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ABSTRACT 

An important, but often neglected, part of any sound simulation study is that of modeling each source of 
system randomness by an appropriate probability distribution. We first give some examples of data sets 
from real-world simulation studies, which is followed by a discussion of two critical pitfalls in simulation 
input modeling. The two major methods for modeling a source of randomness when corresponding data are 
available are delineated, namely, fitting a theoretical probability distribution to the data and the use of an 
empirical distribution. We then give a three-activity approach for choosing the theoretical distribution that 
best represents a set of observed data. This is followed by a discussion of how to model a source of system 
randomness when no data exist. 

1 INTRODUCTION 

To carry out a simulation using random inputs, we have to specify their probability distributions. For ex-
ample, in the simulation of a single-server queueing system, we must give probability distributions for the 
interarrival times of customers and for the service times of customers at the server. Then, given that the 
input random variables to a simulation model follow particular distributions, the simulation proceeds 
through time by generating random values from these distributions. Our concern in this tutorial is how the 
analyst might go about specifying these input probability distributions. 

Almost all real-world systems contain one or more sources of randomness. In Figures 1 through 3 we 
show histograms of three data sets taken from actual simulation projects. Figure 1 corresponds to 910 ma-
chine processing times (in minutes) for an automotive manufacturer. It can be seen than the histogram has 
a longer right tail (positive skewness) and that the minimum time is approximately 15 minutes. In Figure 2 
we show a histogram for 122 repair times (in hours) for a component of a U.S. Navy weapons system, 
which is once again skewed to the right. Finally, in Figure 3 we display a histogram of 219 interarrival 
times (in minutes) to a drive-up bank.  We will use this data set in our examples of Section 4. Looking at 
the three histograms, we see that none of them look like the density function of a normal distribution, which 
is symmetric about its mean.  As a matter of fact, it might be said with some truth that, “The greatest 
application of the normal distribution is writing statistics books.” 
 The remainder of this tutorial is organized as follows. Section 2 discusses two critical pitfalls in simu-
lation input modeling. In Section 3 the two major methods are delineated for modeling a source of random-
ness when corresponding data are available, namely, fitting a theoretical probability distribution to the data 
and the use of an empirical distribution. Then in Section 4 we give a three-activity approach for choosing 
the  standard theoretical distribution  that best represents a set of observed data. This is followed  
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      Figure 1: Histogram of 910 processing times for an automotive manufacturer. 

 
       Figure 2: Histogram of 122 repair times for a U.S. Navy weapons system. 
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     Figure 3: Histogram of 219 interarrival times to a drive-up bank. 

in Section 5 by a discussion of how to model a source of system randomness when no data exist. Section 
6 is a summary of this paper. 

Portions of this paper are based on chapter 6 of Law (2015). Other references on simulation input 
modeling are Banks et al. (2010), Biller and Gunes (2010), and Kuhl et al. (2009). The graphical plots and  
goodness-of-fit tests presented in this paper were developed using the ExpertFit distribution-fitting software 
(see Averill M. Law & Associates (2016)). 

 
2 TWO FUNDAMENTAL PITFALLS IN SIMULATION INPUT MODELING  
 
We have identified a number of pitfalls that can undermine the success of a simulation study (see section 
1.8 in Law (2015)). Two of these pitfalls that directly relate  to simulation input modeling are discussed in 
the following sections. 

 
2.1   Pitfall Number 1:  Replacing a Distribution by its Mean 
 
Simulation analysts have sometimes replaced an input probability distribution by the perceived value of its 
mean in their simulation models. This practice may be caused by a lack of understanding of this issue on 
the part of the analyst or by lack of information on the actual form of the distribution (e.g., only an estimate 
of the mean of the distribution is available). Such a practice may produce completely erroneous simulation 
results, as is shown by the following example. 

Consider a single-server queueing system (e.g., a manufacturing system consisting of a single machine 
tool) at which jobs arrive to be processed. Suppose that the mean interarrival time of jobs is 1 minute and 
that the mean service time is 0.99 minute. Suppose further that the interarrival times and service times each 
have an exponential distribution. Then it can be shown that the long-run mean delay in the queue is approx-
imately 98. On the other hand, suppose we were to follow the dangerous practice of replacing each source 
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of randomness with a constant value. If we assume that each interarrival time is exactly 1 minute and each 
service time is exactly 0.99 minute, then each job is finished before the next arrives and no job ever waits 
in the queue! The variability of the probability distributions, rather than just their means, has a significant 
effect on the congestion level in most queueing-type (e.g., manufacturing, service, and transportation) sys-
tems.  

 
2.2    Pitfall Number 2:  Using the Wrong Distribution 
 
We have seen the importance of using a distribution to represent a source of randomness. However, as we 
will now see, the actual distribution used is also critical. It should be noted that many simulation practition-
ers and simulation books widely use normal input distributions, even though in our experience this distri-
bution will rarely be appropriate to model a source of randomness such as service times (see Figures 1 
through 3). 

Suppose for the queueing system in Section 2.1 that jobs have exponential interarrival times with a 
mean of 1 minute. We have 200 service times that have been collected from the system, but their underlying 
probability distribution is unknown. We fit the best Weibull distribution and the best normal distribution 
(and others) to the observed service-time data. However, as shown by the analysis in section 6.7 of Law 
(2015), the Weibull distribution actually provides the best overall model for the data. 

We then made 100 independent simulation runs of length 1000 delays of the system using each of the 
fitted distributions. The overall average delay in the queue (i.e., based on 100,000 delays) for the Weibull 
distribution was 4.36 minutes, which should be close to the average delay in queue for the actual system.  
On the other hand, the average delay in queue for the normal distribution was 6.04 minutes, corresponding 
to a model output error of 39 percent. It is interesting to see how poorly the normal distribution works, 
given that it is the most well-known distribution. 

 
3 METHODS OF REPRESENTING RANDOMNESS GIVEN THAT SYSTEM DATA ARE 

AVAILABLE 

Suppose that independent, identically distributed (IID) data 1 2 … nX ,X , ,X  are available from a continuous 
distribution (e.g., service times) with distribution function F(x). (Discrete distributions are discussed in Law 
(2015).) Our goal is to find a distribution that provides a sufficiently accurate approximation to F(x) so that 
“valid” results are obtained from our simulation study. (We will probably never know F(x) exactly.) There 
are two major approaches for trying to find a good approximation to F(x), which are discussed in the fol-
lowing sections. 
 
3.1   Fitting Standard Theoretical Distributions to the Data 

 
With this approach we “fit” various standard theoretical distributions (e.g., exponential, lognormal, or 
Weibull) to our data with the goal of finding one that provides a good approximation to F(x). What it means 
to fit a distribution to data and how we determine the quality of the representation are discussed in Section 
4. The major drawback of this approach is that for some data sets we simply cannot find a theoretical 
distribution that provides a good representation for our data. Two possible reasons for this are that our data 
are actually from two or more heterogeneous populations or that the data have been significantly rounded 
(e.g., service times that have been rounded to the nearest hour), effectively discretizing the data in the latter 
case. 
 
3.2   Using an Empirical Distribution Constructed from the Data 
 
With this approach  we construct an  empirical distribution ( )F x  from  our data, which  is used  as an ap- 
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proximation to F(x).  Let ( )iX  denote the ith smallest of the jX ’s, so that (1) (2) ( )nX X X .≤ ≤ ≤ Then we      

define ( )F x  as follows: 
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An illustration for n = 5 is given in Figure 4. 
 
                    ( )F x  
 
 
  
 
 
 
 
 
 
 
 

Figure 4: Continuous, piecewise-linear empirical distribution function 

The major disadvantage of using the  empirical distribution function ( )F x  is that values outside of the 
range of the observed data, namely, (1) ( )[ , ]nX X  cannot be generated in the simulation, which is a problem 

if n is “small.” Another problem with using an empirical distribution is that 2n values (i.e., the n ( )'siX  and 
their corresponding cumulative probabilities) have to be entered into the simulation model, which may be 
problematic for “large” n. 

 
3.3    Deciding which Approach to Use 

 
If a standard theoretical distribution can be found that provides a good representation of our data (see Sec-
tion 4.3), then we believe that this approach is preferable over the use of an empirical distribution, because 
of its shortcomings of the latter approach noted above. Also, a theoretical distribution provides a compact 
representation of our data that smoothes out any “irregularities.” If a good theoretical distribution cannot 
be found, then an empirical distribution should be used. As the sample size n get gets larger, ( )F x  will 
converge to F(x), but there is still the problem of entering the 2n values into the simulation model. 

 
4 FINDING THE THEORETICAL PROBABILITY DISTRIBUTION THAT BEST 
 REPRESENTS A DATA SET 
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In this section we discuss the three basic activities in specifying a theoretical distribution on the basis 
of the observed data 1 2, ,…, nX X X . 

 
4.1   Activity I: Hypothesizing Families of Distributions 

 
The first step in selecting a particular input distribution is to decide what general families (e.g., exponential, 
gamma, Weibull, normal, or lognormal) appear to be appropriate on the basis of their shapes, without wor-
rying (yet) about the specific parameter values for these families.   

Some distributions are characterized at least partially by functions of their true parameters. In Table 1 
we give a number of these functions, formulas to estimate these functions from IID data (these estimates 
are called summary or descriptive statistics), and comments about their interpretation or use. These func-
tions might be used in some cases to suggest an appropriate distribution family. For a symmetric continuous 
distribution (e.g., normal), the mean µ is equal to the median 0.5x . Thus, if the estimates 0 5( ) and .ˆX n x  are 
almost “equal,” then this is some indication that the underlying distribution may be symmetric. If 

0 5( ) > .ˆX n x , then it is often (but not always) true that the underling density function has a longer right tail 
than left tail, and vice versa. 

Table 1. Useful summary statistics. 

Function Sample estimate (summary statistic) Comments 

Mean µ  ( )X n  Measure of central 
tendency 

Median 0.5x  
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 Measure of symmetry 

  
The coefficient of variation cv can sometimes provide useful information about the form of a continuous 

distribution. In particular, cv = 1 for the exponential distribution. The skewness ν is a measure of the sym-
metry of a distribution. For symmetric distributions like the normal, ν = 0. If ν > 0, the distribution is 
skewed to the right (i.e., the density has a longer right tail than left tail); if ν < 0, the distribution is skewed 
to the left. Thus, the estimated skewness ( )ν̂ n  can be used to ascertain the shape of the underlying density 
function.  See section 6.4.1 of Law (2015) for additional uses of summary statistics. 

A histogram of the data is one of the most useful tools for determining the shape of the underlying 
density function, since it is essentially a graphical estimate of the density. However, a fundamental problem 
with making a histogram is in choosing the interval width w, and we recommend selecting the smallest 
interval width w that gives us a reasonably “smooth” histogram. 
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Example 1. Consider  the  219  interarrival  times  of   cars  to  a  drive-up bank in Figure 3. The summary 
statistics for these data are given in Table 2. Since 0 5(219) 0 399 0 270 (219).ˆX . . x= > = and (219 1 478,ν̂ ) .=   
this  suggests   that  the  underlying  distribution   is   skewed   to   the  right,  rather  than   
symmetric. Furthermore, cv(219) 0 953,.= which is  close to the  theoretical value of 1 for the expo-nential  
distribution.  A smooth  histogram  of  the data  with  w = 0.1  was  given in Figure 3. In  Figure 5   

Table 2: Summary statistics for the interarrival time data. 

Summary statistic Value 
Mean 0.399 
Median 0.270 
Variance 0.144 
Coefficient of variation 0.953 
Skewness 1.478 

 

 
            Figure 5: Histogram of 219 interarrival times to a drive-up bank with an interval width of 0.05. 

 
we give a  histogram of the data when  the interval width is  w = 0.05,  and  we see that this histogram 

 is fairly “jagged.” (A histogram with an interval width of 0.15 is also smooth.) Thus, the smooth his-
 togram with the  smallest  interval width corresponds to w = 0.1 and its shape resembles that of an 
 exponential density. 
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After one or more candidate families of distributions have been hypothesized in Activity I, we must some-
how specify the values of their parameters in order to have completely specified distributions for possible 
use in our simulation model. (For example, the exponential distribution has one parameter β that 
is its mean.) Our IID data 1 2, ,…, nX X X  were used to help us hypothesize distributions, and these same 
data can also be used to estimate their parameters. When data are used directly in this way to specify a 
numerical value for an unknown parameter, we say that we are estimating that parameter from the data.  

An estimator is a numerical function of the data. There are many ways to specify the form of an esti-
mator for a particular parameter of a given distribution, and many ways to evaluate the quality of an esti-
mator. We shall consider only one type, maximum-likelihood estimators (MLEs), for three reasons: (1) 
MLEs have several desirable properties often not enjoyed by alternative methods of estimation, (2) the use 
of MLEs turns out to be important in justifying the chi-square and Kolmogorov-Smirnov goodness-of-fit 
tests,  and (3) the central idea of maximum-likelihood estimation has a strong intuitive appeal. 

Suppose that we have hypothesized a continuous distribution for our data that has one unknown param-
eter θ. Let ( )θf x  denote the probability density function for this distribution, so that the parameter θ is part 
of the notation. Given that we have already observed the IID data 1 2, ,…, nX X X , we define the likelihood 
function ( )L θ  as follows: 

 
1 2( ) ( ) ( ) ( )θ θ θ nL θ f X f X f X=  

 
( )L θ , which is just the joint probability density function since the data are independent, can be thought of 

as giving the probability (likelihood) of obtaining our observed data if θ is the value of the unknown pa-
rameter (see problem 6.26 in Law (2015) for a justification). Then the MLE of the unknown value of θ, 
which we denote by ,θ̂  is defined to be that value of θ that maximizes ( )L θ ; that is, ( ) ( )ˆL θ L θ≥ for all 

possible values of θ. Thus, θ̂  “best explains” the data that we have collected. 

Example 2. For the exponential distribution that appeared to be good candidate distribution in Example 1, 
θ = β (β > 0) and  

 
1( )  for 0x / β

βf x e x
β

−= ≥  

 
The likelihood function is  
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and we seek the value of β that maximizes ( ) over all 0.L β β >  The task is more easily accomplished if, 
instead of working directly with ( ),L β  we work with its logarithm. Thus, we define the log-likelihood func-
tion ( )l β  as 

 

1

1( ) ln ( ) ln
n

i
i

l β L β n β X
β =

= = − − ∑  

Since the logarithm is strictly increasing, maximizing ( )L β  is equivalent to maximizing ( ),l β  which is 
much easier. Standard differential calculus can be used to maximize ( )l β by setting its derivative to zero 
and solving for β. That is, 
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which equals zero if and only if  
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β X / n X n
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To make sure that that ( )β X n=  is a maximizer of ( )l β  (as opposed to a minimizer or an inflection point), 

a sufficient (but not necessary) condition is that 
2

2 , evaluated at ( ), d l β X n
dβ

=  be negative,      which is the 

case here. Notice that the MLE is quite natural here, since β is the mean of the hypothesized distribution 
and the MLE is the sample mean, which is an unbiased estimator of β . For the data of Example 1, 

(219) 0 399β̂ X . .= =  
 

4.3   Activity III: Determining How Representative the Fitted Distributions Are 
 

After determining one or more probability distributions that might fit our observed data in Activities I and 
II, we must now closely examine these distributions to see how well they represent the true underlying 
distribution for our data. If several of these distributions are “representative,” we must determine which 
distribution provides the best fit. Remember that in general, none of our fitted distributions will probably 
be exactly correct. What we are really trying to do is to determine a distribution that is accurate enough for 
the intended purposes of the model. 

In this section we discuss both graphical procedures and goodness-of-fit hypothesis tests for determin-
ing the “quality” of our fitted distributions. 

 
4.3.1   Graphical Procedures 

 
We discuss two heuristic graphical procedures for comparing fitted distributions with the true underling 
distribution. 

Density-Histogram Plots  

For continuous data, a density-histogram plot can be made by plotting ( )ˆw f x over the histogram  and 

looking for similarities, where ( )f̂ x  is the density function of a fitted distribution.  (Note that the  area un-
der a histogram is w, while the area under a density is 1.) 

Example 3. For the interarrival-time data of Example 1, we hypothesized an exponential distribution  and 
obtained the MLE 0 399β̂ .= in Example 2. Thus, the density function of the fitted distribution is 

 
0 3992 506    if 0

( )
0                     otherwise

x / .. e x
f̂ x

−⎧ ≥
= ⎨
⎩

 

For the histogram in Figure 3, we give a density-histogram plot in Figure 6. 
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      Figure 6: Density-histogram plot for the fitted exponential distribution and the interarrival-time data. 

 
Distribution-Function-Differences Plots 
The density-histogram plot can be thought of as a comparison of the individual probabilities of the fitted 
distribution and of the individual probabilities of the true underlying distribution. We can also make a 
graphical comparison of cumulative probabilities (distribution functions). Define a sample distribution 
function ( )nF x  as follows: 

number of 's( ) i
n

X xF x
n

≤=  

which is the proportion of observations that are less than or equal to x.  Let ( )F̂ x  be the distribution func-
tion of  the fitted  distribution. A distribution-function-differences plot is a plot of the differences between 
( )F̂ x  and ( )nF x , over the  range of the data. If the fitted distribution is a perfect fit and the sample size is 

infinite, then  this  plot  will  be a horizontal line at height 0. Thus, the greater the vertical deviations from 
this line, the worse the quality of fit. 

Example 4. A distribution-function-differences plot for the interarrival-time data of Example 1 and the 
fitted exponential distribution  is  given in  Figure 7. This plot indicates a good fit except possibly at the 
lower end of the range of the observed data. 
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Figure 7: Distribution-function-differences plot for the fitted exponential distribution and the interarrival-
time data. 

 
4.3.2.   Goodness-of-Fit Tests 

 
A goodness-of fit test is a statistical hypothesis test (see, for example, Devore (2016)) that is used to assess 
formally whether the observations 1 2, ,…, nX X X  are an independent sample from a particular distribution 

with distribution function .F̂  That is, a goodness-of fit test can be used to test the following null hypothesis: 
 

0H : The 's are IID random variables with distribution function i
ˆX F  

 
We begin our discussion with the chi-square test, which can be considered a more formal comparison 

of a histogram with the fitted density function. To compute the chi-square test statistic, we must first divide 
the entire range of the fitted distribution into k adjacent intervals 0 1 1 2 1[ , ), [ , ), , [ , )k ka a a a a a− . (For Exam-
ple 5 below, 0 0 and ka a .= =∞ ) Then we tally  

 
1number of 's in the th interval [ , )j i j jN X j a a−=  

for 1,2, ,j k.=  (Note that 
1

k

j
j
N n.

=

=∑ ) Next, we compute the expected proportion  of the j ip X ’s that  

would fall in the jth interval if we were sampling from the fitted distribution, which is 
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Finally, we compute the test statistic 
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2
2

1

( )k
j j

j j

N np
χ

np=

−
=∑  

 
Since jnp  is the expected number of the n 'siX  that would fall in the jth interval if H0  were true, we would 

expect 2χ  to be small if the fit were good. Therefore, we reject H0 if 2χ  is too large. 
Suppose that we would like to perform a test at level ,α  where α  is typically 0.05 or 0.10. Let 2

1,1k αχ − −  
be the upper 1 α−  critical point for a chi-square distribution with 1k −  degrees of freedom (see, for exam-
ple, Table T2 on page 723 in Law (2015)). Then we reject the null hypothesis H0 at level α  if 2 2

1,1k αχ χ − −>
, and we fail to reject H0 otherwise. 

The most troublesome aspect of carrying out the chi-square test is choosing the number and size of the 
intervals. This is a difficult problem, and no definitive prescription can be given that is guaranteed to pro-
duce good results in terms of validity (actual level of the test close to the desired level α ) and high power 
(ability to discriminate between F̂  and the distribution that is really true) for all hypothesized distributions 
and all sample sizes. There are, however, a few guidelines that are often followed. First, some of the ambi-
guity in interval selection  is  eliminated  if  the  intervals are chosen so that 1 2 ,kp p p= = =               which 
is called the equiprobable approach. (Thus, under this approach, equal-sized histogram intervals would not 
be used.) For the equiprobable approach, it is also recommended that 3k ≥  and 5 for all .jnp j≥  However, 
these recommendations are not completely definitive.  For example, in the case of the n = 219 interarrival 
times of Example 1, these rules would say that k should be between 3 and 44, which is a large range of 
values. The lack of a clear prescription for interval selection is the major drawback of the chi-square test. 
In some situations entirely different conclusions can be reached from the same data set depending on how 
the intervals are specified. The chi-square test nevertheless remains in wide use, since it can be applied to 
any hypothesized distribution. 

Example 5. We now use the chi-square test with level 0 05α .=  to compare the n = 219 interarrival times 
of Example 1 with the fitted exponential distribution having distribution function  0 399( ) 1 x / .F̂ x e−= − for 

0x .≥  If we form, say, k = 20 intervals with 1 0 05jp / k .= =  for 1 2 20,j , , ,=  then 

(219)(0.05) 10.95,jnp = =   so this satisfies the guidelines that the intervals be chosen with equal 

's and 5j jp np .≥  The computations  for the test are given in section 6.6.2 of Law (2015) and the value of 

the test statistic turns out to be  2 22 188χ . .=  Referring to Table T2 in Law (2015), we see that 
2
19,0 95 30 144,.χ .= which is not exceeded by 2 ,χ  so we do not reject H0 at level 0 05α .= . Thus, this test gives 

us no reason to  conclude that  our data are  poorly fitted by an exponential distribution with 0 399β . .=  
 

      We now consider the Kolmogorov-Smirnov (K-S) test, which does not have the troublesome interval 
specification of the chi-square test. However, it does have its own drawbacks as we will see below. To 
define the K-S statistic, recall the sample distribution function ( )nF x  from Section 4.3.1. If ˆ ( )F x  is the 
fitted distribution function, a natural assessment of goodness of fit is some kind of measure of the closeness 
of the functions nF  and ˆ .F  The K-S test statistic nD  is simply the largest (vertical) distance between 

( )nF x  and ˆ ( )F x  for all values of x, and it can be computed from the following formulas:    
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( ) ( )1 1

1 1ˆ ˆmax ( ) ,      max ( )      n i n ii n i n

iD F X D F X
n n

+ −

≤ ≤ ≤ ≤

−⎧ ⎫ ⎧ ⎫= − = −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 

and 

 { }max ,n n nD D D+ −=  

Clearly, a large value of nD  indicates a poor fit, so that the form of the test is to reject the null hypoth-
esis 0H  if nD  exceeds some constant ,1nd α− , where α is the specified level of the test.  The problem is that 
values of ,1nd α−  are available for only certain continuous distributions and the values are different for each 

applicable distribution. In particular, values of ,1nd α−  are available for five cases: (1) all parameters of F̂  

are known (i.e., none of the parameters of F̂  are estimated in any way from the data, which includes the 
U(0,1) distribution), (2) normal (lognormal) distribution, (3) exponential distribution, (4) Weibull distri-
bution, and (5) logistic (log-logistic) distribution. Moreover, in the latter three cases parameters of the fitted 
distributions have to be estimated by the method of maximum likelihood. Unfortunately, these limitations 
of the K-S test are not at all well known, and people routinely apply the K-S test to all continuous and 
discrete distributions using the values of ,1nd α−  that are only applicable to the all-parameters-known case. 
This results in a precipitous drop in the power (discriminating ability) of the K-S test. More details about 
the K-S test can be found in Law (2015). 
Example 6. We now perform the K-S test at level 0 05α .=  to determine whether the n = 219 interarrival 
times are well fit  by  the  exponential  distribution  having  distribution  function 0 399( ) 1 x / .F̂ x e−= −  for 

0x .≥  Using the above formulas we got a test statistic of 219 0.047.D =  From  Table 6.15 in Law (2015) we 
computed that 219,0.95 0.073,d = which  is  not exceeded by the test-statistic value of 0.047.    Therefore, 
the K-S test gives us no reason to reject the fitted exponential distribution at level 0.05.α =  

 
It should be mentioned that there is another goodness-of-fit test, called the Anderson-Darling test, 

which has higher power than the K-S test against many alternative distributions, as discussed in Stephens 
(1974) and Law (2015). 

We conclude this section with some  general comments about the efficacy of goodness-of-fit tests.  In 
particular, the following are some drawbacks of these tests: 

•  The null hypothesis 0H  is often false. 
•  The power of these tests is low for small to moderate sample sizes. 
•  The power of these tests approaches 1 as the sample size gets large, causing the null hypothesis      

 to be rejected unless the fitted distribution is exactly correct. 
 
5 SELECTING A DISTRIBUTION IN THE ABSENCE OF DATA 

 
In some simulation studies it may not be possible to collect data on the random variables of interest, so the 
techniques of Section 4 are not applicable to the problem of selecting corresponding probability distribu-
tions. For example, if the system being studied does not currently exist in some form, then collecting data 
from the system is obviously not possible. This difficulty can also arise for existing systems, if the number 
of required probability distributions is large and the time available for the simulation study prohibits the 
necessary data collection and analysis. 
 Let us assume that the random quantity of interest is a continuous random variable X. It will also be 
useful to think of this random variable as being the time to perform some task, e.g., the time required to 
repair a piece of equipment when it fails. One approach in this case would be to use a triangular distribution, 
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which we describe next. The first step in using the triangular distribution approach is to identify an interval 
[ ]a,b  (where a and b are real numbers such that a < b) in which it is felt that X will lie with probability 
close to 1; that is, ( ) 1P a X b .≤ ≤ ≈  To obtain subjective estimates of a and b, subject-matter experts 
(SMEs) are asked for their most optimistic and pessimistic estimates, respectively, of the time to perform 
the task. We next ask the SMEs for their subjective estimate of the most-likely time to perform the task, m, 
which is the mode of the distribution of X. Given a, b, and, m, the random variable X is then considered to 
have a triangular distribution on the interval [ ]a,b  with mode m, as shown in Figure 8. The height of the 
triangle above m is chosen to make the area under the density function equal to 1. 

 
 
 
 
 
 
 
 

 
 

 

                 Figure 8: Triangular density function on the interval [ ]a,b  with mode m. 
 
6 SUMMARY 
 
We have seen in Section 2 the danger of replacing a probability distribution by its perceived mean value or 
of using an inappropriate distribution. For the case where data are available, we discussed the two main 
approaches for representing a source of system randomness, namely, fitting standard theoretical distribu-
tions and the use of empirical distributions, and we gave recommendations for when to use each approach. 
Finally, we showed how the triangular distribution can be used to  model a source of randomness such as a 
task time in the absence of data. 

There is an extensive amount of material available on selecting simulation input probability distribu-
tions, and further details on all of the topics covered in this tutorial can be found in Law (2015).  
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