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ABSTRACT

This paper contrasts exact simulation against exact estimation in two different computational settings,
namely that of numerical solution of stochastic differential equations and also in the context of equilibrium
calculations for Markov chains. Both exact simulation and exact estimation methods can provide unbiased
estimators capable of converging at square root rate in the computational effort c in problems in which
conventional methods lead to sub-square root rates. We argue that the relaxation from exact simulation to
exact estimation is often useful, because exact estimation algorithms can be easier to design and they can
apply in settings in which exact simulation methods are currently unavailable.

1 INTRODUCTION

Suppose that we wish to compute α = E f (X), where X is an S-valued random element and f : S→R+ is
a given performance functional defined on S. If f (X) is easily generated by a random variate generation
algorithm, computing α is straightforward conceptually and practically.

But there are a number of applications settings in which exact simulation of f (X) is either algorithmically
impossible or (very) challenging. For example, suppose that X = (X(t) : t ≥ 0) is the solution of a stochastic
differential equation (SDE). As for deterministic differential equations, the standard numerical scheme
includes a time-discretization that leads to a discrete-time approximation of the SDE that can then be
simulated using forward time-stepping. Thus, while it is easy to exactly simulate approximations to the
SDE, it is difficult to exactly simulate the SDE itself.

As a second example, suppose that X : (Xn : n ≥ 0) is a Markov chain (with stationary transition
probabilities) for which X∞ is a random variable (rv) having its equilibrium (or stationary) distribution π .
In many applications contexts, computing α = E f (X∞) is of central interest. Unfortunately, X∞ involves
the infinite-time behavior of X , so simulating X∞ exactly is challenging. We note that in this Markov
chain setting, exact simulation is equivalently called perfect simulation. As in the SDE setting, generating
approximations to X∞ is easy, however. In particular, if X is aperiodic, Xn has a distribution close to that
of X∞ when n is large.

As an alternative to exact simulation or approximations thereof, one can consider a problem relaxation
in which one seeks a rv Y for which EY = E f (X∞). When such an unbiased rv Y can be generated in
almost surely (a.s.) finite computer time, we say that α can be exactly estimated. This paper is concerned
with contrasting exact simulation against exact estimation.

We note that when one has an exact simulation algorithm, this solves the exact estimation problem.
But the converse is generally false. As we shall see, there are many settings in which developing an exact
estimation algorithm is straightforward, whereas the corresponding exact simulation algorithm may be
unavailable. Consequently, the concept of exact estimation is a useful relaxation of the concept of exact
simulation.
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Exact simulation has received a great deal of attention in the Markov chain setting. The first paper
establishing the existence of such exact simulation algorithms was Asmussen, Glynn, and Thorisson (1992),
while Propp and Wilson (1996) showed how such algorithms can be efficiently implemented in the finite
state setting. The relaxation to exact estimation is more recent, and was introduced by Glynn and Rhee
(2014).

Such exact algorithms are important, because biased estimation can create many algorithmic complica-
tions. The biggest problem is that bias is not reduced by simulating multiple independent replicates of the
estimator, nor can its magnitude be easily assessed. Furthermore, in many settings, bias can be a dominant
factor in determining the algorithm’s rate of convergence. This is precisely the case in computational envi-
ronments in which a large number of replications can be cheaply computed, such as that of multi-processor
parallel simulation; see Glynn and Heidelberger (1991).

This paper focuses on the two main settings in which both exact simulation and exact estimation methods
are available, namely the setting of stochastic differential equations and that of equilibrium computations
for Markov chains. Section 2 discusses exact simulation for stochastic differential equations, while Section
3 describes its exact estimation counterparts. Similarly, Section 4 provides a discussion of the most
commonly used algorithms for implementing exact simulation for Markov chains, and Section 5 describes
exact estimation in the setting of Markov chain equilibrium computations.

It should be noted that the key idea underlying exact estimation, namely that of transforming an
asymptotically unbiased sequence of estimators into an exactly unbiased estimator (see Section 3), applies
more generally (outside the Markov chain setting). In particular, this idea can be applied to quantities that
can be expressed as a nonlinear function of an expectation (as in Blanchet and Glynn (2015)). Further
applications of this idea are certain to appear in the years ahead, given the generality of the method.

2 EXACT SIMULATION FOR SDE’s

As might be expected, the development of efficient algorithms for solving the exact simulation problem
depends heavily on problem structure. Consequently, there is no general toolbox for constructing exact
simulation algorithms. Rather, an exact simulation algorithm needs to be tailored to the specific problem
under consideration. In this section, we provide a brief account of how such exact simulation algorithms
can be obtained in the SDE context.

We start by noting that if x = (x(t) : t ≥ 0) is an Rd-valued solution to the deterministic differential
equation

dx
dt

= µ(x(t)) (1)

subject to x(0) = x0, numerical schemes can typically not solve for x exactly. Somewhat surprisingly, it
turns out that when noise is added to (1), thereby leading to an SDE, exact simulation is generally possible
when d = 1. In particular, consider an Rd-valued SDE of the form

dX(t) = µ(X(t))dt +σ(X(t))dB(t), (2)

subject to X(0) = x0, where µ(·) and σ(·) are given (deterministic) functions and B is an m-dimensional
standard Brownian motion. The function µ(·) is called the (infinitesimal) drift of X , and σ(·) is called
the (infinitesimal) volatility of X . Under suitable technical conditions (e.g. global Lipschitz and growth
conditions, on µ(·) and σ(·); see Steele (2000)), (2) has a unique (strong) solution X .

Suppose that we can find a suitable invertible function g : Rd → Rd for which

dg(X(t)) = µ˜(X(t))dt +dB̃(t) (3)

for some µ˜, where B̃ is a d-dimensional standard Brownian motion. In this case, we can set Y (t) = g(X(t))

and µ̃(·) = µ˜ ◦g−1, and note that

dY (t) = µ̃(Y (t))dt +dB̃(t). (4)
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In other words, the existence of such a transformation (called the Lamperti transformation) allows one to
reduce the SDE to one with constant volatility.

To see how to choose g, we assume that g is smooth and apply Itô’s formula, thereby yielding

dg(x(t)) = (L g)(X(t))dt +∇g(X(t))σ(X(t))dB(t)

where L is the (partial) differential operator given by

L =
d

∑
i=1

µi(x)
∂

∂xi
+

1
2

d

∑
i, j=1

m

∑
k=1

σik(x)σ jk(x)
∂ 2

∂xi∂x j
.

Hence, we can obtain (3) if we select g so that

∇g(x)σ(x)σ(x)T
∇g(x)T = I (5)

for x ∈ R. Note that (5) implies d(d + 1)/2 constraints on the d partial derivatives of g. Hence, when
d > 1, such a transformation g is typically unavailable (unless σ has very special structure). However,
when d = 1, an invertible solution g to (5) is readily available:

g(x) =
∫ x

x0

1
σ(y)

dy.

Once the equation is in the form (4), we are now in a position to generate Y by use of acceptance-rejection
ideas. A natural choice for the ”candidate” is that associated with Brownian motion, since many functionals
f (X) can be exactly generated when X = B. We therefore seek a likelihood ratio L(t) for which

P(Yt ∈ dω) = L(t,ω)P(Bt ∈ dw), (6)

where Yt = (Y (s) : 0≤ s≤ t) and Bt = (B(s) : 0≤ s≤ t).
Assume now that d = m = 1. Girsanov’s formula (see, for example, Chapter 13 of Steele (2000))

asserts that

h(t) = exp
(∫ t

0
µ̃(B(s))dB(s)− 1

2

∫ t

0
µ̃

2(B(s))ds
)
, (7)

under suitable conditions on µ̃ . But the stochastic integral appearing in (7) can ,via Itô’s formula, be
expressed as

h(B(t))−h(B(0))− 1
2

∫ t

0
h′′(B(s))ds,

provided that we choose h so that h′(x) = µ̃(x) or, equivalently,

h(x) =
∫ x

x0

µ̃(y)dy+ µ̃(x0).

By making this choice, we find that

L(t) = exp
(

h(B(t))−h(B(0))− 1
2

∫ t

0

[
h′(B(s))2 +h′′(B(s))

]
ds
)
.

If h and h′′ are bounded, then

L(t)≤ exp
(

2||h||∞ +
1
2

t||h′′||∞
)
, κ0,

195



Glynn

where ||w||∞ , sup{|w(s)| : x ∈ R}. It follows that if U is a uniform rv on [0,1] independent of B, then

P(Yt ∈ ·) = P(Bt ∈ ·|U ≤ L(t)/κ0), (8)

yielding, our acceptance-rejection algorithm.
However, testing the inequality U ≤ L(t)/κ0 requires that we be able to exactly generate the rv∫ t

0

[
h′(B(s))2 +h′′(B(s))

]
ds

jointly with B(t). Since this may be challenging for complicated choices for h, a further idea is needed.
Write

L(t) =
exp(h(B(t))−h(B(0)))

κ1
exp
(
−
∫ t

0
φ(B(s))

)
exp(κ2t),

where κ1 is chosen so that exp(h(B(t))−h(B(0)))/κ1 ≤ 1 and φ and κ2 are chosen so that φ(x) ,(
h′(x)2 +h′′(x)

)
/2+κ2 ≥ 0 for x ∈R. If we let N be a unit rate Poisson process independent of B and U ,

we observe that

P
(

N
(∫ t

0
φ(B(s))ds

)
= 0|B,U

)
= exp

(
−
∫ t

0
φ(B(s))ds

)
a.s. (9)

The advantage of (9) is that we can generate N
(∫ t

0 φ(B(s))ds
)

by thinning (see Lewis and Shedler (1979)),
so that φ(B(·)) need only be evaluated at the finite number of points at which the ”dominating” Poisson
process is thinned.

Specifically, let T1,T2, · · · be the event times of (N(||φ ||∞s) : s≥ 0), and let U1,U2, · · · be a sequence
of iid uniform [0,1] rv’s independent of U , B, and N. Then,

exp
(
−
∫ t

0
φ(B(s))ds

)
= P

(
U1 >

φ(B(T1))

||φ ||∞
, · · · ,UÑ >

φ(B(TÑ))

||φ ||∞

∣∣∣∣B,U) a.s.,

where Ñ = N(||φ ||∞t). We conclude that

P(Yt ∈ ·) = P
(

Bt ∈ ·
∣∣∣∣U ≤ exp(h(B(t))−h(B(0)))/κ1,U1 >

φ(B(T1))

||φ ||∞
, · · · ,UÑ >

φ(B(TÑ))

||φ ||∞

)
(10)

Since it is easy to jointly generate B(T1), · · · ,B(TÑ), B(t) conditional on T1, · · · ,TÑ , we conclude that (10)
provides a practically implementable means of exactly simulating formulas at Yt . In particular, we can
now generate f (Yt) exactly, provided that we have the ability to jointly generate f (Yt),B(t1), · · · ,B(tn), and
B(t), for any selection of time points 0 < t1 < · · ·< tn < t.

This elegant set of ideas was introduced by Beskos and Roberts (2005), and it has attracted much
further research in the years since its introduction; see for example, Giesecke and Smelov (2013). Their
initial paper made one further enhancement, by recognizing that h is typically unbounded, so that κ1 = ∞ in
many applications settings. Thus, they choose to use a modified candidate, involving the Brownian bridge
process rather than Brownian motion.

As noted earlier, this idea depends upon the Lamperti transformation, so it requires either that d = 1 or
that the multi-dimensional X have very special structure in its volatility specification. In the next section, we
show how exact estimation provides the additional algorithmic flexibility needed to develop good estimation
algorithms for multi-dimensional SDE’s.
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3 EXACT ESTIMATION FOR SDE’s

In contrast to Section 2, the easiest means of exactly estimating functionals of SDE’s is to start from the
various discretization schemes that have been proposed historically for solving SDE’s. Specifically, the
idea is to approximate X = (X(t) : t ≥ 0) by a process Xh = (Xh(t), t ≥ 0) corresponding to a time-step
discretization equal to h. The most obvious such discretization is the Euler scheme given by

Xh((k+1)h)−Xh(kh) = µ(Xh(kh))h+σ(Xh(kh))(B((k+1)h)−B(kh))

for h > 0, thereby yielding Xh at the lattice points 0,h,2h, · · · . To obtain a full continuous time path, one
needs some mechanism for interpolating over each interval [kh,(k+1)h]. The easiest such interpolation is
a linear interpolation, but other mechanisms are available also. For example, if one wishes to respect the
Brownian fluctuations of the path within such intervals, one can interpolate using a Brownian bridge with
a constant volatility given by (say) the average of the volatility values at the two end points. Whatever
interpolation is used, we end up with a continuous time approximation (Xh(t) : t ≥ 0) to X . For a given
functional f (X), we therefore have an approximation f (Xh).

We note that the approximation f (Xh) is typically biased as an estimator of E f (X). For functionals
f that take the form f (X) = w(X(1)) for some w : Rd → R+ (a so-called ”final value” problem), the bias
generally can be expressed as

E f (Xh) = E f (X)+bhk +o(h) (11)

as h ↓ 0, where k is known as the (weak) order of the scheme (and o(a(h)) denotes a function r(h) such
that r(h)/a(h)→ 0 as h→ 0). Since it is usual that Xh⇒ X as h ↓ 0 (where⇒ denotes weak convergence),
it is generally the case that Var f (Xh)→Var f (X) as h ↓ 0.Thus, if

W̄n(h),
1
n

n

∑
i=1

f (X i
h)

where X1
h ,X

2
h , · · · are iid replicates of Xh, the mean square error (MSE) is given by

MSE(W̄n(h)) =
1
n

Var f (X)+b2h2k +o(
1
n
+h2k) (12)

as n→ ∞ and h ↓ 0.
Given the above expression for the MSE, it is now natural to seek the choice of n and h, for a

given computational budget c, that minimizes the MSE. Fixing c effectively constrains n/h = c (since the
computational effort required to generate Xh over a unit amount of time scales in proportion to 1/h, where
h is the forward time-stepping increment). Subject to n/h = c, the minimizing prescription for n and h (in
the presence of (12)) is to choose n to scale in proportion to c

2k
2k+1 and to let h decrease at rate c−

1
2k+1 , in

which case the MSE tends to 0 at rate c−
2k

2k+1 . In other words, the root mean square error decays at rate
c−

k
2k+1 , in the presence of these optimal choices. For a related discussion, see Duffie and Glynn (1995).

A key observation is that the magnitude of k has an enormous impact on the rate of convergence of
the associated numerical scheme. Thus, a second-order scheme (for which k = 2) converges much faster
than does a first-order scheme (for which k = 1), and this motivates the extensive literature on higher order
solution schemes; see Kloeden and Platen (1992). It is worth noting that k ∈ (0,1) is also possible; see
Asmussen, Glynn, and Pitman (1995).

We next turn to exact estimation in the SDE context. We provide here a general account of a key idea
that will be used not only in this section, but also later when we discuss exact estimation in the setting of
Markov chains. We note that if Y = f (X), we can view our discretization scheme as providing a family
of approximations Yh = f (Xh) to Y . So, consider now a sequence (Yn : n ≥ 0) of approximations to a rv
Y in which Yn → Y in L2, where L2 is the Hilbert space of square-integrable rvs, equipped with norm
||Z||2 =

√
EZ2 for Z ∈ L2.

197



Glynn

Let ∆n = Yn−Yn−1 for n≥ 0 (with Y−1 , 0) and note that the L2 convergence implies that EYn→ EY
as n→ ∞. Consequently,

EY = lim
n→∞

n

∑
k=0

E∆k,

Note that if N is a finite-valued non-negative integer-valued rv, independent of (Yn : n≥ 0), for which
P(N ≥ n)> 0 for n≥ 0, then EZ̃n = EYn for n≥ 0, where

Z̃n =
N∧n

∑
k=0

∆k/P(N ≥ k),

where a∧b , min(a,b). If
∞

∑
n=1

||Yn−Y ||22
P(N ≥ k)

< ∞, (13)

then Z̃n→ Z̃ a.s. as n→ ∞, EZ̃ = EY , Z̃ ∈ L2, and

EZ̃2 =
∞

∑
n=0

(
||Yn−1−Y ||22−||Yn−Y ||22

)
P(N ≥ n)

;

see Rhee and Glynn (2015) and the closely related paper by McLeish (2011). By replicating iid copies
of Z̃, this gives us a general recipe for constructing finite variance unbiased estimators from sequences of
biased estimators. Since such finite variance unbiased estimators satisfy central limit theorems (CLT’s) with
square root convergence rate, the above recipe therefore has the potential to turn estimation schemes with
sub-square root convergence rates into ones that enjoy square root convergence. In other words, enormous
potential improvements in convergence can be obtained using this approach. This estimation approach
can be viewed as being a randomized version of what is known as multi-level Monte Carlo; see Heinrich
(2001) and Giles (2008) for details.

In order to implement this strategy, we need to construct approximations (Yn : n≥ 0) such that the Yn’s
are close to one another for n large. This suggests that the key to success in this approach is ”coupling”
the Yn’s in such a way that ||Yn−Yn−1||2→ 0 as n→ ∞.

Fortunately, in the SDE context, this is easily accomplished. In particular, suppose that Yn corresponds
to f (Xh) with h = 2−n, and note that Yn uses a time increment half the size of that for Yn−1. The idea is to use
the same Brownian motion across all the Yn’s. Specifically, one can first generate the Brownian increments
at the finest time scale appearing in Z̃, namely h = 2−N , and then simply aggregate the increments to obtain
the Brownian terms that appear within the coarser scales associated with Y0, · · · ,YN−1.

With this idea in hand, suppose that one uses the Euler discretization to construct the Xh’s, together
with linear interpolation between the time discretization points. Then, according to Kloeden and Platen
(1992), p.341-344,

||Yn−Y ||22 = O(2−n)

as n→ ∞, and we note that Var(Z̃) < ∞ if P(N ≥ n) is then chosen to be of order 2−np for p ∈ (0,1).
As a consequence, one is guaranteed square root convergence rate in the number n of replicates of Z̃ that
are generated. When one replicates Z̃ many times, this effectively means that one is sampling at different
frequencies across the various time-discretizations. This idea is the fundamental concept underlying multi-
level Monte Carlo; see Giles (2008) and Heinrich (2001). Thus, given the randomization in N, we can
view this algorithm as a randomized MLMC method.

Of course, what we really want is a square root convergence rate in the computational effort c (as
measured, say, in the number of floating point operations). Typically, square root convergence in n and c
go hand-in-hand, because the expected computational effort per replicate usually is finite; see Glynn and
Whitt (1992) for such a result. But our randomized MLMC scheme can unfortunately yield estimators
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with infinite expected computational effort per observation. Note that the computational effort required to
generate Z̃ scales in proportion to 2N . But if P(N ≥ n) is of order of 2−np for 0 < p < 1, this implies that
E2N = ∞, and thus the expected computational effort per Z̃ replicate is infinite.

As a consequence, it is natural to explore modifying the discretization scheme that is used. In particular,
suppose that one approximates X via Xh, where Xh corresponds to a Milstein approximation to X ; see p.345
of Kloeden and Platen (1992) for a description. If Yn is again associated with f (Xh) with h = 2−n, it turns
out that

||Yn−Y ||22 = O(2−2n) (14)

as n→ ∞. Consequently, Var(Z̃)< ∞ ensures, provided that we choose (for example) P(N ≥ n) of order
2−np for 0 < p < 2.

Turning next to the question of the expected computational effort per replicate of Z̃, the Milstein scheme
requires generating the iterated Itô integrals ∫ t

0
Bi(s)dB j(s)

for 1≤ i, j≤ d. There is, unfortunately, no good algorithm available currently for generating such integrals
when i 6= j. (Of course, when i = j, it is well known that this is given by (B2

i (t)− t)/2.) Clearly, when
d = 1, the Milstein scheme involves no such non-simulatable iterated Itô integrals. In this one dimensional
setting, the computational effort scales in proportion to 2N , as in the Euler context. It follows that we
can obtain finite expected computational time per replication if we choose N so that P(N ≥ n) is of order
2−np for p > 1. Hence, we obtain a square root convergence rate in c if p ∈ (1,2). Thus, square root
convergence rate in c for one dimensional SDE’s can be attained using either exact simulation or exact
estimation methods.

In Rhee and Glynn (2015), a recently developed method of Giles and Szpruch (2013) is discussed,
known as antithetic MLMC, that offers the discretization error estimate (14) when the functional f is of
a suitable form. This antithetic method applies to multi-dimensional SDE’s, so provides a mechanism for
obtaining square root convergence rates in the multi-dimensional setting, at least when f is appropriately
chosen. In addition, the paper explores the issue of how to choose the randomization distribution N
optimally, so as to maximize the rate of convergence; see Section 3 of Rhee and Glynn (2015).

4 EXACT SIMULATION OF MARKOV CHAINS

Our second illustration of the contrast between exact simulation and exact estimation lies in the setting of
Markov chains, specifically in computing equilibrium quantities. We start by recalling that many Markov
chains have embedded regenerative structure, in which case the equilibrium distribution π (or stationary
distribution) can be expressed as

π(·) =
Ẽ ∑

τ−1
j=0 I(X j ∈ ·)

Ẽτ
,

where τ is the first regeneration time of X , and Ẽ(·) is the expectation operator under which X is initialized
so that the chain starts at n = 0 with a regeneration; see Asmussen (2003), p.178, for details. Hence, if
P̃(·) is the probability associated with Ẽ(·),

π(·) =
∞

∑
j=0

P̃(X j ∈ ·|τ > j)
P̃(τ > j)

Ẽτ

=
∞

∑
j=0

P̃(X j ∈ ·|τ > j)P̃(Λ = j)

= P̃(XΛ ∈ ·|τ > Λ), (15)
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where Λ is a rv, independent of X , with a probability mass function given by P̃(Λ = j) = P̃(τ > j)/Ẽτ .
Hence, π can be exactly simulated, provided that sampling such a Λ can be implemented.

Suppose now that X = (Xn : n≥ 0) is an aperiodic uniformly ergodic Markov chain; every irreducible
aperiodic finite state Markov chain is uniformly ergodic. In this case, there exists m ≥ 1, λ > 0, and a
probability ϕ such that

P(Xm ∈ ·|X0 = x)≥ λϕ(·)

for all x; see Meyn and Tweedie (2009), p.394. As a consequence, we can write

P(Xm ∈ ·|X0 = x) = λϕ(·)+(1−λ )Q(x, ·), (16)

where Q(x, ·) , (P(Xm ∈ |X0 = x)−λϕ(·))/(1−λ ). In view of (16), we can view an m-step transition
from x as arising due to a coin flip (with probability of heads equal to λ ). If the coin comes up heads, Xm
is distributed according to ϕ , whereas tails implies that one distributes Xm according to Q(x, ·). Note that
we can view the times at which X distributes itself according to ϕ as regeneration times for X . It follows
that τ is geometrically distributed with parameter λ , and hence Λ is also geometrically distributed with
parameter λ . Hence, we arrive at an implementable algorithm for sampling from π(·). This is one of the
exact simulation algorithms introduced by Asmussen, Glynn, and Thorisson (1992). However, it suffers
from the defect that knowledge of λ , ϕ , and P(Xm ∈ ·|X0 = x) play a role in the algorithm.

We now describe the coupling-from-the-past (CFTP) algorithm provided by Propp and Wilson (1996)
for irreducible aperiodic finite state S-valued Markov chains. Any such Markov chain X = (Xn : n≥ 0) can
be viewed as the solution of a stochastic recursion

Xn+1 = r(Xn,Zn+1),

where the Zi’s are independent and identically distributed (iid) and r is a deterministic map. Hence,

Xn+1 = φn+1(Xn),

where φn+1(x) = r(x,Zn+1). So, conditional on X0 = x,

Xn = (φn ◦φn−1 ◦ · · · ◦φ1)(x).

But since the φi’s are iid, (φn◦φn−1◦· · ·◦φ1)
D
=(φ1◦φ2◦· · ·◦φn) (where D

= denotes ”equality in distribution”).
So, Xn

D
=Yn(x), where

Yn(x)
D
=(φ1 ◦φ2 ◦ · · · ◦φn)(x).

It can be shown that Yn(x)→ Y∞, a.s. as n→ ∞; see Asmussen and Glynn (2007), p.122. In particular,
if (Ym(x) : x ∈ S) has a common value Y∞ for some m, then Yn(x) = Ym(x) for all n ≥ m. So, if β is the
smallest m for which the cardinality of {Ym(x) : x ∈ S} is one, then Y∞ = (φ1 ◦ · · · ◦φβ )(x). Furthermore,

since Yn(x)
D
=Xn for n≥ 0, it follows that Y∞ has the equilibrium distribution π .

One has significant flexibility in one’s choice of the mappings (φn : n≥ 1). In particular, note that the
φn’s must respect the fact that

P(φn(x) = ·) = P(Xn = ·|Xn−1 = x)

for x ∈ S. Thus, the marginal distributions of the φn(x)’s are fixed. But one is then free to choose the joint
distribution of the φn(x)’s judiciously, subject to this constraint on the marginals. One can generate the
φn(x)’s independently in x, or one can use common randomness (as in the representation φn(x) = r(x,Zn))
to generate the φn(x)’s.

One setting in which this algorithmic freedom can be usefully exploited is when X is a stochastically
monotone Markov chain. In this case, r can be chosen so that r(·,Zn) is monotone. It follows that the
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cardinality checking condition is then particularly simple. Specifically, β then corresponds to the first m≥ 1
at which Ym(xS) agrees with Ym(xL), where xS and xL are the smallest and largest states in S (assuming that
such states exist). In particular, this applies even to continuous state space problems that are stochastically
monotone, in which any attempt to check the cardinality condition via independent sampling of the φn(x)’s
is doomed to fail.

The area of exact simulation has been very active over the last twenty years, and many variates of
these algorithms have now been proposed. In addition to the many results that relate to Markov chain
Monte Carlo settings, there are also special exact simulation algorithms available for the single-server
queue (Ensor and Glynn (2000), Blanchet and Wallwater (2015)), multi-server queues (Blanchet, Dong,
and Pei (2015)), multi-dimensional reflecting Brownian motion (Blanchet and Chen (2015)), infinite server
queues and related loss systems (Blanchet, Dong, et al. (2015)) and perpetuities (Blanchet, Lam, and Zwart
(2012)), as well as many objects that arise from spatial processes.

However, these exact simulation methods are difficult to apply to discrete-event simulations; see
Henderson and Tweedie (2000). The notion of exact simulation is also bound up with the notion of
φ -irreducibility in the Markov chain setting. However, there are continuous state space Markov chains
that arise naturally in some applications, in which this form of irreducibility fails to be valid, so that exact
simulation is then typically unavailable.

5 EXACT ESTIMATION FOR MARKOV CHAINS

With the relaxation to exact estimation, it is often relatively easy to construct ad hoc schemes that
provide unbiased estimators for equilibrium quantities. Consider, for example, the waiting time sequence
W = (Wn : n ≥ 0) associated with the single-server queue with first-in/first-out(FIFO) queue discipline.
Then, the Wn’s satisfy the stochastic recursion

Wn+1 = [Wn +Zn+1]
+,

where [x]+ , max(x,0) and the Zn’s are iid rv’s. In order that the queue be stable, we require that EZ1 < 0.
While this Markov chain is stochastically monotone, there is no upper bound to its state space R+, so that
the CFTP methods of Section 4 are not applicable. (Of course, the special purpose algorithms of Ensor
and Glynn (2000) do apply here, at least when the Zi’s are light-tailed.)

It is well known that Wn⇒W∞ as n→∞, where W∞

D
=M∞ = max{Sk : k≥ 0} and Sk = Z1+ · · ·+Zk; see

Asmussen (2003), p.267. So, P(W∞ > x) = P(M∞ > x) = P(T (x)< ∞), where T (x) = inf{n≥ 0 : Sn > x}.
To form an unbiased estimator for E f (W∞), suppose that f is differentiable and non-decreasing, and write

E f (W∞) = E[
∫ W∞

0
f ′(x)dx+ f (0)]

= f (0)+E
∫

∞

0
f ′(x)I(W∞ > x)dx

= f (0)+
∫

∞

0
f ′(x)P(T (x)< ∞)dx

= f (0)+
∫

∞

0

f ′(x)
k(x)

P(T (x)< ∞)k(x)dx

= f (0)+E
f ′(R)
k(R)

P(T (R)< ∞),

where R is a rv independent of (Sk : k ≥ 0) having positive density k.
Of course, I(T (R)< ∞) can not be simulated in finite time, since the entire random walk (Sk : k ≥ 0)

must be guaranteed in order to ascertain when T (R)< ∞ or not. To circumvent this problem, one possibility
is to employ importance sampling. In this case, we write

P(T (x)< ∞) = E∗LT (x),
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where E∗(·) is the expectation operator associated with a probability P∗ under which T (x)< ∞ is a certain
event (e.g., E∗Z1 > 0), and LT (x) is the likelihood ratio of P relative to P∗ associated with (S j : 0≤ j≤ T (x)).
If the Z j’s are light-tailed with Cramér-Lundberg root θ ∗ > 0, then the natural choice of P∗ is such that

LT (x) = exp(−θ
∗ST (x)).

Hence, if f (x) = x, one possible exact estimator for E f (W∞) is just

exp(−θ ∗ST (R))

k(R)
.

Because ST (R) > R, it follows that P(T (x)< ∞)≤ exp(−θ ∗x) for x > 0. Hence, if we choose k(x) = λe−λx

for some λ > 0, we see that we should choose λ < θ ∗ in order to guarantee finite variance for our estimator.
In view of the fact that the computational effort required to generate ST (R) under P∗ scales in proportion to
R, the computer time necessary to generate our exact estimator has finite expectation. Thus, it converges
at square root rate in the computational effort c. This idea easily extends to square root convergence rate
exact estimation algorithms for queues in which the Zi’s are heavy-tailed, provided that the importance
sampling scheme is suitably modified. Hence, we have one exact estimation approach that covers both the
light-tailed and heavy-tailed versions of the model. By contrast, exact simulation algorithm design can be
quite sensitive to subtle model features related to issues such as the heaviness of the tails of the underlying
distributions.

As a second illustration of exact estimation, we consider a “fork-and-join” queue in which each entering
job is split into d individual sub-tasks. The sub-tasks are processed in parallel by d servers in FIFO order,
and the job is considered complete when the last sub-task finishes. Note that the queue at each parallel
server behaves, in isolation, like a single-server queue. Consequently, if An is the arrival time of job n and
Vn(i) is the processing time of the i’th sub-task for job n, the waiting time at server i for job n (exclusive
of service) satisfies the standard single-server waiting time recursion, namely

Wn(i) = [Wn−1(i)+Vn−1(i)− (An−An−1)]
+

for n≥ 1. Thus, the time-in-system (including its processing time) for the n’th job at server i is

Tn(i) =Wn(i)+Vn(i)

so that the total time-in-system for job n (i.e., the time that elapses from the job’s arrival to the job’s
completion) is

Tn = max
1≤i≤d

[Wn(i)+Vn(i)] .

We assume that each of the d + 1 sequences (χn : n ≥ 1), (Vn(1) : n ≥ −1), · · · , (Vn(d) : n ≥ −1)
are independent of one another and that each is itself a sequence of iid light-tailed positive rv’s. Set
Sn(i) = ∑

n
j=1[Vj−1(i)−χ j] and Mn(i) = max{S j(i) : 0≤ j ≤ n}. Note that if the system starts empty,

Tn = max
i≤i≤d

[Wn(i)+Vn(i)]

D
= max

i≤i≤d
[Wn(i)+V−1(i)]

D
= max

i≤i≤d
[Mn(i)+V−1(i)]

↗ max
i≤i≤d

[M∞(i)+V−1(i)]
D
= T∞
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We now follow the same approach as for (Wn : n≥ 0) to construct an unbiased estimator for E f (T∞).
Hence, if f is non-decreasing and differentiable, the question comes down to unbiasedly estimating P(T∞ > x)
in finite time. Note that if Ti(x) = inf{n≥ 0 : Sn(i)> x}, then

P(T∞ > x) = P
(

min
1≤i≤d

Ti(x−V−1(i))< ∞

)
.

Put I (x) = min{i ∈ {1, · · · ,d} : Ti(x−V−1(i)) ≤ Tk(x−V−1(k)), 1 ≤ k ≤ d, Ti(x−V−1) < ∞}. For
1≤ i≤ d, let θ ∗i > 0 be the Cramér-Lundberg root for which E exp(θ ∗i (V0(i)−χ1)) = 1 (assumed to exist).
Then,

P(T∞ > x) =
d

∑
i=1

P(I (x) = i)

=
d

∑
i=1

E∗i exp(−θ
∗
i STi(x−V−1(i))(i))I(I (x) = i),

where E∗i (·) is the expectation operator associated with a distribution P∗i under which the marginal distributions
of the Vn(i)’s and χn’s are modified, respectively, so that P∗i (Vn(i) ∈ dv) = exp(θ ∗i v)P(Vn(i) ∈ dv) and
P∗i (χn ∈ dχ) = exp(−θ ∗i χ)P(χn ∈ dχ). Since I (x) = i can be determined by simulating each of the d
random walks up to Ti(x−V−1(x)) (which is finite a.s. under P∗i ), P(T∞ > x) can be estimated without
bias in finite time, yielding a finite-variance unbiased estimator, provided that we choose k(x) = λe−λx

with λ < min{θ ∗i : 1≤ i≤ d}. In contrast to (Wn : n≥ 0), this model is one for which no exact simulation
algorithm currently exists.

We turn next to discussion of a more systematic approach for constructing exact estimators in the
context of Markov chain equilibrium computations. We return to the idea underlying CFTP algorithms,
and represent the Markov chain Xn through the composition

Xn = (φn ◦φn−1 · · · ◦φ1)(x)

of random iterated maps. Again, we note that Yn(x) = (φ1 ◦φ2 ◦ · · · ◦φn)(x) has the same distribution as Xn.
As noted in Section 4, there are many Markov chain settings in which

Yn(x)→ Y∞ a.s. (17)

as n→∞, where Y∞ has the equilibrium distribution π . However, rather than using (17) as a starting point
for constructing an exact simulation algorithms, we move directly to using Section 3’s idea for developing
an exact estimator. Specifically, let ∆n = f (Yn(x))− f (Yn−1(x)) and set

Z̃ =
N

∑
k=0

∆k

P(N ≥ k)
.

For a broad class of Markov chains, the φn’s have a certain contractive property that guarantees that the
distance between Yn(x) and Y∞ goes to zero geometrically fast a.s., so that if f is Lipschitz, then ∆n converges
to 0 geometrically fast, as does

|| f (Yn(x))− f (Y∞)||22;

see Glynn and Rhee (2014). As a consequence, if P(N ≥ n) is of order n−α for n large with α > 0, Z̃
is guaranteed to have finite variance; see (13). Since computing (φ1 ◦ · · · ◦ φ j)(x) takes order j units of
computational effort, it follows that computing Z̃ takes a computational effort of roughly order N2. (Recall
that Z̃ is defined in terms of (φ1 ◦ · · · ◦φ j)(x) for 1≤ j ≤ N.) Hence, if we choose α > 2, it follows that
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EN2 < ∞ and we end up with an exact estimation algorithm that exhibits square root convergence rate in
the computational effort c.

So, we see that with a modest amount of algorithmic design effort, we can easily construct exact
estimation algorithms. In addition to the relative ease of their design (as contrasted to exact simulation
algorithms), these algorithms can have theoretical advantages relative to their exact simulation counterparts.
In particular, exact estimation can be feasible to implement even in Markov chain settings where the chain
fails to be irreducible in the sense typically required for exact simulation to be valid.
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