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independent of both the simulation development team(s) and the model sponsor/user(s). The IV&V 
approach is generally used with the development of large-scale simulation models, whose development 
usually involves several teams. The IV&V team needs to have a thorough understanding of the intended 
purpose(s) of the simulation model in order to conduct IV&V. 

The remainder of this paper discusses operational validation of simulation models in depth.   

2  OPERATIONAL VALIDATI ON 

Operational validation is determining whether the simulation model’s output behavior has the accuracy 
required for the model’s intended purpose over the domain of the model’s intended applicability. This is 
where much of the validation testing and evaluation take place. Since the computerized (simulation) model 
as shown in Figure 1 is used in operational validation, any deficiencies found may be caused by what 
resulted from any of the earlier steps that are involved in developing the simulation model, including 
developing the system’s theories or having invalid data.  

The amount of accuracy required of a simulation model is usually specified by the range within which 
the difference between a model’s output variable and the corresponding system output variable must be 
contained.  This range is commonly known as the model’s acceptable range of accuracy.  If the variables 
of interest are random variables, then properties and functions of the random variables (such as means) are 
often what are of primary interest and are the quantities that are used in determining model validity. A 
model’s acceptable range of accuracy should usually be specified prior to starting the development of the 
model or very early in the model development process. The accuracy of a model should be tested under 
numerous sets of experimental conditions that define the domain of a model’s intended applicability. A 
model is considered valid for a set of experimental conditions if the model’s accuracy is within its 
acceptable range of accuracy. A model may be valid for one set of experimental conditions and invalid for 
another. 
 Numerous validation techniques are applicable to operational validity (see, e.g., Sargent 2013). Which 
techniques and whether to use them objectively or subjectively must be decided by the model development 
team and the other interested parties. The major attribute affecting operational validity is whether the 
problem entity (or system) is observable, where observable means it is possible to collect data on the 
operational behavior of the problem entity. Table 1 gives a classification of the validation techniques used 
in operational validity based on the decision approach and system observability. “Comparison” means 
comparing the simulation model output behavior to either the system output behavior or another model 
output behavior using graphical displays and/or statistical tests and procedures. “Explore model behavior” 
means to examine the output behavior of the simulation model using appropriate validation techniques, 
including parameter variability-sensitivity analysis (Sargent 2013). Various sets of experimental conditions 
from the domain of the model’s intended applicability should be used for both comparison and exploring 
model behavior. 

To obtain a high degree of confidence in a simulation model and its results, comparisons of the model’s 
and system’s output behaviors for several different sets of experimental conditions are usually required. 
Thus if a system is not observable, which is often the case, it is usually not possible to obtain a high degree 
of confidence in the model. In this situation, the model output behavior(s) should be explored as thoroughly 
as possible and comparisons should be made to other valid models whenever possible. 

2.1 Explore Model Behavior 

The simulation model output behavior can be explored either qualitatively or quantitatively. In qualitative 
analysis the directions of the output behaviors are examined and also possibly whether the magnitudes are 
“reasonable.” In quantitative analysis both the directions and the precise magnitudes of the output behaviors 
are examined.  Experts (e.g., subject matter experts) on the system often know the directions and frequently 
know the “general values” of the magnitudes of the output behaviors. Many of the validation techniques 
can be used for model exploration; and specifically, parameter variability-sensitivity analysis should 
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routinely be used. Graphs of the output data discussed in Subsection 2.2 below can be used to display the 
simulation model output behavior. Furthermore, a variety of statistical approaches can be used in 
performing model exploration including metamodeling and design of experiments. (See, e.g., Kleijnen 1999 
and 2015 for discussions on the use of these statistical approaches.) Additionally, numerous sets of 
experimental frames should be used in performing model exploration. The results of exploring model 
behavior can be used when no system data are available to aid in making a subjective decision regarding 
operational validation of a simulation model by the model development team, subject matter experts, users, 
and others. 

Table 1: Operational Validation Classification. 

 

 
 
 

 

 
 
 

2.2 Comparisons of Output Behaviors 

There are three basic approaches used in comparing the simulation model output behavior to either the 
system output behavior or another (validated) model output behavior: (1) the use of graphs to make a 
subjective decision, (2) the use of confidence intervals to make an objective decision, and (3) the use of 
hypothesis tests to make an objective decision. It is preferable to use one of the statistical comparison 
approaches (2) or (3) because they allow for objective decisions. However, it is often not possible in practice 
to use either of these approaches because (a) the statistical assumptions required cannot be satisfied or only 
with great difficulty (required assumptions are usually data independence and normality), (b) there is an 
insufficient quantity of system data available, which causes the statistical results to be “meaningless” (e.g., 
the length of a confidence interval developed in the comparison of the system and simulation model means 
is too long for any practical usefulness), and/or (c) the behavior of the problem entity is changing, e.g., is 
highly nonstationary. As a result, the use of graphs is the most-commonly used approach for operational 
validation, but extreme care must be used for this approach. Each of these three approaches is discussed 
below using system output data. (Note: these same approaches can also be used with output data from a 
validated model instead of system output data when appropriate.)  

2.2.1 Comparisons Using Graphical Displays 

The output behavior data of the simulation model and the system can be graphed for various sets of 
experimental conditions to aid in determining if the model’s output behavior has sufficient accuracy for the 
model’s intended purpose. Three types of graphs are used: histograms, box (and whisker) plots, and 
behavior graphs using scatter plots (see, e.g., Hines, et al. 2003 for a discussion of graphs in general). These 
three types of displays (or graphs) allow data to be statistically dependent (i.e., correlated) and non-normal, 
which often occurs in behavior data of systems and simulation models. The use of graphical displays of (a) 
data for operational validation is discussed in Sargent (1996), and (b) simulation data for statistical 
references is developed in depth in Sargent (2001a). 
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 Let us obtain 500 sample means of size 20 from the model (which has an overall sample mean of 6.901) 
and put these 500 observations into a histogram as shown in Figure 7 as a statistical reference for sample 
means of size 20. Similarly, let us obtain a sample of size 20 from the system, which has a sample mean of 
7.80; and put this system sample mean on the histogram in Figure 7 with an “X”. One can see from the 
Figure 7 that the system sample mean is in the tail of the histogram and thus the system and model means 
are most likely not equal but are reasonably close to each other. 
 

                       
                                                                     

       Figure 6: Box plots of the system and model.        
 

Figure 7: Model mean histogram of size 500. 

Let us look at another example: a single-server queueing system with an infinite allowable queue with 
exponential inter-arrival times and two different service time distributions.  One service time distribution 
will be an exponential and the other one will be a uniform with both having the same mean. One can readily 
see from the histograms in Figure 8 and the box plots in Figure 9 that the system times are different between 
these two systems with different service time distributions. 

 

 

Figure 8: Histograms of single-server queueing system. 
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Figure 9: Box plots of single-server queueing system. 

Next, let us look at a hospital model by Lowery (1996) that was validated by using histograms and box 
plots. Figures 10 and 11 give two of the graphical displays that were used. We note in Figure 10 that the 
system observation for 24 weeks lay within the histogram of the model observations of 24 weeks. In Figure 
11 we note that the model has a slightly larger variation than the system and slightly lower median. 
 

 
Figure 10: Histogram of hospital data.  Figure 11: Box plots of hospital data.

 
Let us next look at the use of behavior graphs for validation of simulation models. Recall that behavior 

graphs use scatter plots.  A variety of graphs should be used with different types of (1) measures such as 
the mean, variance, maximum, distribution, and times series of a variable, and (2) relationships such as 
those between (a) two measures of a single variable and (b) measures of two variables. It is important that 
the measures and relationships selected for validating a simulation model be determined with respect to the 
model’s intended purpose.  We will look at the work of Anderson and Sargent (1974) that used behavior 
graphs in validating a model of a computer system. Figure 12 gives a queueing network of the computer 
system.  Figures 13–15 give three of the behavior graphs that were used. Figure 14 illustrates the use of two 
measures of the same variable.  The other two figures use different variables for the relationships.  Studying 
these graphical displays, one notes that there is a difference between the simulation model and computer 
system whose cause was determined to be that the actual job scheduling rule used in the computer system 
was different than what was described for the computer system and was used in the simulation model. 

2.2.2 Confidence Intervals 

Confidence intervals (c.i.’s) and simultaneous confidence intervals (s.c.i.’s) can be obtained for the 
differences  between  means,  variances,  and  distributions  of  different  output  variables  of a simulation  
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Figure 12: Queue network of computer system.  
 
      

  
 
     Figure 14: Computer reaction time.                                                       

 
 
 Figure 13: Behavior of foreground queue. 
 

   
    Figure 15: Response time versus disk access.

model and a system for each set of experimental conditions.  These c.i.’s and s.c.i.’s can be used as the 
model range of accuracy for model validation, where the model range of accuracy is the confidence interval 
or region (for the s.c.i.’s) around the estimated difference between some function (e.g., the mean) of the 
model and system output variable being evaluated. Balci and Sargent (1984) give details on the use of c.i.’s 
and s.c.i.’s for operational validity, including a general methodology. 

To construct the model range of accuracy, a procedure containing a statistical technique and a method 
of data collection must be developed for each set of experimental conditions and for each variable of interest 
for both the simulation model and the system. The statistical techniques used can be divided into two 
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model has been determined to be invalid with the risks as depicted by the final risk curve plotted in Figure 
19.                                    

     
  Figure 18: Sample size risk curves at L.                            Figure 19: Final risk curve at L. 

                                                                                                                                                                                                                                                                                                                                                                                    
Let us now modify this example to illustrate the use of the interval statistical procedure when L is not 

equal to ‒U.  We will keep everything the same except let L � ���Å1.00. If we use the same seeds for generating 
the observations and make the same decisions in all of the steps of the Procedure, then everything remains 
the same, except in Step 5 the acceptance range of T ch�D�Q�J�H�V���W�R�����Å1.766, 1.262) and now T � ���Å����������. Since 
the value of T � ���Å�������������I�D�O�O�V���Z�L�W�K�L�Q���W�K�H acceptance range for T, the null hypothesis now fails to be rejected 
and therefore the model has been determined to be valid with the risks as depicted by the risk curves plotted 
in Figure 19. (The acceptance region can be calculated for D, which is (�Å0.877, 0.627), and the difference 
of the two sample means is ‒0.68, which, of course, falls within the acceptance region.)  Note that the 
accuracy required of the simulation model was not as stringent as previously required, which allowed the 
model to now be acceptable. We also note that D = µM ‒ µR = 6.890 ‒ 7.760 = �Å0.870, and thus the statistical 
results for both L = �Å0.75 and L � ���Å����������agree with the theoretical results.       

The system (reference) sample of size 20 having a sample mean of 7.800 used in the interval statistical 
tests discussed above was the same system sample whose sample mean was used in Figure 7. Our subjective 
analysis using the graphical approach and Figure 7 led us to conclude that the model mean transit time was 
probably close to but not equal to the system mean transit time. Using the interval statistical procedure we 
were able to quantify the results and obtain an objective decision of whether the model satisfied the model’s 
acceptable range of accuracy. This example clearly shows the advantages of using the interval statistical 
procedure for model validation whenever it is possible.  

3 SUMMARY                                         

After a brief overview of verification and validation of simulation models, operational validity was 
discussed in depth. Validation approaches were discussed that use subjective and objective decision making 
for both observable and non-observable systems. Various types of graphical displays for exploring and 
comparing output behaviors were covered in detail and illustrated through examples. Statistical methods 
were discussed and a detailed example using a new interval hypothesis test was presented that illustrated 
why this approach should be used when possible. Detailed procedures for using this new interval statistical 
approach for model validation for both one-sample and two-sample interval hypothesis tests are given in 
two appendices. 
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A ONE-SAMPLE INTERVAL STAT ISTICAL PROCEDURE  

  

B TWO-SAMPLE INTERVAL STAT ISTICAL PROCEDURE  
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