1,2, . . . , t), where each λs = P(A ∈ Rs) is
assumed known. We call each Rs a stratum, and its index s a scenario. In the case of an event tree, we can
take A to be the randomly chosen scenario, so Rs = {s} for s = 1,2, . . . , t, with, e.g., λ4 = 0.99938×1.9E-3
in Figure 1. We assume that for each Rs, we can sample a load and capacity pair from its conditional
distribution given that A ∈ Rs. Let (L(s),C(s)) be a random vector having the conditional distribution of

(L,C) given A ∈ Rs, where L(s) = (L[1]
(s),L

[2]
(s), . . . ,L

[q]
(s)) and C(s) = (C[1]

(s),C
[2]
(s), . . . ,C

[q]
(s)). Let H(s) denote the

joint CDF of (L(s),C(s)) in scenario s, and let F(s) (resp., G(s)) be the marginal CDF of the vector of loads
L(s) (resp., capacities C(s)). Then we can express the overall failure probability in (1) as

θ =
t

∑
s=1

P(A ∈ Rs)P
(
∪q

k=1

{
L[k] ≥C[k]

}∣∣∣ A ∈ Rs

)
=

t

∑
s=1

λsθ(s) (5)

by the law of total probability, where each λs is known, but each

θ(s) = P
(
∪q

k=1

{
L[k]
(s) ≥C[k]

(s)

})
= E

[
I
(
∪q

k=1

{
L[k]
(s) ≥C[k]

(s)

})]
(6)

is not. We then use some form of simulation to estimate each θ(s), which we combine as in (5) to obtain
an estimator of θ . (A RISMC study may also want to identify unsafe scenarios s for which θ(s) is large.)

Specifically, we implement SS with overall sample size n by letting ns = ηsn be the sample size allocated
to scenario s, where ηs, s = 1,2, . . . , t, are user-specified positive constants summing to 1. (As we will
require each ns→∞ for our asymptotic theory, the number t of strata cannot be too large in practice, limiting
the number of intermediate events that can be considered in an event tree.) We call η = (ηs : s = 1,2, . . . , t)
the SS allocation. One possibility is η = λ , but we allow other choices. For simplicity, assume that ns is an
integer; otherwise, let ns = bηsnc, where b·c denotes the floor function. For each scenario s = 1,2, . . . , t, let
(L(s),i,C(s),i), i= 1,2, . . . ,ns, be a sample of ns i.i.d. copies of (L(s),C(s)), where L(s),i = (L[1]

(s),i,L
[2]
(s),i, . . . ,L

[q]
(s),i)

(resp., C(s),i = (C[1]
(s),i,C

[2]
(s),i, . . . ,C

[q]
(s),i)) is an observation of the q criteria’s loads (L[1],L[2], . . . ,L[q]) (resp.,

capacities (C[1],C[2], . . . ,C[q])) given A ∈ Rs. The response function in (6) is an indicator, and we estimate
its expectation θ(s) by

θ̂(s),SS,η(n) =
1
ns

ns

∑
i=1

I
(
∪q

k=1

{
L[k]
(s),i ≥C[k]

(s),i

})
, (7)
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where the subscript SS denotes stratified sampling with simple random sampling applied within each
stratum. The SS estimator of θ = ∑

t
s=1 λsθ(s) in (5) is then

θ̂SS,η(n) =
t

∑
s=1

λsθ̂(s),SS,η(n). (8)

For each scenario s = 1,2, . . . , t, the estimator θ̂(s),SS,η(n) satisfies a CLT
√

n
σ̂(s),SS,η(n)/

√
ηs

[
θ̂(s),SS,η(n)−θ(s)

]
⇒ N(0,1) (9)

as n→ ∞, where σ̂2
(s),SS,η(n) ≡ θ̂(s),SS,η(n)[1− θ̂(s),SS,η(n)] consistently estimates σ2

(s),SS ≡ θ(s)[1− θ(s)].

(The extra factor
√

ηs appears on the left side of (9) because the scaling is
√

n but the estimator θ̂(s),SS,η(n) in
(7) is based on a sample size of ns = ηsn.) Assuming that the t scenarios for SS are simulated independently,
we then have that (9) jointly holds for s= 1,2, . . . , t, by Problem 29.2 of Billingsley (1995), so the SS estimator
θ̂SS,η(n) of the overall failure probability θ satisfies the CLT [

√
n/σ̂SS,η(n)]

[
θ̂SS,η(n)−θ

]
⇒ N(0,1) as

n→∞, where σ̂2
SS,η(n)≡∑

t
s=1 λ 2

s σ̂2
(s),SS,η(n)/ηs consistently estimates σ2

SS,η ≡∑
t
s=1 λ 2

s σ2
(s),SS/ηs; e.g., see

p. 215 of Glasserman (2004). Finally, an asymptotic γ-level UCB for θ satisfying (3) when applying SS is

BSS,η(n) = θ̂SS,η(n)+ zγ

σ̂SS,η(n)√
n

. (10)

5 COMBINED SS AND LATIN HYPERCUBE SAMPLING

LHS is one of the most popular VRTs applied in nuclear engineering; e.g., Helton and Davis (2003) cite
over 300 references using LHS. Further incorporating LHS requires imposing additional problem structure.
Let U [0,1) represent a uniform random number on the unit interval, and we assume the following:
Assumption 1 For each scenario s = 1,2, . . . , t, there is a deterministic function w(s) : ℜds →ℜ2q such that
if U1,U2, . . . ,Uds are ds i.i.d. U [0,1) random variables, then

(L[1]
(s),L

[2]
(s), . . . ,L

[q]
(s),C

[1]
(s),C

[2]
(s), . . . ,C

[q]
(s)) = w(s)(U1,U2, . . . ,Uds)∼ H(s). (11)

The function w(s) takes ds i.i.d. U [0,1) random numbers as inputs, and transforms them into an
observation of the load and capacity vectors having the correct joint distribution H(s) for scenario s. In the
context of nuclear safety, the function w(s) first converts the uniforms into a random vector X having a
specified joint distribution, where the components of X may be dependent and may have different marginal
distributions. Then w(s) feeds X into the nuclear-specific computer code to produce load and capacity
vectors, typically by numerically solving a system of differential equations. The function w(s) is analytically
intractable and computationally expensive to execute, motivating the use of Monte Carlo methods and VRTs.

Before explaining the implementation of LHS, we first describe how to employ SRS in the setting of
Assumption 1 to obtain ns i.i.d. outputs of load and capacity vectors for scenario s. Arrange i.i.d. U [0,1)
random numbers U(s),i, j, 1≤ i≤ ns, 1≤ j ≤ ds, into an ns×ds grid. Then applying w(s) to each grid row
yields

(L(s),1,C(s),1) = w(s)(U(s),1,1, U(s),1,2, . . . , U(s),1,ds) ∼ H(s),

(L(s),2,C(s),2) = w(s)(U(s),2,1, U(s),2,2, . . . , U(s),2,ds) ∼ H(s),
...

...
...

...
. . .

...
...

...
(L(s),ns ,C(s),ns) = w(s)(U(s),ns,1, U(s),ns,2, . . . , U(s),ns,ds) ∼ H(s)

(12)

by (11), where L(s),i = (L[1]
(s),i,L

[2]
(s),i, . . . ,L

[q]
(s),i) (resp., C(s),i = C[1]

(s),i,C
[2]
(s),i, . . . ,C

[q]
(s),i)) is the vector of loads

(resp., capacities) for the ith run, i = 1,2, . . . ,ns. Also, (L(s),i,C(s),i), i = 1,2, . . . ,ns, are ns independent
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pairs by the independence of the rows of uniforms in (12), but L(s),i and C(s),i may be dependent. We can
then use them to construct the estimator θ̂(s),SS,η(n) in (7). Moreover, assuming the uniform grids in (12)
across scenarios s = 1,2, . . . , t, are independent, we then apply (8) to obtain the asymptotic UCB in (10).

We now explain how to implement LHS to obtain a dependent sample of ns pairs of load and capacity
vectors for a scenario s. For each s = 1,2, . . . , t, and each input dimension j = 1,2, . . . ,ds, in (11), let
π(s), j = (π(s), j(1),π(s), j(2), . . . ,π(s), j(ns)) be a random permutation of (1,2, . . . ,ns); i.e., each of the ns!
permutations of (1,2, . . . ,ns) is equally likely, and π(s), j(i) is the number to which i is mapped in permutation
π(s), j. Also, let π(s), j, j = 1,2, . . . ,ds, be independent random permutations, independent of the i.i.d. U [0,1)
random numbers U(s),i, j, 1 ≤ i ≤ ns, 1 ≤ j ≤ ds. Next let V(s),i, j = [π(s), j(i)− 1+U(s),i, j]/ns, which we
arrange into an ns×ds grid. We then apply the function w(s) to each row of the grid to get

(L(s),1,C(s),1) = w(s)(V(s),1,1, V(s),1,2, . . . , V(s),1,ds),

(L(s),2,C(s),2) = w(s)(V(s),2,1, V(s),2,2, . . . , V(s),2,ds),
...

...
...

...
. . .

...
(L(s),ns ,C(s),ns) = w(s)(V(s),ns,1, V(s),ns,2, . . . , V(s),ns,ds),

(13)

where L(s),i = (L[1]
(s),i,L

[2]
(s),i, . . . ,L

[q]
(s),i) and C(s),i = (C[1]

(s),i,C
[2]
(s),i, . . . ,C

[q]
(s),i), i = 1,2, . . . ,ns. It is easy to show

that each V(s),i, j ∼ U [0,1), with the ds entries in each row i of (13) being independent. Thus, each
(L(s),i,C(s),i) ∼ H(s) by (11). But the ns inputs in each column j of (13) are dependent as they share the
same permutation π(s), j, so (L(s),i,C(s),i), i = 1,2, . . . ,ns, are dependent. Nevertheless, θ̂(s),SS+LHS,η(n) ≡
(1/ns)∑

ns
i=1 I(∪q

k=1{L
[k]
(s),i ≥C[k]

(s),i}) is an unbiased estimator of θ(s) in (6); i.e., E[θ̂(s),SS+LHS,η(n)] = θ(s).
The fact that LHS outputs across rows are not independent complicates the form and estimation of the

asymptotic variance of the estimator θ̂(s),SS+LHS,η(n)of θ(s). To avoid this issue, we use replicated LHS (rLHS)
(Iman 1981). Rather than creating one LHS grid of dependent uniforms with ns rows for scenario s, rLHS
generates b≥ 2 independent replications (e.g., b = 10) of LHS grids, each with ms = ns/b rows. Thus, we
obtain b independent samples, allowing us to estimate the failure probabilities, variance, and upper confidence
bound as follows. For each replication r = 1,2, . . . ,b, let θ̂

〈r〉
(s) (n) = (1/ms)∑

ms
i=1 I(∪q

k=1{L
〈r〉[k]
(s),i ≥C〈r〉[k](s),i }),

where L〈r〉[k](s),i and C〈r〉[k](s),i are the ith observation of the load and capacity of criterion k = 1,2, . . . ,q, for
scenario s = 1,2, . . . , t, in replication r. The estimator of the overall failure probability θ in (5) from
replication r is θ̂ 〈r〉(n) = ∑

t
s=1 λsθ̂

〈r〉
(s) (n). The final SS+rLHS estimator of θ from all b replications using

SS allocation η across scenarios is θ̂SS+rLHS,η ,b(n) = (1/b)∑
b
r=1 θ̂ 〈r〉(n).

To derive a UCB for θ when applying SS+rLHS with an overall sample size of n, let S2
b(n) =

(1/(b−1))∑
b
r=1
[
θ̂ 〈r〉(n)− θ̂SS+rLHS,η ,b(n)

]2
be the sample variance of θ̂ (r)(n), r = 1,2, . . . ,b. Let τb−1,γ

be the upper one-sided γ-level critical point of a Student-t random variable Tb−1 with b− 1 degrees of
freedom; i.e., γ = P(Tb−1 ≤ τb−1,γ). A proof of the following result is in Alban et al. (2016).
Theorem 1 Under Assumption 1, an asymptotic γ-level UCB for θ when using SS+rLHS is BSS+rLHS,η ,b(n)=
θ̂SS+rLHS,η ,b(n)+ τb−1,γSb(n)/

√
b; i.e., limn→∞ P(θ ≤ BSS+rLHS,η ,b(n)) = γ as in (3) for any fixed number

b≥ 2 of replications for rLHS and any SS allocation η .

6 COMBINED SS, CONDITIONAL MONTE CARLO, AND LHS

Conditional Monte Carlo reduces variance by analytically integrating out some of the variability through
a conditional expectation; see Section V.4 of Asmussen and Glynn (2007) for an overview of CMC. The
method is based on the well-known (e.g., pp. 448 and 456 of Billingsley 1995) formulas

E[Y ] = E[E[Y |Z]] and Var[Y ] = Var[E[Y |Z]]+E[Var[E|Z]]≥ Var[E[Y |Z]]. (14)
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Applying the first relation in (14) to (6) with Y = I(∪q
k=1{L

[k]
(s) ≥C[k]

(s)}) and Z = L(s) yields

θ(s) = E
[
E
[

I
(
∪q

k=1

{
L[k]
(s) ≥C[k]

(s)

})∣∣∣L(s)

]]
= E

[
J(s)(L(s))

]
, (15)

where the SS+CMC response function J(s)(L(s))≡ P(∪q
k=1{C

[k]
(s) ≤ L[k]

(s)}|L(s)) is a function of only the load
vector L(s) as the capacity vector C(s) has been integrated out through the conditional expectation. Also,

J(s)(L(s)) has no greater variance than I(∪q
k=1{L

[k]
(s) ≥C[k]

(s)}) by the second relation in (14).
A key to being able to apply CMC in practice is the tractability of the conditional expectation J(s)(L(s)).

To this end, we extend Assumption 1 through the following:
Assumption 2 For each scenario s = 1,2, . . . , t, there are deterministic functions w(s),L : ℜds,L → ℜq and
w(s),C : ℜds,C →ℜq such that ds,L +ds,C = ds in Assumption 1, and the function w(s) in (11) satisfies

w(s)(u1,u2, . . . ,uds) =
(
w(s),L(u1,u2, . . . ,uds,L),w(s),C(uds,L+1,uds,L+2, . . . ,uds,L+ds,C)

)
for every (u1,u2, . . . ,uds) ∈ [0,1)ds .

Whereas Assumption 1 states that there is a single vector-valued function w(s) that generates both the
loads and capacities for scenario s, Assumption 2 stipulates that w(s) splits into two functions operating on
disjoint sets of inputs, where the first function w(s),L generates the loads and the second w(s),C generates
the capacities. Hence, if U1, . . . ,Uds,L ,Uds,L+1, . . . ,Uds,L+ds,C are ds i.i.d. U [0,1) random variables, then

L(s) = w(s),L(U1,U2, . . . ,Uds,L)∼ F(s) and C(s) = w(s),C(Uds,L+1,Uds,L+2, . . . ,Uds,L+ds,C)∼ G(s), (16)

where L(s) = (L[1]
(s),L

[2]
(s), . . . ,L

[q]
(s)) and C(s) = (C[1]

(s),C
[2]
(s), . . . ,C

[q]
(s)). Because w(s),L and w(s),C operate on disjoint

sets of i.i.d. uniform inputs, we then see that L(s) and C(s) are independent under Assumption 2. For nuclear
safety analyses, the independence is reasonable because the loads arise from how the hypothesized accident
unfolds, whereas the capacities are determined by material properties and manufacturing variability.

We next give an expression to compute the response function J(s)(L(s)) in (15). For integers 1≤ p≤ q

and 1≤ k1 < k2 < · · ·< kp ≤ q, define G[k1,k2,...,kp]

(s) (x1,x2, . . . ,xp) = P(∩p
l=1{C

[kl ]
(s) ≤ xl}) for any real-valued

constants x1,x2, . . . ,xp, so G[k1,k2,...,kp]

(s) is the marginal joint CDF of capacities C[kl ]
(s) , l = 1,2, . . . , p. We

assume each G[k1,k2,...,kp]

(s) can be computed analytically or numerically. The independence of L(s) and C(s)

implied by Assumption 2 ensures P(∩p
l=1{C

[kl ]
(s) ≤ L[kl ]

(s) }|L(s)) = G[k1,k2,...,kp]

(s) (L[k1]
(s) ,L

[k2]
(s) , . . . ,L

[kp]

(s) ). Thus, the
inclusion-exclusion principle permits us to write the response function as

J(s)(L(s)) =
q

∑
p=1

(−1)p+1
∑

1≤k1<k2<···<kp≤q
G[k1,k2,...,kp]

(s) (L[k1]
(s) ,L

[k2]
(s) , . . . ,L

[kp]

(s) ), (17)

whose number of terms grows exponentially in the number q of criteria, but is manageable for small q.
To estimate θ(s) via (15) and (17), we only need to generate the loads as the capacities have been

analytically integrated out from J(s)(L(s)) and replaced by their marginal CDFs in (17). Thus, when
employing SS, CMC, and LHS under Assumption 2, we generate an LHS grid of dependent uniforms V(s),i, j
as in (13) but with only ds,L columns instead of ds. We then apply the function w(s),L to each row to get

L(s),1 = w(s),L(V(s),1,1, V(s),1,2, . . . , V(s),1,ds,L) ∼ F(s),
L(s),2 = w(s),L(V(s),2,1, V(s),2,2, . . . , V(s),2,ds,L) ∼ F(s),

...
...

...
...

. . .
...

L(s),ns = w(s),L(V(s),ns,1, V(s),ns,2, . . . , V(s),ns,ds,L) ∼ F(s),

(18)
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where L(s),i = (L[1]
(s),i,L

[2]
(s),i, . . . ,L

[q]
(s),i), i = 1,2, . . . ,ns. Finally, the outer expressions in (15) imply that an

unbiased estimate of θ(s) is θ̂(s),SCL,η(n) = (1/ns)∑
ns
i=1 J(s)(L(s),i), where SCL denotes SS+CMC+LHS.

The dependence among J(s)(L(s),i), i = 1,2, . . . ,ns, from LHS complicates the expression for and the
construction of a consistent estimator of the asymptotic variance of the estimator θ̂(s),SCL,η(n). To avoid
these issues, we instead apply rLHS. For each scenario s = 1,2, . . . , t, we generate b≥ 2 independent LHS
grids of dependent uniforms, each with ms = ns/b rows and ds,L columns. For each replication r = 1,2, . . . ,b,
let θ̃

〈r〉
(s) (n) = (1/ms)∑

ms
i=1 J(s)(L

〈r〉
(s),i), where L〈r〉(s),i = (L〈r〉[1](s),i ,L

〈r〉[2]
(s),i , . . . ,L

〈r〉[q]
(s),i ) is the observation of the load

vector from the ith row in replication r for scenario s = 1,2, . . . , t. The estimator of the overall failure
probability θ in (5) from replication r is θ̃ 〈r〉(n) = ∑

t
s=1 λsθ̃

〈r〉
(s) (n). The final SS+CMC+rLHS estimator of

θ from all b replications using SS allocation η across scenarios is θ̂SCrL,η ,b(n) = (1/b)∑
b
r=1 θ̃ 〈r〉(n), where

SCrL is an abbreviation for SS+CMC+rLHS. To derive a UCB for θ when applying SS+CMC+rLHS with
an overall sample size of n, let S̃2

b(n) = (1/(b−1))∑
b
r=1
[
θ̃ 〈r〉(n)− θ̂SCrL,η ,b(n)

]2
be the sample variance

of θ̃ (r)(n), r = 1,2, . . . ,b. Then we have the following result; see Alban et al. (2016) for a proof.
Theorem 2 Under Assumptions 1 and 2, an asymptotic γ-level UCB for θ when using SS+CMC+rLHS
is BSCrL,η ,b(n) = θ̂SCrL,η ,b(n)+τb−1,γ S̃b(n)/

√
b; i.e., limn→∞ P(θ ≤ BSCrL,η ,b(n)) = γ as in (3) for any fixed

number b≥ 2 of replications for rLHS and any SS allocation η .

7 NUMERICAL RESULTS

We now present numerical results showing the benefits of combining the VRTs in this paper. Rather than
using a computer code (Hess et al. 2009) as in an actual nuclear safety analyses (see Section 1), we instead
work with a synthetic model of a hypothesized NPP station blackout having the event tree in Figure 1 with
t = 4 scenarios. We consider q = 3 criteria: PCT, CWO, and MLO. For each scenario s = 1,2, . . . , t, we
assume that loads L(s) are independent of capacities C(s), as implied by Assumption 2, which we previously
noted is reasonable in our context. The marginal load distributions vary across scenarios, but we keep the
capacity distributions the same.

The initial RISMC studies in Sherry, Gabor, and Hess (2013) and Dube et al. (2014) consider only
q = 1 criterion, PCT, and assume the CDF G[1] of the capacity C[1] for PCT is triangular with mode
c[1] = 2200 and support [a[1],b[1]] = [1800,2600], which is the same for all scenarios s. The mode c[1] is the
prescribed fixed limit of the NRC (see Section 1), and the support [a[1],b[1]] is symmetric around the mean
with approximately 20% separation. We also adopt this structure for the marginal CDFs G[2] and G[3] of
the CWO and MLO capacities C[2] and C[3], respectively. Thus, G[2] (resp., G[3]) is a triangular distribution
with mean c[2] = 1 (resp., c[3] = 17) and support [a[2],b[2]] = [0.8,1.2] (resp., [a[3],b[3]] = [13.6,20.4]).

Nakayama (2015) considers a lognormal model for the load of the single criterion PCT, and we use
the same for the PCT load in our problem with q = 3 criteria. A lognormal random variable for the PCT
in scenario s can be obtained by exponentiating a N(µ(s),σ

2
(s)) variable, and we set µ(s) = 7.4+0.1s and

σ(s) = 0.01+0.01s for s = 1,2,3,4. Let F [1]
(s) be the corresponding lognormal load CDF for scenario s.

Nutt and Wallis (2004) present PCT, CWO and MLO load data (sample sizes ≈ 180) output from an
actual nuclear computer code. Based on the shapes of the data’s histograms, we chose marginal Weibull
CDFs for the CWO and MLO loads for each scenario s. For the CWO load in scenario s, the CDF

is F [2]
(s) (x) = 1− exp{−(x/α

[2]
(s))

β
[2]
(s)} for x ≥ 0, where α

[2]
(s) and β

[2]
(s) are the scale and shape parameters,

respectively. We set α
[2]
(s) = 0.010+ 0.005s and β

[2]
(s) = 0.90+ 0.02s for scenario s = 1,2,3,4, where the

values for s = 1 are the maximum likelihood estimates (MLEs) from the Nutt and Wallis (2004) data.
Applying the Kolmogorov-Smirnov (KS) and chi-squared goodness-of-fit tests to the selected CDF for s = 1
results in p-values of 0.22 and 0.61, respectively, so we do not reject the null hypothesis (at significance
level 0.05) that the data are from our chosen distribution. The MLO load Weibull CDF F [3]

(s) has parameters
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α
[3]
(s) = 0.35+0.3s and β

[3]
(s) = 0.82+0.03s for each scenario s, where the values for s = 1 are the MLEs.

The p-values for the KS and chi-squared tests for s = 1 are 0.82 and 0.08, so neither rejects our choice.
We have thus far specified only the marginal distributions of the loads and capacities, and we further

need to identify the dependency structure among the variables. Even though the loads are independent
of capacities, we still want dependence across criteria among the loads and among the capacities. We
implemented the Gaussian copula (also called NORTA by Cario and Nelson 1997) to model this dependence.
(In Alban et al. 2016, we also use a Student-t copula.) A copula (Nelsen 2006) is the joint CDF of a
random vector in which each of its elements has a marginal U [0,1) distribution. To describe the Gaussian
copula, we start with a multivariate normal random vector X = (X [1],X [2], . . . ,X [q]) with mean vector of all
0s and covariance matrix Σ = (Σ[i, j] : i, j = 1,2, . . . ,q), where Σ[i, j] = Cov(X [i],X [ j]) and Σ[i,i] = 1 for each i,
so the elements of Σ are correlations. Each X [k] has the N(0,1) CDF Φ, and we define the random vector

W = (W [1],W [2], . . . ,W [q]) with each W [k] ≡Φ(X [k])∼U [0,1). (19)

The joint CDF of W is then a Gaussian copula with input correlation matrix Σ. If Mk is a specified marginal
CDF, we can transform W into a random vector Y = (Y [1],Y [2], . . . ,Y [q]) in which marginally each Y [k] ∼Mk

by setting Y [k] = M−1
k (W [k]). The Gaussian copula determines the dependence structure of Y .

Our models generate the q= 3 loads using a Gaussian copula, and independently generate the q capacities
with its own Gaussian copula. As in (19), let WL = (W [1]

L ,W [2]
L ,W [3]

L ) (resp., WC = (W [1]
C ,W [2]

C ,W [3]
C )) be a

vector with Gaussian copula having input correlation matrix ΣL = (Σ
[i, j]
L : i, j = 1,2,3) (resp., ΣC = (Σ

[i, j]
C :

i, j = 1,2,3)), where each entry in WL and WC has a marginal U [0,1) CDF. We then transform WL (resp.,
WC) into loads (resp., capacities) with marginal CDFs F [1]

(s) ,F
[2]
(s) ,F

[3]
(s) (resp., G[1],G[2],G[3]) via

(L[1]
(s),L

[2]
(s),L

[3]
(s)) = ((F [1]

(s) )
−1(W [1]

L ),(F [2]
(s) )
−1(W [2]

L ),(F [3]
(s) )
−1(W [3]

L )), (20)

(C[1],C[2],C[3]) = ((G[1])−1(W [1]
C ),(G[2])−1(W [2]

C ),(G[3])−1(W [3]
C )). (21)

We assume that WL is independent of WC, so loads are independent of capacities.
Nutt and Wallis (2004) estimate the correlations among the three criteria’s loads from their data as

ρ
[1,2]
L = 0.85, ρ

[1,3]
L = 0.87, and ρ

[2,3]
L = 0.83. However, these values are the output correlations of L[1]

(s), L[2]
(s),

and L[3]
(s), and we need to specify the input correlations ΣL of the multivariate normal X giving rise to the

Gaussian copula. The output correlation is often a complicated and not-easily-computed function of the
input correlations, and typically, it is not clear how to directly specify the input correlation to obtain the
desired output correlation. Instead, we applied a search algorithm suggested by Cario and Nelson (1997)
to obtain estimates of the load input correlations as Σ

[1,2]
L = 0.92, Σ

[1,3]
L = 0.96, and Σ

[2,3]
L = 0.86, which we

used for all scenarios s. For the capacity input correlations, we set Σ
[1,2]
C = Σ

[1,3]
C = Σ

[2,3]
C = 0.85 for all s.

Finally, we specify the structure in Assumptions 1 and 2 used for implementing LHS and CMC. As
Monte Carlo methods become attractive alternatives to numerical quadrature for computing multidimensional
integrals when the input dimension is high, we artificially increase the number ds of uniform inputs for the
function w(s) in Assumption 2 as follows. For each scenario s, we define the input dimensions for the load

and capacity functions w(s),L and w(s),C in (16) as ds,L = d[1]
s,L +d[2]

s,L +d[3]
s,L and ds,C = 3, respectively, with

d[1]
s,L = d[2]

s,L = d[3]
s,L = 10, so ds = ds,L + 3. Let U1,U2, . . . ,Uds be ds i.i.d. U [0,1) random numbers, and set

D[1]
L,(s) = ∑

d[1]
s,L

j=1 Φ−1(U j)/
√

d[1]
s,L, D[2]

L,(s) = ∑
d[1]

s,L+d[2]
s,L

j=d[1]
s,L+1

Φ−1(U j)/
√

d[2]
s,L, D[3]

L,(s) = ∑
ds,L

j=d[1]
s,L+d[2]

s,L+1
Φ−1(U j)/

√
d[3]

s,L,

and D[k]
C,(s) = Φ−1(Uds,L+k) for k = 1,2,3. The vectors DL,(s) = (D[k]

L,(s) : k = 1,2,3) and DC,(s) = (D[k]
C,(s) : k =

1,2,3) have i.i.d. N(0,1) entries. Let ΓL (resp., ΓC) be a Cholesky factor of the input correlation matrix ΣL
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(resp., ΣC), i.e., ΣL = ΓLΓ>L and ΣC = ΓCΓ>C , where ΓL and ΓC are lower triangular. Then, XL,(s) = ΓLDL,(s)
and XC,(s) = ΓCDC,(s) are independent normal random vectors with mean vectors 0 and correlation matrices
ΣL and ΣC, respectively. Finally we use (19), (20), and (21) with X = XL,(s) and X = XC,(s) to obtain an
observation of the loads and capacities.

Table 1 presents numerical results from applying four different combinations of Monte Carlo methods
to estimate the failure probability θ in (1): SS (Section 4), SS+CMC (not described in the current paper),
SS+rLHS (Section 5), and SS+CMC+rLHS (Section 6). We varied the total sample size n = 4v×100 for
v = 1,2,3,4. We set the SS allocation with ηs = 0.25 for each scenario s = 1,2,3,4. For rLHS we used
b = 10 independent replicates of LHS samples within a stratum, so for each scenario s, we generate an
LHS sample of size ms = ηsn/b for each replicate. Methods that do not use replications to create an upper
confidence bound (i.e., SS and SS+CMC) have b = 1 in Table 1. For the safety requirement (2), we set
θ0 = 0.05 and γ = 0.95. Because of the analytic tractability of our model, we are able to numerically
compute the true value of the failure probability as θ = 0.04648, so θ < θ0. The results in Table 1 are from
running 104 independent experiments for each method and total sample size n. The column labeled “AHW”
gives the average half-width across the 104 experiments, where the half-width is the difference between
the UCB and the point estimate of θ . For a UCB B(n) and overall sample size n, the coverage is the
probability P(θ < B(n)). As noted throughout the paper, each method’s UCB satisfies (3), so the coverage
converges to the nominal level γ = 0.95 as n→ ∞. But for fixed n, the coverage may differ from γ . We
estimate the coverage as the fraction of the 104 experiments in which θ < B(n). The probability of correct
decision (PCD) is estimated as the fraction of the 104 experiments in which the decision rule (4) correctly
determined that θ < θ0. The column “Sample Var” gives the sample variance of the point estimate of θ

across the 104 experiments. For each particular method x, the last column presents the variance-reduction
factor (VRF), which for a given overall sample size n is the ratio of the sample variance for SS over the
sample variance for method x.

As seen in Table 1, the VRF shows that the combination SS+CMC+rLHS can have a much lower variance
than SS. It also illustrates the synergistic effect of combining CMC and LHS: the VRF for SS+CMC+rLHS
greatly exceeds the product of the VRFs for SS+CMC and SS+rLHS. To explain the synergy, it is known
that LHS can substantially reduce variance when the response function is well approximated by an additive
(or separable) function of the input variables; e.g., see p. 241 of Glasserman (2004). When CMC is not
applied, the response function in (6) is an indicator, which may be poorly approximated by an additive
function, so LHS without CMC may not reduce variance by much. But the conditioning in (15) when
incorporating CMC leads to a smoother response function J(s)(L(s)), which can have a better additive
approximation, so combining CMC and LHS can lead to additional variance reduction.

Across methods for fixed sample size n, Table 1 shows that as the VRF increases, so does the PCD,
which demonstrates a benefit of the methods presented in this paper. Additionally, the PCD approaches 1
as n grows larger, as expected. The asymptotic validity of our UCBs is seen by the coverages approaching
the nominal level γ = 0.95 as n→ ∞. SS+rLHS coverage converges most slowly, but when additionally
combined with CMC, the coverage comes close to γ even at small sample sizes.

8 CONCLUDING REMARKS

Motivated by a recent safety-analysis framework for nuclear power plants, we presented efficient Monte
Carlo methods to estimate a failure probability θ based on multiple criteria. We developed asymptotically
valid upper confidence bounds for θ when applying combinations of SS, rLHS, and CMC, and numerical
experiments show that the combination of all three can lead to substantial variance reduction compared to
SS alone. We applied Gaussian copulas to model dependence among the loads and among the capacities
across criteria. Alban et al. (2016) present additional numerical experiments with a Student-t copula and
also with different parameters for the PCT load distribution. Changing the copula led to slightly different
values for θ but sometimes significant changes in the performance of the Monte Carlo methods. The
appropriate modeling of capacity dependencies deserves further study.
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Table 1: Comparison of results for three different combination of methods.

Method n b AHW Coverage PCD Sample Var VRF SS/x
SS 400 1 9.19E-03 0.861 0.346 3.94E-05 1.00

1600 1 5.02E-03 0.884 0.402 9.99E-06 1.00
6400 1 2.60E-03 0.920 0.698 2.57E-06 1.00

25600 1 1.30E-03 0.935 0.993 6.37E-07 1.00
SS+CMC 400 1 2.56E-03 0.947 0.730 2.41E-06 16.32

1600 1 1.30E-03 0.950 0.998 6.16E-07 16.22
6400 1 6.38E-04 0.945 1.000 1.57E-07 16.44

25600 1 3.21E-04 0.947 1.000 3.88E-08 16.40
SS+rLHS 400 10 7.40E-03 0.777 0.616 2.83E-05 1.39

1600 10 4.43E-03 0.793 0.395 6.75E-06 1.48
6400 10 2.20E-03 0.921 0.801 1.54E-06 1.67

25600 10 1.08E-03 0.936 1.000 3.68E-07 1.73
SS+CMC+rLHS 400 10 8.59E-04 0.933 1.000 2.44E-07 161.39

1600 10 3.45E-04 0.942 1.000 3.72E-08 268.13
6400 10 1.62E-04 0.940 1.000 8.60E-09 299.20

25600 10 7.91E-05 0.942 1.000 2.07E-09 307.71

Although we developed the methods in the context of NPP safety, they can also be employed in a
variety of other application domains. For example, civil engineers design systems/structures with random
loads and capacities that require the chance of failure to be small. Moreover, financial institutions are
interested in estimating the probability that cash outflows (i.e., loads) do not exceed inflows (capacities).
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