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ABSTRACT

The tutorial will be used to introduce some basic techniques for analysing the output of stochastic simulation
models. Using examples, we will describe methods for determining the optimal warm-up length and number
of replications as well as introducing ways of using simulation to compare different systems.

1 INTRODUCTION

We only consider the analysis of stochastic, dynamic simulation models in this tutorial. By this we mean that
the inputs to the simulation models are random or stochastic. A quick look at the conference proceedings
for a typical Winter Simulation Conference will show how diverse the applications of such models are, e.g.
factory production lines; the performance of call centers; transmission of information over the Internet; etc.

Techniques will be introduced using worked examples, which have been chosen to represent a range
of different types of simulation models. The examples are:

1. Simple queueing system (M/M/1 queue)
2. Model of server usage for online sales
3. Infectious disease model

A more complete description of the examples will be given as we meet them in the text, and analyse their
output.

Our aim in this tutorial is that a reader will understand the nature of simulation output data better and
will learn a few basic techniques for analysing it effectively. We do not intend to give a complete description
of the theoretical underpinnings of output analysis nor to provide full details of all of the methods that we
describe. Those who wish to find out more can consult the myriad of excellent books that discuss this
topic, e.g. (Banks et al. 2009, Law 2014, Robinson 2014).

The tutorial begins by describing simulation output data, before moving on to provide two methods
for estimating the warm up duration in non-terminating simulations. In Section 4 we describe methods
for analyzing terminating simulations, before going onto discuss performance measures in Section 5. The
penultimate section describes methods for comparing two or more systems, before a brief conclusion.

2 SIMULATION OUTPUT DATA

A simulation user will define a set of performance measures or outputs of interest that they wish to record
when running their simulation model. Let us use y to describe the output that we are interested in. For
example, y could be the queue length in a grocery store or the throughput of a factory production line.
Assume that the simulation model is run » times, with a different set of random numbers in each of the n
replications, and that in each replication, the simulation outputs m values for y, where m can take on any
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value but commonly will either be equal to 1 or 7, the number of observations in each replication. Then,
the values

Yir Y12 - Yim

Y21 Y22 ..o Yom
y= : : .. : ’

Yol Yn2 -+ Yum

constitute the simulation output data. Simulation output data are random, as we are considering stochastic
simulation models. In this sense, running the model is just like observing reality in that each replication
of the model will generate a new set of results.

2.1 Autocorrelation

Due to the kinds of systems that we model using simulation, the data often exibit a high degree of
autocorrelation. If a data series is autocorrelated, there is a dependence between different data points in
the series y;1,vi2,---,Yim,» and consequently the output data cannot be regarded as a set of independent data.

Example 1: M/M/1 Queue: For those unfamiliar with queuing theory, the M/M/1 queue is a system
in which there is one server or activity that each individual in the system needs to visit or complete, and
there is a queue of unlimited size in front of that server or activity. The arrival of individuals into the model
follows a Poisson process (i.e. the number of arrivals per unit time follows a Poisson distribution and
the inter-arrival times follow an exponential distribution); and the service or activity time also follows an
exponential distribution. Individuals leave the system as soon as they have completed service. Analytical
methods can be used to analyse this system but here, we simulate the process to give us an understanding
of autocorrelation in simulation data.

We consider the queue length in an M/M/1 queue where the arrival rate is equal to 1 per second and the
service rate is equal to 1.5 per second. Figure 1 shows a trace of the number of people in the queue and, we
can see that the points are arranged into a series of wide peaks, separated by long periods of zero-length
queues. For example, between t =79 and ¢ = 88, the queue builds up and then declines, and the number
in the queue in a given time period is very dependent on the number in the queue in the previous time
period. These data show a high degree of positive autocorrelation.

In general, data output in different replications of the model can be regarded as independent and
consequently, this gives us one mechanism for dealing with the autocorrelation. Alternatively, we can
consider results from batches of data providing that the batches are sufficiently large for the correlation
between different batch results to be below some threshold level. This is known as the technique of Batch
Means and the principle of the method is described in Section 3.2.

2.2 Terminating vs Non-Terminating

Simulations can be described as terminating or non-terminating and Table 1 gives examples of both.
Terminating or finite simulations have a definite end, e.g. the end of the working day or the occurrence
of some random event. The time of the end event need not be deterministic and consequently the length
of the output data is not necessarily the same for each run of the simuation. Conversely, non-terminating
simulations have no defined end event and in such situations we are usually interested in the steady-state
behavior of the system. The difficulty with analysing non-terminating simulations is determining when the
steady-state has been reached.

3 NON-TERMINATING SIMULATIONS: WARM UP AND RUN LENGTH

Non-terminating simulation models can be used to describe systems which keep going in the same way
indefinitely. For example, models of factory production lines are often non-terminating models because
the behavior of the line once the initial transient behavior associated with starting up the line has subsided
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Figure 1: Time series showing the number of people in the queue in each time step for an M/M/1 queuing
system.

Table 1: Examples of terminating and non-terminating simulation models.

Example Classification
Simple queuing system (M/M/1 queue) Non-terminating
Steady-state performance of server usage Non-terminating

Battle simulation Terminating
Transient behavior of servers Terminating
Rise of an infectious disease epidemic Terminating

is generally considered most important. Even in factories where production stops at the end of each day,
if work in progress is kept on the factory floor, production can be modeled as being continuous. For such
simulations, we want to remove any transient results at the start of the simulation model when calculating
our statistics of interest to avoid them introducing a bias to the results, i.e. define a warm up period.
We also wish to determine how long we need to run the simulations for to obtain accurate results. It is
important to note that in the steady-state, output is not constant and does still vary, but it will vary according
to a fixed or steady-state distribution.

Two approaches exist for dealing with non-terminating simulations. In the first approach, the user runs
multiple replications and calculate results excluding observations collected during the warm up period. In
the second approach, we can use the method of batch means, described in Section 3.2 in which we observe
one long simulation run and collect results in batches.

Example 2: Webserver Example The webserver example is adapted from earlier work (Currie and Lu
2011). The model describes the workings of a webserver in which there are a number of threads available
to process requests and a number of users active in the system. Users submit requests to the server, each
of which must be processed by a thread. We take our performance measure to be the number of requests
waiting in the queue for a thread to become available.
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3.1 Warm Up

Figure 2 shows the output from Example 2, which is a model of a web server. It is possible to observe an
initial period where the output is increasing, before the data series settles down to what can be regarded
as its steady-state behavior. The strange behavior at the start of the simulation run is often termed the
initial transient and if output from this period is included in the calculation of statistics of interest (e.g.
including the initial small values for the number in the queue for the web server example) they are likely to
bias the results such that we do not get a good approximation to the steady-state mean. The most common
way of dealing with the initial transient is to delete the output from this period, which we define to be the
warm up period. For example, if we have a series of simulation output data y;,y;2,...,y;r coming from
T observations of a particular model output y during the ith replication, we would calculate the mean for
replication i, y;, as being equal to

T
- Zz:tOJrlyit
Yi= T—1
where the warm up period is set to be equal to 7y. Other statistics, such as the variance or range of variables
would be calculated in a similar way, i.e. by ignoring the first #, observations.
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Figure 2: Time series showing the number of requests in the queue for the web server system demonstrating
the warm up.

Determining the warm up period is a problem that has been tackled by many authors and in a recent
review, Hoad et al. (2010) found 44 different methods proposed to solve this problem. These can be
classified into one of five categories, suggested in Robinson (2014):

1. Graphical methods: warm up length is decided by examining the time-series output of statistics of
interest

2. Heuristic approaches: use simple rules to determine warm up length

Statistical methods

4. Initialisation bias tests: check whether the early data in the time series is biasing the calculation of
statistics of interest

5. Hybrid methods: combinations of an initialisation bias test and another truncation method to decide
on warm up length

(98]
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We examine two methods in this tutorial for finding the warm up. The first, Welch’s method (Welch
(1981) or see Law (2014) for a good description) is a graphical method that is very popular because of its
simplicity. The second, MSER-5, put forward by White (1997), is an heuristic method that has received a
lot of attention in recent years (see Hoad et al. (2010), Law (2014), Mokashi et al. (2010) for experimental
results).

3.1.1 Welch’s Method

Welch’s method (introduced in Welch (1981) and described in detail in Law (2014)) makes use of the
moving average of the output statistic of interest and in principle, it is looking for the point in the time
series at which the moving average flattens out. The point at which the time series flattens out is denoted
as fop and corresponds to the warm up period. Estimating 7y from just one replication of the simulation
model would be difficult due to the variability in the output, and standard practice is to carry out at least
five replications to decide on the warm up length (e.g. see Chapter 9 of Robinson (2014)) and to make the
run length of the replications, 7', as large as possible and much larger than the anticipated length of the
warm up #y. The procedure is as follows:

1. Run the simulation model n times, where n > 5 to obtain time-series of the output of interest, y.
Calculate the mean of the output data for each observation t =1,2,.... T, = Y| yi.

3. Calculate a moving average for the 3, using a window size w, where w < |T /4], i.e. the window
size w should be less than or equal to the integer part of 7 /4 (Law 2014).

4. Plot the moving average y,(w) as a time series.

5. If the data do not look smooth, increase the window size w and repeat steps 3 and 4.

6. The warm up period ¢ is the point at which the time series of the moving average becomes flat.

The moving average of a time series is equal to

(X2 50) /(2 —1) r=1,...,w
yi(w) =
(Z%ﬁo)_),,wﬂ)/(2w—|—l) t=w+1,....T—w

We apply Welch’s method to the output data from the web server example to determine the optimal
length of the warm up. Plotting the moving average with a time window of 10, and the number of replications
equal to 10 produces the plot in Figure 3. As we can see from the figure, setting the warm up length to
around 200 time units should safely remove the initial transient. With more variable data, the decision over
the duration of the warm up can be less clear cut.

3.1.2 MSER-5

MSER stands for Marginal Standard Error Rule and is an heuristic method for determining the warm up
duration introduced in White (1997). As the duration of the warm up period increases, the accuracy of
the calculated result increases due to reduced bias; however, for a fixed total run duration, the precision
of the result will decrease because the number of samples available for calculating the average of the
performance indicator of interest will decrease. MSER aims to find a warm up length that balances bias
reduction and increased precision. Similar to above, let #; be the optimal warm up duration for the output
series yi1,Vi,...,yir for replication i. Run the simulation for n replications, where we suggest n =35 as a
good starting point, as with Welch’s method above. For k =1,2,...,b, where b= |T /5],

1 & 5
Zk:§Z lyi,S(kfl)Jrj

i=1j=
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Moving Average Plot: Window = 10
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Figure 3: A plot of the moving average of the number of requests in the queue for the web server example,
where the window length is set to be 10. The suggested warm up length is denoted by a vertical line.

are defined to be the b batch averages and

n T
Zbgy = m Z Z Vit

is the estimated mean, ignoring the warm-up period.
We define by to be the number of batches in the warm up period, such that 7o = 5bg. Then, the optimal
value for bg is
X arg min 1 b _
b=y >bo>0 | (b—bg)? k:b20’+1 @) W
Here, we use > to indicate that » must be much greater than by and “arg min” to state that we are aiming
to find the value of by that minimizes the expression inside the square brackets.

The procedure for finding b involves evaluating Equation (1) for by = 1,2,...,b/2. The optimal value
for the warm up duration, #; = 5b;; is then chosen to correspond to the minimum from the b/2 results. If
the heuristic suggests that the optimal warm up duration is 7' /2 then the sample size T is assumed to be
insufficient and no valid result can be obtained.

We apply MSER-5 to the web server example. The plot of the MSER-5 test statistic given in Figure
4 shows an initial sharp decline, followed by an almost constant value. Looking at the numbers output by
the method, MSER-5 suggests that the optimal warm up period is 80 time units. Considering the moving
average plot in Figure 3, this corresponds to a point shortly before the moving average has flattened out
and consequently seems like a reasonable estimate.

We include the MSER-5 rule here for two reasons. First, in experiments it has been found to be a
robust method for evaluating the warm up duration (Hoad et al. 2010, White et al. 2000), the exception
being output data that are cumulative (i.e. have slowly changing variance throughout), or where there are
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MSER-5 Test Statistic for the Web
Server Example
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Figure 4: A plot of the MSER-5 test statistic for different possible warm up durations for the webserver
example.

insufficient data for a robust analysis. Second, it is also a method that is relatively easy to automate with
fairly short computation times. It therefore contrasts well with Welch’s method, which we described in
the previous section. As with all analyses, when using subjective or heuristic procedures, it is often useful
to have a second opinion as a way of cross-checking their validity. In this example, the estimates of the
optimal warm up period are very different (200 for Welch’s method and 80 for MSER-5). We would be
inclined to suggest using a warm up duration of 80 but when running a simulation model with very short
computation times, using 200 would certainly reduce the possibility of a biased estimate.

3.2 Batch Means

In the batch means method, we split the series of output data from one replication of the simulation model
into b batches of equal length, k such that b = |T /k]. As we now have just one replication we can drop
the replication subscript and use y; to describe our output. Given a series of outputs for the performance
measure yi,yz,...,y7, the mean of the /th batch will be calculated as

_ 1 &
yi(k) = z Y Y-t
=

where [ = 1,...b. If b is sufficiently large, the set of batch means, y;(k) can be regarded as being a set
of independent observations. Determining k is the most difficult part of implementing batch means, and a
number of different methods have been proposed. (See, e.g. Robinson (2014) for a good review of these
methods). There is some trade off between setting k to be large and having the y;(k)’s approximately
uncorrelated, but fewer observations, and setting k to be small, leaving more correlation between the batch
means but a more accurate estimate of the confidence interval.

4 TERMINATING SIMULATIONS

Terminating simulations are generally easier to deal with than non-terminating simulations because there
is no need to determine the warm up duration. This also means that output statistics of interest, such as
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means can be calculated using all of the data. Nonetheless, choosing the starting point for the simulation
model is important, as discussed in Section 4.1. Output from a terminating simulation is usually transient
rather than reaching some steady-state, which means that the output data are drawn from distributions that
vary with simulation time. It can also change the way in which results should be presented. For example,
for a terminating simulation, displaying time series of output data might be more useful than just providing
point estimates.

4.1 Choosing Initial Conditions

In general, non-terminating simulations will have a warm up period and terminating simulations will need
some care in setting up appropriate initial conditions. For some systems, e.g. a simulation of a shop from
when it opens until closing time, the initial conditions might be obvious as the system will start empty. In
other situations, e.g. when we are just interested in how the shop functions during a set period, such as
the lunch hour, it would be wrong to assume that the system is empty at the start of the simulation period.
There are a couple of ways of choosing representative initial conditions:

1. Observe the real system and gather data on the numbers of entities in each activity and queue at
the start point

2. Run the simulation model from some earlier time (e.g. when the shop opens) to obtain the starting
conditions for the period of interest

The first can be time consuming or even impossible if the simulation model describes a system that has not
yet been built. The second might increase the computation time of any experiments that are carried out.

Example 3: Modeling Tuberculosis and HIV This example describes an infectious disease model
of tuberculosis (TB) and HIV. A stochastic simulation model was built to describe the impact of the HIV
epidemic on the incidence rate of new cases of TB disease in Zimbabwe. Part of the aim of the research
was to investigate the impact of different interventions against TB and HIV. Details of the model can be
found in Mellor et al. (2011).

Data were available on the incidence of TB disease (i.e. the number of reported cases of TB per
year per 100,000 population) from 1980, shortly before the start of the HIV epidemic, until 2002. The
epidemic is not expected to reach a steady-state and so a terminating simulation model was built to describe
the transmission of disease in the population and the progression of the disease within individuals. The
problem is ensuring that the simulation model is in a representative state in 1980 to enable us to reproduce
the impact of HIV on the population of Zimbabwe. In this case, a long run length was needed due to the
initial oscillation in the output, as shown in Figure 5. To save computational time in running the scenario
analysis later in the project, the state of the simulation model at the end of the warm up was saved for a
large number of warm up runs, and the first step of each replication of the simulation model was to sample
from this set of initial states, to choose the initial conditions for that particular replication.

5 PERFORMANCE MEASURES

A good simulation project will have a clearly-defined purpose and set of questions. These will have helped
to dictate the structure of the simulation model and the level of complexity that has been included in it, and
can now be used to determine the performance measures of interest. As the name suggests, the performance
measures that are calculated will provide some measure of how good the system you are modeling is.
When obtaining results from a simulation model it is very important that more than one run of the
simulation model is used to generate them. Consider a non-simulation example of weather prediction as a
guide. If you were asked to predict the average rainfall during December in Washington D.C., you would
not (or at least should not) be content with looking at data from just one year, but instead, would want
to average over as many years’ worth of data as are available. The same is true of simulation models.
No matter how long your simulation run is, you should carry out several runs or replications of your
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Figure 5: Time series showing the simulation output of TB incidence and setting up the initial conditions.
The TB data for Zimbabwe are shown as black squares; results for 100 runs are shown in pale blue; the
average model output is shown as a black solid line.

simulation model and use the means (across the replications) of the output performance indicators as your
prediction for their values.

It is always good practice to report more than just a number for a performance indicator to give a
measure of the robustness of the solution or degree of variability in the output. In this section we describe
the calculation of the mean, variance and confidence intervals for simulation output. We also consider the
comparison of different effects/treatments on simulation output (e.g. the comparison of several different
set ups for a factory production line).

5.1 Estimating Variability in the Performance Measures

Suppose that there is a single performance measure of interest y, and assume that we have measured its
mean y in n different simulation replications, with the value calculated in the ith replication equal to ;.
We assume that we have calculated the j; by excluding data from the warm up period, where relevant, as
discussed in Section 3.1. Our estimate of the performance measure y is then equal to

n v
)7 _ 2121 Vi ) (2)
n
An initial estimate of the variability of y would be to calculate the variance, or alternatively, its square
root, the standard deviation,

Z?:l()_’i_y)Q_

n—1

The standard methods for estimating the confidence interval around the estimate of y in Equation (2)
assume normality. Basically, this requires us to either have a large value of n, or alternatively for the ¥; to
have been averaged from a large sample of data, such that the central limit theorem applies. If the data are
not normal, the confidence interval ceases to be valid and so it is important to test for normality.

A simple visual check of normality is a probability plot, where the vertical axis describes the actual
quantiles for the data and the horizontal axis describes the expected quantiles, calculated assuming a normal
distribution with given mean and variance. The closer the data points are to a straight line, the closer the
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data are to being normal. There are also a number of formal normality tests available, and the so-called
EDF tests (Anderson-Darling, Kolmogorov-Smirnoff, Cramer-von-Mises) are probably considered to be
the most powerful (see e.g. (D’Agostino and Stephens 1986) for how these can be implemented, although
most statistics packages will have them built in). The above tests work best with a moderate to high number
of data points. Shapiro-Wilk is often useful, and tends to be more appropriate for small numbers of data
points.

Assuming the output is normal, the 100(1 — a)% confidence interval around the estimate of the
performance measure, y, is given by

_ N S
y_tl—a/z;n—lﬁay"i'tl—a/Z;n—l% . €)]

The quantity 7;_q /5,1 describes the point on the t-distribution with n— 1 degrees of freedom, where the
cumulative distribution function is equal to 1 — ¢t/2.

5.2 Choosing the Number of Replications

In an ideal world, you would carry out a large number of very long simulations. If a simulation is run for
a long time, the values of the y; obtained will be very similar and consequently, S will be small. This will
help to decrease the width of the confidence interval. If a large number of simulation runs are made, the
confidence interval will narrow at a rate of 1/4/n in addition to the t-statistic that is calculated becoming
smaller because the tails of the t-distribution get less fat as the degrees of freedom increase. For a fixed
computation budget a balance needs to be struck between running a few long simulation replications and
a large number of short replications.

In some situations, we might have a pre-specified precision that we would like to achieve at the end of
our simulation experiments. If we assume that the run length has previously been specified, we can now
estimate the number of replications we need to perform to achieve a desired precision. The precision can
be measured in two ways: absolute error or relative error.

We consider first absolute error, where we wish the final estimate of the performance measure, y,
averaged over all of the replications to obey |y — | < €, with probability 1 — o, the significance level (e.g.
0.9 or 0.95), where u is the true mean of the performance measure y. Using Equation (3), we can say that
the number of replications, ng required to obtain a precision of € is the minimum value of p such that
p > n and

S(n)
tlftx/Z;pflﬁ < £,
where S(n) is the standard deviation of the y;, i =1,...,n.

When using the relative error, we wish |(7— 1)/u| < €, i.e. the the estimator should be within 100&%
of the true value with probability 1 — . A similar principle is used to that for the absolute error, but now
we need to take into account the mean of the relevant performance measure, y(n) calculated after the first
n replications. In this case, the number of replications, nj that are needed for the estimator to be within
100€% of the true value with probability 1 — & is the minimum value of p such that p > n and

. S(n) PR
OV R

For more details of the derivation of these formulae, see Law (2014). There is the potential for inaccuracy
in the suggested values of n, the number of replications, especially for small values of n, for which the
estimates of S(n) and y(n) may not be particularly precise. Nonetheless, they can provide a good ballpark
figure for the number of replications that should be made.

127



Currie and Cheng

5.3 Variance Reduction Techniques

As the name suggests, Variance Reduction Techniques are designed to reduce the variance of the simulation
output of interest. This allows for increased precision, i.e. narrower confidence intervals, for the performance
measures at no additional computational cost. A complete description of variance reduction techniques lies
outside the remit for this tutorial and we refer the reader to Kleijnen et al. (2013) for a thorough treatment
of the subject. The most useful and arguably the most widely used of the variance reduction techniques is
that of Common Random Numbers (CRN), which we describe briefly below.

The idea behind the technique of CRN is that when we are comparing different system configurations,
we will reduce the variability if we run each of the system configurations under similar conditions. Consider
the TB/HIV model of Example 3. We are interested in comparing the effects of different TB and HIV
treatment and prevention interventions on the incidence rate of TB disease. If we compare the impact of
two different interventions on epidemics with different characteristics (e.g. intervention 1 on an epidemic
with a high peak and intervention 2 on a less severe epidemic), we will obtain much more variable results
than if each comparison is made on the same epidemic, but the results are run for a range of different
epidemics.

A first attempt at applying CRN might be to use the same random number stream for each system
configuration; however, a little more care needs to be taken. Many simulation packages will automatically
use CRN when running trials and will ensure that they are being applied correctly. When running a
simulation of your own you should try to ensure that the same random numbers in the stream are being used
to generate the same variables, e.g., for the TB/HIV example, the same random number should be used to
generate the initial conditions used and the time to the first transmission of disease for all interventions
being tested. Section 11.2 of Law (2014) has more details and further references for how this should be
done.

As an example of the use of CRNs, we consider the comparison of two M/M/1 queues both with
arrival rate of 1 but with different mean service times of 0.9 and 0.93. Runs were made in pairs, one
for each queue. Each run simulated the processing of 5000 customers and recorded the average delay
experienced by the customers in the run. Ten pairs of runs were made where all interarrival and service
times were independent between pairs, and ten pairs where the same sequence of random numbers were
used to generate corresponding interarrival and service times in each run of the pair. The differences in the
recorded average delays between the two runs is displayed graphically for the ten independent pairs case
and for the CRN correlated pairs case in Figure 6. It will be seen that the measured differences in CRN
pairs has a much reduced variance, enabling the difference between the performance of the two queues to
be much more clearly identified and measured.

6 MAKING COMPARISONS

The purpose of many simulation studies is to compare a number of different configurations for a system and,
usually, to work out which is the optimal based on one or more performance indicators. This problem is one
that is well-known in classical statistics and there is a large volume of literature available on experimental
design (e.g. Box et al. (2005), Montgomery (2012), Wu and Hamada (2000)). We describe how confidence
intervals can be calculated for a comparison between two systems and between many systems.

6.1 Comparing Two Systems

Assume that we wish to consider two different systems. For example, this could be two possible configurations
for our queueing system or perhaps two different TB or HIV treatments in the case of our TB/HIV model.
We run n replications for each of the two treatments, generating two data series of equal length for our output
of interest. Note that in this case, we assume that we generate one output of interest for each replication
of the simulation model and suppress the second subscript, j = 1,...,m. Often this will be a mean, as
we assume here, but it could also be a variance or some other measure of interest. The configuration is
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Figure 6: Comparison of two M/M/1 queues, both with arrival rate of unity, but with different mean service
times of 0.9 and 0.93 respectively. Each run simulated 5000 customers, and were made in pairs, one for
each queue. The plotted points are of the difference in the average delay experienced by customers in the
two runs.

indicated inside the brackets, i.e. ¥,(1),¥2(2),...,¥,(1) and ¥,(2),52(2),...,9.(2). We define A; to be the
difference between ¥;(1) and ¥;(2), such that

Ai=yi(1)—yi(2),i=1,...,n.

We are interested in whether the distribution of the A; simply describes random noise around zero (i.e.
there is no difference in output between the two configurations) or describes a signal with non-zero mean.
The sample mean of the A; is equal to

A(n) = i{Ai/l’l

and its variance is given by _
Lisi (A — An))
nn—1)
Assuming that the data follow a normal distribution, the 100(1 — &) percent confidence interval around the
sample mean A(n) is equal to

Var[A(n)] =

A(n) £1,-11-a/21/ VarlA(n)],

where 7, 11 g/ isthe | — o /2 point of the t-distribution with n — 1 degrees of freedom. This can be
looked up from tables, Excel or a statistical package.

Returning to Example 3, modeling of TB and HIV in Zimbabwe, we might be interested in comparing
two methods for detecting new cases of TB disease: intervention 1, in which we visit households in which
someone has previously been diagnosed with TB disease; and intervention 2, in which we visit households
where someone is in the later stages of HIV. We make 50 replications of the simulation model for each
of these interventions and record the number of cases of TB disease that are found in each replication.
Results are displayed in a box plot in Figure 7 and suggest that intervention 2 is superior to intervention 1.

In order to evaluate the difference between the two interventions, we follow the procedure given above.
First, we run the Anderson-Darling test to determine the normality of the differences between the two data
series. This is a hypothesis test with null hypothesis, HO: the data are a random sample from a normal
distribution. The p-value we obtain for this test is 0.090. Therefore, using a significance level of 0.05, we
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Figure 7: Box plot showing the number of cases of TB disease found using intervention 1 and intervention
2.

cannot reject the null hypothesis that the data are normal, i.e. it is valid to continue with our calculations
of confidence intervals assuming normality.

The mean difference between the data series is 43 cases and the variance is equal to 170. With 50
data points, the t-distribution has 49 degrees of freedom and consequently, an estimated 90% confidence
interval for the difference in means is given by [—21,—65], where the negative sign is because we use the
definition A; = y;(1) —y;(2) given above. Since this confidence interval does not contain 0, we can say
that we are 90 percent certain that the mean output from method 1 differs from method 2, and furthermore
it appears that method 2 is superior.

The method of Common Random Numbers, described above, can be very useful for reducing the width
of the confidence interval for a fixed value of n. If the data are not normal (and Section 5.1 discusses how
we can test this), the confidence interval calculated here will not be exact, and in this case other methods
are needed for determining whether or not there is a significant difference between the y;(1) and the y;(2).
Plotting the A; will help, but techniques such as bootstrapping (e.g. see (Efron and Tibshirani 1998)) may
be helpful in determining whether the difference is significant at the « confidence level.

6.2 Comparing Many Systems

When we compare k alternative systems for k > 2, we are simultaneously calculating several confidence
intervals. As the number of confidence intervals calculated increases, the confidence we have that all of
the statements that we make are true decreases. To account for this, we can make use of the Bonferroni
Inequality.

Assume that we wish to calculate C confidence intervals, i.e. we are making C comparisons and each
comparison has a corresponding significance level ¢4,/ =1,...,C. Then, the Bonferroni inequality states
that

c
Prlall statements S;,/ =1,...,C, are true] > 1— Z Q.
=1

For example, returning again to Example 3, modeling of TB and HIV in Zimbabwe, we now wish to
compare the impact on TB deaths of five interventions. For each intervention, we calculate a 90% confidence
interval for the number of TB cases averted compared with the baseline, as shown in Table 2.
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Table 2: Comparison of the impact of five interventions on the number of TB cases averted per 100,000
population in Zimbabwe.

Intervention Mean TB Cases Averted 90% Confidence Interval 98% Confidence Interval

1 1.31 [-0.85, 3.48] [-1.75,4.37]
2 1.01 [-0.81, 2.51] [-1.50,3.20]
3 2.46 [-1.41, 6.33] [-3.01,7.93]
4 55.8 [18.89,92.70] [3.61, 107.99]
5 5.22 [0.01, 10.43] [-2.15,12.59]

In this case, we are subtracting the number of TB cases generated by the model when running with each
of the five interventions, from the number generated when using the baseline treatment. Consequently, we
are making five comparisons. As each individual comparison has a significance level o; = 0.10, the overall
significance of the result is 5+x0.10 = 0.5, i.e. there is only a 50% chance that all of the confidence intervals
contain their respective means. In order to obtain a 90% confidence interval for the set of comparisons,
we would need to compute (100 —10/5)% = 98% confidence intervals for each individual result. Table 2
shows the effect that this has on the confidence intervals, making them much wider than before.

As the number of confidence intervals being computed simultaneously increases, for a fixed number
of simulation runs, the width of each individual confidence interval increases to achieve the same level of
significance. If there is a need to achieve an overall precision, then the effect will be to increase the number
of simulation replications. Therefore, it is worth spending some time before running the simulations to
ensure that only necessary comparisons are being made. For a more complete description of multiple
comparisons, we would recommend Section 12.2 of Banks et al. (2009).

When comparisons are being made between many different system configurations, ranking and selection
methods can be used and Chapter 8 of Banks et al. (2009) provides a useful description of how such
methods can be applied. Nonetheless, a simple plot showing the mean and confidence intervals for each
of the configurations can be valuable in providing an indication of which might be optimal.

7 CONCLUSION

We have presented a small selection of methods here that can be used to analyze simulation output data.
Hopefully, these will be the methods that are needed first in a simulation project to obtain simple, but valid
results. For projects, where the output analysis required is much more involved, further reading will be
necessary. The two main points we would like a reader to remember from this tutorial are: assume nothing
about the output data without testing it first (e.g. independence, normality, lack of time-dependence); and
plot data before running statistical tests to ensure that the tests are working as you would expect them to
and to explain their results.
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