
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

THREE ASYMPTOTIC REGIMES FOR RANKING AND SELECTION WITH GENERAL
SAMPLE DISTRIBUTIONS

Jing Dong
Yi Zhu

Department of Industrial Engineering and Management Sciences
Northwestern University

Evanston, IL 60208, USA

ABSTRACT

In this paper, we study three asymptotic regimes that can be applied to ranking and selection (R&S) problems
with general sample distributions. These asymptotic regimes are constructed by sending particular problem
parameters (probability of incorrect selection, smallest difference in system performance that we deem worth
detecting) to zero. We establish asymptotic validity and efficiency of the corresponding R&S procedures
in each regime. We also analyze the connection among different regimes and compare the pre-limit
performances of corresponding algorithms.

1 INTRODUCTION

Ranking and selection (R&S) refers to the statistical procedure to select the simulated systems with the
best performance (largest or smallest mean) among a finite number of alternatives with high probability.
Most of the existing procedures are constructed under the assumption that the samples follow a Gaussian
distribution or some other rather restricted class of distributions (e.g. sub-Gaussian, bounded support) to
gain control over the probability of correct selection. When these assumptions are violated, the desired
performance can only be guaranteed in an asymptotic sense.

Asymptotic analysis is achieved by sending the sample size to infinity. However, simply sending the
sample size to infinity will not convey any meaningful information. By law of large numbers, it simply
implies that the probability of correct selection will converge to one. To define the asymptotic regimes in a
proper and meaningful way, we consider two parameters that characterize the “difficulty” of the problem:
1) the difference between the best system and the second best system, which we denote as δ ; 2) the
probability of incorrect selection (PIS), which we denote as α . Under the indifference zone formulation,
δ denotes the smallest difference in system performance that we deem worth detecting. Thus, δ is also
known as the indifference-zone parameter. As either one of these parameters gets smaller, it requires more
samples to achieve the desired performance.

In this paper, we study asymptotic regimes that can be applied for R&S problems with general sample
distributions. The first limiting regime is called the central limit theorem regime, which is derived by
sending δ to zero. The second limiting regime is called the large deviation regime, which is derived by
sending α to zero. The third limiting regime is called the moderate deviation regime, which is derived by
sending (α,δ ) to zero at an appropriate rate. We present the theoretical foundation of each limiting regime
and develop sequential stopping procedures for problems with unknown variance.

The central limit theorem regime has been applied in the R&S literature, mostly under the the indifference
zone formulation. Mukhopadhyay and Solanky (1994) defined that an indifference zone procedure is
asymptotically consistent if limδ→0 PIS≤ α . Robbins et al. (1968) propose a sequential stopping procedure
for R&S problems with unknown variance and show that their algorithm is asymptotically consistent. Kim
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and Nelson (2005) develop a fully sequential selection procedure for steady-state simulation that is shown
to be asymptotically consistent. This limiting regime has also been used to establish the asymptotic validity
of sequential stopping procedures to construct fixed-width confidence intervals (Glynn and Whitt 1992).
The limit is achieved by sending the width of the confidence interval to zero. We will provide more details
about this limiting regime in §2.1.

The large deviation regime has been applied in the ordinal optimization literature. The appealing fact
is that while the width of the confidence interval decreases at rate 1/

√
n (due to the central limit theorem),

the PIS actually decays exponentially fast in n (due to the large deviation theory) (Dai 1996). Results from
this limiting regime, in particular, the large deviation rate function of the PIS, has been applied to find
the optimal budget allocation rules, i.e. to minimize PIS under a fixed budget (see for example Glynn and
Juneja 2004, Szechtman and Yucesan 2008 and Hunter and Pasupathy 2013). The large deviation type of
upper bound on the probability of incorrect selection has also been applied in the multi-arm bandit literature
(Bubeck and Cesa-Bianchi 2012). Compared to the R&S literature, the key performance measure for the
multi-arm bandit literature is the regret, which measures the cumulative opportunity cost of not knowing
the optimal system. Two of the well-known sampling strategies in this literature is the upper confidence
bound strategy and the Thompson sampling. Both are shown to achieve an O(log(n)) regret bound, under
the assumption that we have access to the large deviation rate function or an upper bound of the rate
function in closed form. This assumption imposes constrains on the type of sample distributions we can
work with. We will survey more details about this limiting regime in §2.2.

To the best of our knowledge, the moderate deviation regime studied in this paper has not been applied
in the R&S or the ordinal optimization literature, though the moderate deviation theory is well-studied in the
applied probability literature (Dembo and Zeitouni 1998). As we shall explain in subsequent development
(§2.3), this asymptotic regime tends to strike a balance between the central limit theorem regime and the
large deviation regime.

2 THE THREE ASYMPTOTIC REGIMES

To demonstrate the basic ideas, we restrict our discussion to the comparison between two systems. To
formalize the asymptotic analysis, we first define a suitable sequence of distributions. Let X1 and X0

2 be
two random variables with the same mean µ1 and potentially different variance, σ2

1 < ∞ and σ2
2 < ∞,

respectively. We define Xδ
2 , indexed by δ , as a sequence of random variables with cumulative distribution

function Fδ
2 (x) = F0

2 (x+δ ), i.e. Xδ
2

d
=X0

2 −δ . In particular, µδ
2 = µ1−δ . We denote X1,k, k ≥ 1, as i.i.d.

copies of X1, and Xδ
2,k, k ≥ 1, as i.i.d. copies of Xδ

2 . Let

X̄1(n) :=
1
n

n

∑
k=1

X1,k and X̄δ
2 (n) :=

1
n

n

∑
k=1

Xδ
2,k

denote the sample means of X1 and Xδ
2 . We also denote the sample variances as

S2
1(n) :=

1
n−1

n

∑
k=1

(X1,k− X̄1(n))
2 and Sδ ,2

2 (n) :=
1

n−1

n

∑
k=1

(
Xδ

2,k− X̄δ
2 (n)

)2
.

Our goal is to select the system with the largest mean value when comparing X1 and Xδ
2 . In particular, if

we draw n1 samples from X1 and n2 samples from Xδ
2 , and select the system with the largest sample mean,

then
PIS = P

(
X̄1(n1)< X̄δ

2 (n2)
)
.

Remark 1 Other definitions of the sequence of random variables may also work. In general, we need to
assume that the variances of Xδ

2 ’s do not depend on δ .
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Recall that α denotes the required level of the PIS, and δ denotes the difference in mean between the
two systems (X1 and Xδ

2 ). We consider the following three asymptotic regimes. i) Keep α fixed and send
δ to zero; ii) Keep δ fixed and send α to zero; iii) Send both α and δ to zero at an appropriate rate. We
shall elaborate on each of these three regimes next.

2.1 The Central Limit Theorem Regime

In this limiting regime, we keep α fixed and send δ to zero. We start with the known variance case. For
fixed q1,q2 > 1 satisfying 1/q1 +1/q2 = 1, we set the required sample sizes as

ni(δ ) =
z2

ασ2
i

δ 2 qi for i = 1,2.

where zα is the α-th upper tail quantile of a standard normal distribution. We draw ni(δ ) samples from
system i, and pick the system with the largest mean. The following theorem establishes the asymptotic
validity of this procedure.
Theorem 1 Under the assumption that σ2

i < ∞ for i = 1,2,

lim
δ→0

P(X̄1(n1(δ ))< X̄δ
2 (n2(δ ))) = α.

Proof of Theorem 1. We notice that

P
(

X̄1(n1(δ ))< X̄δ
2 (n2(δ ))

)
= P

(
(X̄1(n1(δ ))−µ1)−

(
(X̄δ

2 (n2(δ ))+δ )−µ1

)
<−δ

)
= P

(√
n1(δ )(X̄1(n1(δ ))−µ1)

σ1
√

q1
−
√

n2(δ )(X̄2(n2(δ ))−µ1)

σ2
√

q2
<−zα

)
→ P(N(0,1)<−zα) as δ → 0

The convergence follows by Central Limit Theorem.

We next introduce some possible choices of the parameter qi’s. i) If we are to minimize n1(δ )+n2(δ )
for each value of δ , then we set q1 = 1+σ2/σ1 and q2 = 1+σ1/σ2. In this case

n∗i (δ ) =
z2

α(σ1 +σ2)

δ 2 σi for i = 1,2.

ii) If we want to draw equal amount of samples from both systems, then we set qi = (σ2
1 +σ2

2 )/σ2
i , for

i = 1,2. In this case
ne

1(δ ) = ne
2(δ ) = z2

α(σ
2
1 +σ

2
2 )/δ

2.

iii) If we want to run the simulation without taking into account the information of the other system, then
we can set, for example, q1 = q2 = 2. In this case

nin
i (δ ) =

2z2
ασ2

i

δ 2 for i = 1,2.

When the variances are not known. We can apply the following sequential stopping procedure to decide
the appropriate number of samples needed. In this paper, we will focus on the case of equal sample sizes
only. We define the stopping time

κ(δ ) := inf

{
n≥ δ

−1 : z2
α

S2
1(n)+Sδ ,2

2 (n)
n

< δ
2

}
,
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where δ−1 is introduced to avoid early stopping. We keep sampling the two systems until the total sample
variance over the sample size is smaller than δ 2/z2

α , and then we pick the system with the largest sample
mean. The following theorem establishes the asymptotic validity of the sequential stopping procedure.
Theorem 2 Under the assumption that σ2

i < ∞ for i = 1,2,

lim
δ→0

P
(

X̄1(κ(δ ))< X̄δ
2 (κ(δ ))

)
= α.

Proof of Theorem 2. For general t ∈ R+, define X̄1(t) := X̄1(btc), X̄δ
2 (t) := X̄δ

2 (btc), S2
1(t) := S2

1(btc)
and Sδ ,2

2 (t) := Sδ ,2
2 (btc). We first notice that

δ
2
κ(δ ) = δ

2 inf

{
n≥ δ

−1 : z2
α

S2
1(n)+Sδ ,2

2 (n)
n

< δ
2

}

= inf

{
t ≥ δ : z2

α

S2
1(t/δ 2)+Sδ ,2

2 (t/δ 2)

t
< 1

}
d
= inf

{
t ≥ δ : z2

α

S2
1(t/δ 2)+S0,2

2 (t/δ 2)

t
< 1

}
= inf

{
t ≥ 0 : z2

α

(
S2

1((t +δ )/δ
2)+S0,2

2 ((t +δ )/δ
2)
)
− (t +δ )< 0

}
As S2

1((t +δ )/δ 2)⇒ σ2
1 I and S0,2

2 ((t +δ )/δ 2)⇒ σ2
2 I in D[0,∞) as δ → 0, where I(t) = 1,

z2
α

(
S2

1((t +δ )/δ
2)+S0,2

2 ((t +δ )/δ
2)
)
− (t +δ )⇒ z2

α(σ
2
1 +σ

2
2 )− t in D[0,∞) as δ → 0.

As z2
α(σ

2
1 +σ2

2 )− t is continuous and monotonically decreasing in t (Whitt 2002),

δ
2
κ(δ )⇒ inf

{
t ≥ 0 : z2

α(σ
2
1 +σ

2
2 )− t < 0

}
= z2

α(σ
2
1 +σ

2
2 ).

We next notice that

P
(

X̄1(κ(δ ))< X̄δ
2 (κ(δ ))

)
= P

(
δκ(δ )(X̄1 (κ(δ ))− X̄δ

2 (κ(δ ))−δ )+δ
2
κ(δ )< 0

)
= P

(
δκ(δ )(X̄1 (κ(δ ))− X̄0

2 (κ(δ )))+δ
2
κ(δ )< 0

)
As t

δ
(X̄1(t/δ 2)− X̄0

2 (t/δ 2))⇒
√

σ2
2 +σ2

2 B(t) in D[0,∞) as δ → 0, using standard random time change
and convergence together argument, we have

(δκ(δ )t)(X̄1 (κ(δ )t)− X̄0
2 (κ(δ )t))+δ

2
κ(δ )t⇒

√
σ2

1 +σ2
2 B
(
z2

α(σ
2
1 +σ

2
2 )t
)
+ z2

α(σ
2
1 +σ

2
2 )t

in D[0,∞) as δ → 0. Thus,

P
(
δκ(δ )(X̄1 (κ(δ ))− X̄0

2 (κ(δ )))+δ
2
κ(δ )< 0

)
→ P

(√
σ2

1 +σ2
2 B(z2

α(σ
2
1 +σ

2
2 ))+ z2

α(σ
2
1 +σ

2
2 )< 0

)
as δ → 0

= P(B(1)≤−zα) = α.
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Remark 2 Alternatively, we can also set

κ
in
i (δ ) := inf

{
ni ≥ bδ−1c : 2z2

α

S2
i (ni)

ni
< δ

2
}
, for i = 1,2.

Then we can show that limδ→0 P
(
X̄1(κ

in
1 (δ ))< X̄δ

2 (κ
in
2 (δ ))

)
= α . The separation of the simulation of the

two systems may become handy in parallelization.

2.2 The Large Deviation Regime

In this limiting regime, we keep δ fixed and send α to zero. We impose light tail assumptions on the
sample distribution.
Assumption 1 There exists θ > 0 such that E[exp(θX1)]< ∞ and E[exp(θX0

2 )]< ∞.

We next introduce a few notations. Let ψ1(θ) := logE[exp(θX1)] and ψ2(θ) := logE[exp(θXδ
2 )], i.e. the

log moment generating functions. We also write Ii(a) := supθ{θa−ψi(θ)}, which is known as the Fenchel-
Legendre transformation of ψi, for i = 1,2. Let Di = {θ ∈ R : ψi(θ)< ∞} and Si = {ψ ′i (θ) : θ ∈D}. It
is well-known that Ii is strictly convex and C∞ for a ∈Si. We also make the following assumption on the
sample distribution
Assumption 2 The interval [µ1,µ1 +δ ]⊂S o

1 ∩S o
2 .

We assume that Ii’s are known. For fixed p1, p2 > 0 with p1+ p2 = 1. We can interpret pi as the proportion
of sampling budget allocated to system i, i= 1,2. We denote G(p1, p2) =minb∈(µ1,µ1+δ ){p1I1(b)+ p2I2(b)}.
Then set the sample size

ñi(α) =
log(1/α)

G(p1, p2)
pi for i = 1,2.

We draw ñi(α) from system i, i = 1,2, and pick the system with largest sample mean. The following
theorem establishes the asymptotic validity, in a logarithmic sense, of the procedure.
Theorem 3 Under Assumption 1 & 2,

lim
α→0

logP(X̄1(ñ1(α))< X̄δ
2 (ñ2(α))

log(α)
= 1.

The proof of the theorem follows from the same line of analysis as in (Glynn and Juneja 2004). We
shall only provide an outline here. Let ñ(α) = log(1/α). Then ñi(α) = ñ(α)pi/G(p1, p2) for i = 1,2. We
also denote Z(n) = (X̄(np1/G(p1, p2)), X̄(np2/G(p1, p2))). Then the rate function of {Z(n) : n ≥ 0}, is
(Lemma 1 in (Glynn and Juneja 2004))

I(x1,x2) =
p1

G(p1, p2)
I1(x1)+

p2

G(p1, p2)
I2(x2).

Then we have,

lim
n→∞

1
n

logP(X̄(np1/G(p1, p2))< X̄(np2/G(p1, p2)))

= − inf
b∈(µ1,µ1−δ )

(
p1

G(p1, p2)
I1(b)+

p2

G(p1, p2)
I2(b)

)
=−1.

Thus, limα→∞
1

ñ(α) logP(X̄(ñ1(α))< X̄(ñ2(α))) =−1.
We next provide some special choices of pi’s. i) If we want to minimize the sampling cost, then we

pick (p1, p2) that solves

min
p1,p2

(p1 + p2)/G(p1, p2) s.t. p1 + p2 = 1, p1 > 0, p2 > 0.
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ii) If we want to draw equal amount of samples from the two systems, then we set p1 = p2 = 1/2. In this
case

ñe
i (α) =

log(1/α)

2G(1/2,1/2)
for i = 1,2.

iii) It is also possible to draw samples from each system without taking into account the information of
the other system. For example, we can pick any b ∈ (µ1,µ1 +δ ) and set

ñin
i (α) =

log(1/α)

Ii(b)
for i = 1,2.

However, in this case we “overshoot” the PIS. In particular, following the proof of Theorem 3, it is easy
to check that

lim
α→0

logP(X̄1(ñin
1 (α))< X̄δ

2 (ñ
in
2 (α))

log(α)
< 1.

In applications, the assumption that Ii(·)’s are known is rather restrictive. When Ii(·)’s are not known,
estimating this function would in general be a more difficult task than estimating the means. Recently,
(Glynn and Juneja 2015) conduct an extensive analysis of this issue.

2.3 The Moderate Deviation Regime

In this regime, we send both α and δ to zero at an appropriate rate. In particular, we consider a sequence
of (αk,δk)’s, indexed by k ∈ N, satisfying that αk→ 0 and δk→ 0 as k→ ∞, and

log(1/αk)δ
(1−2β )/β

k = L,

for some β ∈ (1/3,1/2) and L > 0, independent of k.
We start by assuming that the variances are known. In this case, for fixed p1, p2 > 0 with p1 + p2 = 1,

we set

n̂i(k) =
log(1/αk)

δ 2
k Ĝ(p1, p2)

pi, for i = 1,2.

where Ĝ(p1, p2) = p1 p2/(2(σ2
1 p2+σ2

2 p1)). For δk = δ , αk = α , we draw n̂i(k) samples from system i, and
then choose the system with the largest sample mean. The following theorem establishes the asymptotic
validity, in a logarithmic sense, of the procedure.
Theorem 4 Under Assumption 1,

lim
k→∞

logP
(

X̄1(n̂1(k))< X̄δk
2 (n̂2(k))

)
log(αk)

= 1.

Proof of Theorem 4. Let n̂(k) = log(1/αk)δ
−2
k , qi = pi/Ĝ(p1, p2).

P
(

X̄1(n̂1(k))< X̄δk
2 (n̂2(k))

)
= P

(
(X̄1(n̂(k)q1)−µ1)− (X̄0

2 (n̂(k)q2)−µ1)<−δk
)

= P
(
(X̄1(n̂(k)q1)−µ1)− (X̄0

2 (n̂(k)q2)−µ1)<−Lβ n̂(k)−β

)
= P

(
n̂(k)β (X̄1(n̂(k)q1)−µ1)− n̂(k)β (X̄0

2 (n̂(k)q2)−µ1)<−Lβ

)
.

Let Zn = (nβ (X̄1(nq1)−µ1),nβ (X̄0
2 (nq2)−µ1)), then

lim
n→∞

1
n1−2β

E
[
exp(n1−2β

θZn)
]
= q1

1
2

(
θ1

q1

)2

σ
2
1 +q2

1
2

(
θ2

q2

)2

σ
2
2
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By Gartner-Ellis theorem, Zn satisfies a LDP with rate n1−2β and rate function

Î(x1,x2) = q1x2
1/(2σ

2
1 )+q2x2

2/(2σ
2
2 ).

In particular, limn→∞
1

n1−2β
logP(Zn(1)−Zn(2)<−Lβ ) =− infx1,x2,x1−x2<−Lβ Î(x1,x2) =−L2β .

As L2β n̂(k)1−2β = log(1/αk), we have

lim
k→∞

1
log(αk)

logP
(

n̂(k)β (X̄1(n̂(k)q1)−µ1)− n̂(k)β (X̄0
2 (n̂(k)q2)−µ1)<−Lβ

)
= 1.

We next provide some special choices of pi’s. i) If we want to minimize the total sampling cost
n̂1(k)+ n̂2(k) for each k, then we pick pi = σi/(σ1 +σ2) for i = 1,2. In this case

n̂∗i (k) =
log(1/αk)(σ1 +σ2)σi

δ 2
k

for i = 1,2.

ii) When p1 = p2 = 1/2, we draw equal amount of samples from the two systems. In this case

n̂e
1(k) = n̂e

2(k) =
2log(1/αk)(σ

2
1 +σ2

2 )

δ 2
k

iii) It is also possible to draw samples from each system without taking into account the information of
the other system. In particular, when pi = σ2

i /(σ
2
1 +σ2

2 ),

n̂in
i (k) =

4log(1/αk)σ
2
i

δ 2
k

for i = 1,2.

When the variances are not known a priori, we introduce a sequential stopping procedure. In this paper,
we shall focus on the case of equal sample sizes only. We also impose the following assumption on sample
distribution (mainly for technical reasons).
Assumption 3 There exist θ > 0 such that E[exp(θ(X1−µ1)

2)]< ∞ and E[exp(θ(X0
2 −µ1)

2)]< ∞.
We define the stopping time

Nk := inf

{
n≥ δ

−1
k : 2

S2
1(n)+Sδk,2

2 (n)
n

< δ
2
k log(1/αk)

−1

}
.

We keep sampling the two systems until the total sample variance over the sample size is smaller than
δ 2

k /(2log(1/αk)), and then we pick the system with the largest sample mean. The following theorem
establishes the asymptotic validity of the sequential stopping procedure.
Theorem 5 Under Assumption 3,

lim
k→∞

logP
(

X̄1(Nk)< X̄δk
2 (Nk)

)
log(αk)

= 1.

Remark 3 Alternatively, we can also set

Nin
i (k) := inf

{
ni ≥ δ

−1
k :

4S2
i (ni)

ni
< δ

2
k log(1/αk)

−1
}
, for i = 1,2.

Then following the same line of analysis as in the Proof of Theorem 5, we have

lim
k→∞

1
log(αk)

P
(

X̄1(Nin
1 (k))< X̄δk

2 (Nin
2 (k))

)
= 1.

The separation of the simulation of the two systems may become handy in parallelization.
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2.3.1 Proof of Theorem 5

We first notice that as log(1/αk)δ
(1−2β )/β

k = L, Nk = inf
{

n≥ δ
−1
k : 2L S2

1(n)+S
δk ,2
2 (n)

n ≤ δ
1/β

k

}
. As the distri-

bution of Sδk,2
2 (n) does not depend on δk. We shall drop the superscription δk when there is no confusion.

Let S2
i (t) := S2

i (btc) for t ≥ 0. As S2
i (n)⇒ σ2

i as n→ ∞, by Continuous Mapping Theorem

δ
1/β

k Nk = inf

{
t ≥ δ

1/β−1 : 2L
S2

1(tδ
−1/β

k )+S2
2(tδ

−1/β

k )

t
< 1

}
⇒ 2L(σ2

1 +σ
2
2 ).

We next establish an upper bound for P
(
|δ 1/β

k Nk−2L(σ2
1 +σ2

2 )|> ε

)
for any ε > 0 small enough.

1
n

logE
[
exp(nθS2

i (n)
]

= logE
[
exp(θ(Xi−µi)

2)
]
− 1

n
logE

[
exp(−θn(X̄i(n)−µi)

2)
]

→ logE
[
exp(θ(Xi−µi)

2)
]

as n→ ∞,

for i = 1,2. Thus,

lim
n→∞

1
n

logE
[
exp(nθ(S2

1(n)+S2
2(n)))

]
= ψ̃1(θ)+ ψ̃2(θ),

where ψ̃i(θ) = logE[exp(θ(Xi−µi)
2)]. By Gartner-Ellis Theorem, S2

1(n)+S2
2(n) satisfies a LDP with rate

function I(a) = sup{θa− (ψ̃1(θ)+ ψ̃2(θ))}. Then we have

P
(

δ
1/β

k Nk > 2L(σ2
1 +σ

2
2 )+ ε

)
≤ P

(
S2

1

(
(2L(σ2

1 +σ
2
2 )+ ε)δ−1/β

)
+S2

2

(
(2L(σ2

1 +σ
2
2 )+ ε)δ−1/β

)
> σ

2
1 +σ

2
2 + ε

)
≤ exp(−(2L(σ2

1 +σ
2
2 )+ ε)δ

−1/β

k I(ε)+o(δ−1/β

k )),

and

P
(

δ
1/β

k Nk < 2L(σ2
1 +σ

2
2 )− ε

)
= P

(
∃t ∈ (δ

1/β−1
k ,2L(σ2

1 +σ
2
2 )− ε) s.t. 2L

(
S2

1

(
tδ−1/β

k

)
+S2

2

(
tδ−1/β

k

))
< t
)

≤
b(2L(σ2

1+σ2
2 )−ε)δ

−1/β

k c

∑
n=bδ−1

k c
P
(
S2

1 (n)+S2
2 (n)< (σ2

1 +σ
2
2 )− ε

)
≤

(
2L(σ2

1 +σ
2
2 )− ε)δ

−1/β

k

)
exp(−δ

−1
k I(ε)+o(δ−1

k ))

We denote Bε(k) := {t : |δ 1/β

k t−2L(σ2
1 +σ2

2 )|< ε} for any ε > 0. Then P(Nk ∈ Bε(k))≤ exp(−δ
−1
k I(ε)+

o(δ−1
k )). Let N∗k = 2L(σ2

1 +σ2
2 )δ

−1/β

k and aε(n) = n/N∗k . Then for any n ∈ Bε(k).

2L(σ2
1 +σ2

2 )− ε

2L(σ2
1 +σ2

2 )
≤ aε(n)≤

2L(σ2
1 +σ2

2 )− ε

2L(σ2
1 +σ2

2 )

We also notice that

P(X̄1(Nk)< X̄δk
2 (Nk)) = P(X̄1(Nk)< X̄δk

2 (Nk)|Nk ∈ Bε(k))P(Nk ∈ Bε(k))

+P(X̄1(Nk)< X̄δk
2 (Nk)|Nk 6∈ Bε(k))P(Nk 6∈ Bε(k)).
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Thus,

P(X̄1(Nk)< X̄δk
2 (Nk)) ≤ P(X̄1(Nk)< X̄δk

2 (Nk)|Nk ∈ Bε(k))+P(Nk 6∈ Bε(k))

≤ sup
n∈Bε (k)

P(X̄1(n)< X̄δk
2 (n))+P(Nk 6∈ Bε(k))

= sup
n∈Bε (k)

P
(

X̄1(N∗k aε(n))< X̄δk
2 (N∗k aε(n))

)
+P(Nk 6∈ Bε(k))

≤ exp
(
−δ
−(1/β−2)
k L

(
L(σ2

1 +σ2
2 )− ε

L(σ2
1 +σ2

2 )

)
+o
(

δ
−(1/β−2)
k

))
(1+o(1)),

where the second inequality use the fact that S2
i (n) is independent of X̄i(n), the third inequality follows

from the proof of Theorem 4 and the fact that 0 < 1/β −2 < 1. Similarly,

P(X̄1(Nk)< X̄δk
2 (Nk)) ≥ P(X̄1(Nk)< X̄δk

2 (Nk)|Nk ∈ Bε(k))P(Nk ∈ Bε(k))

≥ inf
n∈Bε (k)

P(X̄1(n)< X̄δk
2 (n))P(Nk ∈ Bε(k))

≥ exp
(
−δ
−(1/β−2)
k L

(
L(σ2

1 +σ2
2 )+ ε

L(σ2
1 +σ2

2 )

)
+o
(

δ
−(1/β−2)
k

))
(1+o(1)).

As Lδ
−(1/β−2)
k = log(αk) and ε can be arbitrarily small, we have

lim
k→∞

logP
(

X̄1(Nk)< X̄δk
2 (Nk)

)
/ log(αk) = 1.

3 COMPARISON OF THE THREE ASYMPTOTIC REGIMES

The three asymptotic regimes are closely related to each other. Figure 1 provide an overview of their
relationships. We’ve established the three solid arrows in the figure in §2. We next show the two dotted
arrows for some special cases (Lemma 6 and Lemma 7).

(?,?) δ → 0

δ → 0

CLT 
n1(δ ),n2 (δ )( )

 !n1(α ), !n2 (α )( ) n̂1, n̂2( )

Figure 1: Relationship of the three asymptotic regimes. (CLT: Central Limit Theorem, LDP: Large Deviation
Principle, MDP: Moderate Deviation Principle)

Lemma 6 The (1−α)-th quantile of standard Normal distribution, zα , satisfies,

z2
α

2log(1/α)
→ 1 as α → 0.

Lemma 6 implies for α small enough, and αk = α , we have n∗i (δk) ≈ n̂∗i (k), ne
i (α) ≈ n̂e

i (k), and
nin(αk)≈ n̂in(k).

For the large deviation regime, when we impose equal sample sizes from the two systems, then
we have P(X̄1(n) < X̄δ

2 (n)) = P(X̄0
2 (n)− X̄1(n) > δ ). Let ψ(θ) := logE[exp(X0

2 −X1)]. We also define
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D := {θ ∈ R : ψ(θ) < ∞} and S := {ψ ′(θ) : θ ∈ D}. If we write Ge(δ ) = supθ{θδ −ψ(θ)}, then
ñe

1(α) = ñe
2(α) = log(1/α)/Ge(δ ).

Lemma 7 For δ ∈S ,

Ge(δ ) =
1
2

1
σ2

1 +σ2
2

δ
2− 1

6
E[(X0

2 −X1)
3](

σ2
1 +σ2

2

)3 δ
3 +O(δ 4).

Lemma 7 implies that for δ small, δk = δ , ñe
i (αk)≈ n̂e

i (k).

3.1 Pre-Limit Performance

We next provide some comments about the pre-limit performance, i.e. for fixed α and δ . For simplicity
of exposition, we shall restrict our discussion to the case of equal sample sizes.

In the Central Limit Theorem regime, when X1 and Xδ
2 are Gaussian random variables, we have

P
(
X̄1(ne

1(δ ))< X̄δ
2 (n

e
2(δ ))

)
= α . In general, the performance of “ne

i (δ )” depends on the “rate” of con-
vergence of the central limit theorem. Assume that E[(X0

2 −X1)
4] < ∞ and X0

2 −X1 is non-lattice. Let

Skew := E
[(

(X0
2 −X1−0)/

√
σ2

1 +σ2
2

)3
]

denote the skewness of X0
2 −X1. Skewness is a measure of

asymmetry of a random variable about its mean. We also write Kur := E
[(

(X0
2 −X1−0)/

√
σ2

1 +σ2
2

)4
]

as the Kurtosis of X0
2 −X1. Kurtosis measures the heaviness of the tail of a random variable. Let Φ̄(·)

and φ(·) denote the tail cumulative distribution function and the probability density function of a standard
normal distribution. Using the Edgeworth expansion (Shao and Tu 1995), we can show that

P
(

X̄1(ne
1(δ ))< X̄δ

2 (n
e
1(δ ))

)
−α

=
φ(zα)

zα

Skew(z2
α −1)

6
√

σ2
1 +σ2

2

δ +

(
(Kur−3)(z2

α −3)
24(σ2

1 +σ2
2 )

+
S2

kew(z
4
α −10z2

α +15)
72(σ2

1 +σ2
2 )

)
δ

2

+o(δ 2)

We make the following observations. a) φ(zα)/zα > α with limα→0
φ(zα )/zα

α
= 1. b) For distribution

with large skewness or Kurtosis, the pre-limit PIS may be quite different from α . A common practice to
reduce the approximation error (improve the rate of convergence) is to use the Cornish-Fisher expansion
(Shao and Tu 1995) to refine the scaling parameter zα , but this would require us to know higher moments
of the sample distributions.

For the large deviation regime, we first notice that, using Chernoff’s bound,

P
(

X̄1(ñe
1(α))< X̄δ

2 (ñ
e
2(α)

)
≤ exp(−ñe

1(α)G(δ )) = α.

To quantify how much smaller P
(
X̄1(ñ1(α))< X̄δ

2 (ñ1(α))
)

is, compared to α , we refer to a refinement of
the large deviation asymptotic approximation due to Bahadur and Rao (1960). Assume that ψ(θ) is steep
on the right and X1−X0

2 is non-lattice. We denote θ(δ ) := argmin{θδ −ψ(θ)}. Then we can show that

P
(

X̄1(ñe
1(α))< X̄δ

2 (ñ
e
2(α)

)
=

α√
log(1/α)

√
G(δ )√

2πψ ′′(δ )θ(δ )

(
1+O

( √
G(δ )√

log(1/α)

))
.

As limδ→0
√

G(δ )/(
√

ψ ′′(δ )θ(δ )) = 1/
√

2, when δ is small enough, P
(
X̄1(ñ1(α))< X̄δ

2 (ñ1(α)
)

decays
at rate α/

√
log(1/α) approximately, which is slightly faster than α . Therefore, sampling rules derived

from the large deviation regime provide a guarantee on PIS but tend to over-sample in practical examples.
For the moderate deviation regime, we first notice that z2

α < 2log(1/α) for fixed value of α . Thus, we
tend to sample more than “needed” when the central limit theorem regime works well. However, this also
provides us with a safety buffer when the central limit theorem regime doesn’t work well.
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3.2 Numerical Comparison

The following numerical experiments illustrate the pre-limit performance of the sampling rules derived
from the three asymptotic regimes (Table 1 & 2). The probability of incorrect selection are calculated based
106 independent experiments. In Table 1, we assume both systems have Exponential sample distributions.
We observe that in this case, the CLT regime sampling rule achieves the desired probability of incorrect
selection, but the other two regimes overshoot the probability of incorrect selection, i.e. PIS� 0.05. Table
2 illustrate an extreme example, where system 1 has constant output while system 2 has Bernoulli sample
distribution with very small probability of success (highly skewed). There the CLT regime doesn’t achieve
the desired probability of incorrect selection while the LD regime over-samples. We would also like to
point out that among the three regimes, the LD regime is the only one that is guaranteed to have PIS < α

regardless of the sample distributions.

Table 1: Simulation experiments for Exponential samples (µ1 = 1, µδ
2 = 0.9091, α = 0.05).

Regime n Probability of Incorrect Selection
CLT Regime 598 0.0497±0.0002
LD Regime 1320 0.0072±0.0001

MD Regime 1325 0.0071±0.0001

Table 2: Simulation experiments for constant and Bernoulli samples (µ1 = 0.008, µδ
2 = 0.001, α = 0.01).

Regime n Probability of Incorrect Selection
CLT Regime 111 0.1057±0.0003
LD Regime 477 0.0015±0.00003

MD Regime 188 0.0156±0.0001

A Proofs

Proof of Lemma 6. We first notice that
(1

x −
1
x3

)
φ(x)≤ Φ̄(x)≤ 1

x φ(x). As zα → ∞ as α → 0, then

lim
α→0

z2
α

2log(1/α)
= lim

α→0

z2
α

−2log(Φ̄(zα))
≥ lim

α→0

z2
α

−2log(φ(zα))−2log(1/zα)

= lim
α→0

z2
α

z2
α +2log(zα)

= 1

Similarly, limα→0
z2

α

2log(1/α) ≤ limα→0
z2

α

−2log(φ(zα ))−log(1/zα−1/z3
α )

= 1. Thus, limα→0
z2

α

2log(1/α) = 1.

Proof of Lemma 7. Applying Taylor expansion, we have for δ ∈S

Ge(δ ) = Ge(0)+G′e(0)δ +
1
2

G′′e (0)δ
2 +

1
6

G′′′e (0)δ
3 +O(δ 4)

Let θ(δ ) := argmin{θδ −ψ(θ)}. Then Ge(δ ) = θ(δ )δ −ψ(θ(δ )) and

G′e(δ ) = θ(δ )+θ
′(δ )δ −ψ

′(θ(δ ))θ ′(δ )

G′′e (δ ) = 2θ
′(δ )+θ

′′(δ )δ −ψ
′′(θ(δ ))θ ′(δ )2−ψ

′(θ(δ ))θ ′′(δ )

G′′′e (δ ) = 3θ
′′(δ )+θ

′′′(δ )δ −ψ
′′′(θ(δ ))θ ′(δ )3−2ψ

′′(θ(δ ))θ ′(δ )θ ′′(δ )

−ψ
′′(θ(δ ))θ ′′(δ )θ ′(δ )−ψ

′(θ(δ ))θ ′′′(δ )

We also notice that ψ ′(θ(δ )) = δ Thus, θ ′(δ ) = 1
ψ ′′(θ(δ )) and θ ′′(δ ) =− ψ ′′′(θ(δ ))

ψ ′′(θ(δ ))3 . The results then follows

by ψ(0) = 0, and ψ(k)(0) = E[(X0
2 −X1)

k] for k = 1,2, . . . .
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