
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

CONTROL OF AN HIV EPIDEMIC AMONG INJECTION DRUG USERS:
SIMULATION MODELING ON COMPLEX NETWORKS

Alexander R. Rutherford

Department of Mathematics and

The IRMACS Centre

Simon Fraser University

8888 University Drive

Burnaby, BC V5A 1S6, CANADA

Bojan Ramadanović
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ABSTRACT

HIV remains a serious public health problem in many marginalized communities. We develop a network
model of the HIV epidemic affecting injection drug users and female sex workers in the Downtown Eastside
neighborhood of Vancouver, Canada, calibrated using data from public health surveillance and cohort studies.
Many HIV positive individuals are unaware of their status and strategies for testing are an important part of
HIV response programs. Upon diagnosis, HIV patients enter a continuum of care, involving both engagement
and retention in treatment. We explored potential epidemic control strategies through simulation: reduced
syringe sharing during injection drug use, reduced time to diagnosis, reduced time to initiation of treatment
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following diagnosis, and improved retention in treatment. We find that syringe sharing, HIV testing, and
retention in treatment significantly impact HIV prevalence. Close connections between syringe sharing and
sexual networks deserve attention as important avenues for rapid HIV transmission.

1 INTRODUCTION

Human immunodeficiency virus infection (HIV) continues to be a major health threat in low and middle-
income countries worldwide and severely affects many marginalized communities in high-income countries.
Multiple epidemic drivers and barriers limiting the effectiveness of interventions can create complex problems
for epidemic control programs. This poses many challenges for developing models to analyze potential
response strategies. We address these challenges in the context of the HIV epidemic in the Downtown
Eastside (DTES) neighborhood of Vancouver, Canada by developing a detailed large-scale network model
of the HIV epidemic among people who inject drugs and women involved in sex work in this community.

Vancouver’s Downtown Eastside, which is one of the poorest urban neighborhoods in Canada, expe-
rienced an explosive outbreak of HIV infection in the mid 1990s, due to widespread sharing of syringes
among people who inject drugs. In a community of approximately 16,000 individuals, it is estimated that
there were around 4,700 injection drug users (Buxton 2005) and that between a third and over half of
women who inject drugs were involved in sex work (Strathdee et al. 1997, Tyndall et al. 2002). The HIV
epidemic peaked in 1996 at an estimated 18.6 new infections per 100 person-years (Strathdee et al. 1997).
(This unit of disease incidence is defined to be the number ofnew infections in a group of 100 susceptible
individuals per year.) Harm reduction measures were implemented and access to treatment improved to
address the outbreak. A syringe exchange program was expanded and North America’s first supervised
injection facility (Insite) opened in 2003. Syringe sharing dropped from 40% to 5% over the following
decade (Kerr et al. 2010), because of the complete elimination of syringe sharing within the supervised
injection facility and ready access to sterile syringes outside of it.

Combination antiretroviral therapy (ART) was introduced in 1996 and treatment coverage increased
steadily in the DTES thereafter. ART suppresses viral replication when taken consistently and this reduces
symptoms of HIV infection. Low levels of circulating virus in the blood and bodily fluids drastically reduce
the risk of HIV transmission (Cohen et al. 2011). This effect of ART on HIV transmission is the rationale
for the Treatment as Prevention public health strategy, which has become a foundation of global HIV policy
(Montaner et al. 2014). The robust public health response in the DTES significantly reduced new HIV
infections and stabilized the epidemic (Montaner et al. 2014). However, addiction, poverty, homelessness,
food insecurity, and related challenges continue to drive sex work and injection drug use in the DTES. The
community remains vulnerable to HIV infection.

The goal of our analysis is to inform the improvement of the HIV control program in the DTES. We
developed a detailed social network model of the community, which included people who inject drugs
and female sex workers. Network modeling enabled us to consider the complex context and multitude of
interacting factors that drive the epidemic and influence the effectiveness of interventions. Detailed data
on the social network structure for the DTES were not available. However, the network structure was
based on published results for injection drug user and sexual networks (Liljeros et al. 2001, Schneeberger
et al. 2004, Dombrowski et al. 2013). The modeling process was informed by extensive consultations
with clinicians, epidemiologists, ethnographers, and HIV service providers who work in close collaboration
with communities represented in this study. They contributed expertise in a variety of social and structural
determinants that shape HIV risk, prevention, and treatment. Surveillance data and data from cohort studies
were provided by the British Columbia (BC) Centre for Excellence in HIV/AIDS, the BC Centre for
Disease Control and Vancouver Coastal Health regional health authority, which oversee delivery of HIV
services and surveillance in the DTES. We used network simulations of harm reduction interventions and
expansion of ART coverage to determine the potential impact of these programs on the epidemic, measured
as changes in equilibrium HIV prevalence.
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2 MODEL DEVELOPMENT PROCESS

2.1 Injection Drug Use in Vancouver’s Downtown Eastside

There was a confluence of many policy, social, and economic factors in Vancouver’s Downtown Eastside
neighborhood that resulted in it becoming “a vortex of drug-related harm”, which led to to an explosion
of HIV and hepatitis C infection (Wood and Kerr 2006). The DTES is a poor, inner-city neighborhood
with a concentration of low-income accommodations that became a focal point in the city’s drug market
and sex trades. Injection drug use in the DTES typically involves stimulants and opioids. Stimulants such
as cocaine, crack cocaine (or “crack”), and methamphetamine (or “crystal meth”) are typically injected
more frequently than opioids due to their shorter period of action, resulting in an increased risk for HIV
transmission (Tyndall et al. 2003). The most commonly used opioids are heroin and diverted prescription
opioids (e.g., Percocet, dilaudid, morphine, Tylenol 3 & 4, Oxycontin, fentanyl, methadone) (UHRI 2003).

We briefly mention here some factors that informed our understanding of HIV risk in the DTES. Intense
periods of high frequency drug use—usually injection of stimulants such as cocaine—is called “bingeing”
and is an important risk behavior associated with increased syringe sharing (Wood et al. 2002) and HIV
transmission (Miller et al. 2006). Single-room-occupancy hotels (SROs) are one of the primary forms
of accommodation available in the DTES to low-income drug users and are notable for their unsanitary
conditions, overcrowding, and rampant drug use. “Running partners” represent significant social relations
where two or more drug users have an arrangement to share drugs, use together, and to rely on each
other for assistance in the drug scene. Running partners potentially engage in higher risk behaviors among
themselves than with others. Women who use drugs are at higher risk for HIV infection for many reasons
including being more likely to have experienced sexual abuse, engage in sex work, smoke crack daily, and
need help injecting (Miller et al. 2002, Spittal et al. 2002, Shannon et al. 2007).

2.2 Developing the Model

A multidisciplinary team of mathematicians, ethnographers, epidemiologists, clinicians, physicists, and
computer scientists with extensive expertise in simulation modeling, HIV, injection drug use, and sexual
health collectively developed a conceptual framework for a network model through an iterative process of
ongoing consultation and regular integration workshops (Vasarhelyi et al. 2011). To inform the process, key
contexts of HIV-related risk in the DTES were identified through literature review, scientific and community
expert consultations, and review of published and unpublished data from a number of other DTES and
injection drug user studies conducted at the BC Centre for Excellence in HIV/AIDS.

Key assumptions of the conceptual model were tested in two focus groups held with current and former
injection drug users from the DTES. Separate focus groups were held for men and women, because a
review of the literature and discussion with other researchers had identified that the experience of risk in
the DTES may be different by gender. Data was elicited through the presentation of vignettes followed by
semi-structured facilitated discussions. Vignettes described realistic and relevant syringe sharing scenarios
in a variety of key local contexts including bingeing, sex work, and running partners, as well as settings
such as in prison, single-room-occupancy hotels, and the supervised injection facility.

Key results from the focus groups included: confirmation that syringe sharing was no longer generalized,
but continues in situations where barriers to typical usage practice would arise; involvement in sex work
had an important impact on a variety of risks for women; deeper insight into the social structure of injection
drug users in prison settings; and that sexual transmission was an important factor to include. The finding
that risk behavior is affected by risk environment (Rhodes 2002) as well as by interpersonal influences was
key to balancing the various dynamics in the model and provided insight into how to better incorporate
incarceration into the model.

Interactions between sex workers and injection drug users in the DTES with the general population
in Vancouver was not incorporated into the model. Street-based sex work and drug sales do occur with
the general population. However, we assume that they do not contribute significantly to HIV spread in
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the DTES, because prevalence in the general population is much lower than in the DTES. Furthermore,
syringe sharing between injection drug users in the DTES and members of the general population would
be rare.

3 NETWORK MODEL

3.1 Disease Models on Networks

Complex networks or random graphs can be used to model the dynamics of diseases, which are spread by
direct contact between socially intimate individuals. This is in contrast to compartmental disease models,
which assume complete mixing of subpopulations and random interaction between individuals (Anderson
and May 1991). The spread of HIV through sexual contact or sharing of syringes by injection drug users
is an example of an epidemic in which it is expected that social network structure would play an important
role in epidemic dynamics and control strategies.

A complex network consists of vertices connected by edges. For a review of complex networks see
Albert and Barabási (2002), Newman (2003), or Newman (2010). The vertices in our model represent
individuals and the edges represent social contacts along which HIV can be transmitted. These are either
sexual contacts, sharing of syringes by injection drug users, or both behaviors taking place concurrently.
The degree of a vertex is the number of edges which are connected to it. The degree distribution pk is
the probability that a randomly chosen vertex has degree k. A scale-free network (Barabási and Albert
1999) is a network with a degree distribution that satisfies a power-law, pk ∝ k−α , where α > 2. Studies of
both sexual networks and injection drug user networks have shown that these networks are approximately
scale-free, with α between approximately 2.5 and 3.5 (Liljeros et al. 2001, Schneeberger et al. 2004,
Dombrowski et al. 2013). In reality, the degree distribution of these networks is likely to be closer to a
truncated power-law distribution.

The epidemic threshold of a disease model is the value of the disease transmission rate above which
an initial index case in the population will result in an epidemic outbreak. Compartmental disease models
based on systems of differential equations typically exhibit a nonzero epidemic threshold. This implies
that vaccinating only a fraction of the population will achieve immunity of the population to an epidemic
outbreak. This is termed herd immunity. Mathematically, this corresponds to local stability of the disease
free equilibrium in the model. Strategies for prevention and control of epidemics are largely based on this
concept.

It has been shown that for many disease models on scale-free networks, the epidemic threshold is zero.
For example, the epidemic threshold for both the standard susceptible-infected-recovered (SIR) model and
an SIR model with multiple infection stages is zero for 2 < α ≤ 3 (Pastor-Satorras and Vespignani 2001,
Meyers 2007, Lou and Ruggeri 2010). The epidemic threshold for the susceptible-infected-susceptible
(SIS) model is zero for α > 2 (Chatterjee and Durrett 2009). Although these results are for mathematical
idealizations of the real world, they nonetheless indicate that controlling epidemics on social networks
which are approximately scale-free may be challenging.

Our model utilizes three types of stochastic processes on the underlying complex network. The first
are contact processes in which a “disease” is transmitted from one vertex to another by a stochastic process
with a given probability per unit time. The disease in question may be either an infectious pathogen or
a social influence whereby one individual influences another to change social behavior. The second type
of process is a self process in which a vertex changes state stochastically without any influence from its
nearest neighbors in the network. These state changes may be progression through disease stages, treatment
stages, or death. The third type of process is a mean field process in which a vertex changes state according
to the prevalence of another state in the network. These processes are used to model situations in which
an individual experiences random mixing with a subpopulation in the model, for example while they are
incarcerated in prison. For simplicity, we assume that all of these stochastic processes are Markovian.
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3.2 The Vancouver Downtown Eastside Model

The underlying social network in the DTES network model is generated using the Barabási-Albert preferential
attachment algorithm (Barabási and Albert 1999). The degree distribution of networks generated with this
algorithm approaches a power-law with α = 3, as the size of the network approaches infinity. This degree
distribution is expected to be a good approximation to the degree distribution of the actual injection drug
user network and sexual network in the DTES, because both of these types of networks exhibit a power
law in the degree distribution, at least up to large degree. The power observed in injection drug user and
sexual network data is typically close to three (Liljeros et al. 2001, Schneeberger et al. 2004, Dombrowski
et al. 2013). Other aspects of the social network topology would not necessarily be captured well by
the Barabási-Albert algorithm. However, the degree distribution is the most important determinant of the
equilibrium states of a disease process on a complex network.

Our network model of the DTES contains a total of 108 vertex states. As shown in Figure 1, the state
space can be written as a Cartesian product of four property sets. The first is the gender risk, which includes
gender and also whether or not females are sex workers. There are no male sex workers in the model. The
second property is HIV status, which indicates whether the individual is infected with HIV, the disease
stage, and the treatment status of the patient. The third property is the injection drug user (IDU) status of
the individual, which could be one of not being an IDU, or being a light or heavy IDU. Heavy IDU in the
model represent injection drug users that frequently engage in bingeing, as described in Section 2. The
fourth property describes whether the individual is currently incarcerated. This state space was arrived at
after extensive consultation with experts and focus groups with current and former injection drug users to
determine the most important contexts and factors influencing HIV transmission in the DTES.
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Figure 1: Vertex states of the DTES network model shown as the Cartesian product of four property sets.

IDU denotes injection drug user.

Vertex state transitions in the model are implemented by one of a contact process, a self process, or a
mean field process. These types of stochastic processes are described in Subsection 3.1. HIV transmission
in the model is by a contact process between nearest neighbors in the network, unless the individual is in
prison. HIV infection in prison occurs through mean field transmission with all other individuals in the
model that are also in prison, which reflects the high degree of mixing that typically occurs between inmates.
Progress through the acute and latent diseases stages of an HIV infection occurs through a self process.
Likewise, diagnosis, treatment, and treatment interruption also occur through self processes. Individuals
in the model change their IDU status under the social influence of their nearest neighbors in the network.
This is modeled as a contact process. These state transitions are shown in a Unified Modeling Language
(UML) state diagram in Figure 2. The parameters in the contact processes defined on the edges of the
complex network depend on the states of the vertices at the ends of the edges. Therefore, the interactions
between connected vertices vary dynamically, and in some instances may be temporarily turned off. A
total of 176 parameters are required to define all state transition processes in the model.
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Mortality is captured in the model by returning a vertex to a state with no risk or HIV status. The edges
connected to the vertex are not changed when its state is reset. Although it may seem unrealistic for a reborn
agent to retains its social connections, this has the advantage that it preserves the degree distribution of
the network. Our analysis focuses on the equilibrium behavior of the model. In a more general model that
allowed network edges to change dynamically, the equilibrium state of the model should still correspond to
a steady-state degree distribution. Therefore, we decided to leave the network fixed after it was generated.

Gender risk

IDU statusPrison status

HIV status

Contact process Self process Mean field process 

Male

Heavy IDUOut of prison In prison Light IDUNon IDU

Susceptible Acute
infection

Latent
infection

DiagnosedOn
treatment

Female sex
worker

Female non
sex worker

Lost to
treatment

Figure 2: UML state diagram showing the transitions between vertex states. The type of transition process

is shown by the type of arrow. The arrows are colored to show which other factor in the product state space

influences the parameters in the stochastic process. Prison-related mean field transition from Susceptible

to Acute infection in HIV status can only occur if the agent is in the In Prison state. All other transitions

from Susceptible to Acute infection can only occur in the Out of prison state.

Model simulations are implemented using NepidemiX (Ahrenberg 2016), a python-based software suite
developed by our group for modeling disease processes on networks. Vertex states and transition rules
are specified in a configuration file, which NepidemiX uses to generate the simulation software code in
python. The underlying network is generated using NetworkX (NetworkX 2016).

Each simulation run of the DTES network model begins by generating a Barabási-Albert network with
10,000 vertices. This network size is chosen because it provides a balance between good statistics for
the stochastic simulation and reasonable run times for the simulations. This paper focuses on equilibrium
analysis of the model, for which it is unnecessary that the number of vertices in the network match the
population size. It is sufficient for the network to be large enough to approximate the large-size scaling
limit of the model. All simulations of the epidemiological processes on the network are run until the model
is close to stochastic equilibrium.

3.3 Calibration and Validation

The model was calibrated using HIV treatment data from the Drug Treatment Program at the BC Centre
for Excellence in HIV/AIDS, epidemiological and social data from the Urban Health Research Institute
(UHRI) in Vancouver, data from four cohort studies conducted in the DTES, population data from British
Columbia Vital Statistics and Statistics Canada, public health surveillance data from the British Columbia
Centre for Disease Control, and a survey of the literature. These data allowed us to calibrate 174 state
transition parameters in the model. A description of how the data sources were used to calibrate the model
is given in Table 1. A complete list of all model parameters with their values is too lengthy for inclusion
here. The authors can provide further information upon request.
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Data source Description of parameters calibrated
BC Vital Statistics and Statistics Canada all causes mortality

BC-CfE Drug Treatment Program HIV/AIDS mortality, HIV diagnosis, HIV treatment initiation,

HIV treatment interruption, HIV treatment in prison, HIV

disease progression

BC Centre for Disease Control HIV diagnosis

Urban Health Research Institute (UHRI) IDU mortality, HIV status for IDU

ACCESS study (Milloy et al. 2012) incarceration, HIV disease progression for IDU, HIV infection

via syringe sharing, initiation of injection drug use

LISA study (Duncan et al. 2013) IDU incarceration, HIV status in prison

MAKA study (Shannon et al. 2007) sex worker mortality, sex worker incarceration, initiating sex

work, cessation of sex work, initiation of sex work via injection

drug use contacts, HIV infection rate for sex workers

VIDUS study (Hyshka et al. 2012) incarceration, HIV disease progression for IDU, HIV infection

rates via syringe sharing, initiation of injection drug use

Marks, Crepaz, and Janssen (2006) risk behavior change after HIV diagnosis

Table 1: Cohort studies, treatment data, and public health surveillance data were used to calibrate 174 state

transition parameters in the model. All parameters in the model are probability rates for Markovian

processes.

The MAKA study was used to calibrate parameters in the model related to female sex workers.
This study cohort included sex workers who self-identified as women, which also included transgender
individuals. However, the women-identified sex worker population in the DTES is predominantly female
and therefore, MAKA study data still provided sufficiently accurate estimates for parameters related to
female sex workers.

Initiation of injection drug use and sharing of syringes spread on the social network in the model.
This reflects the role played by social interactions in the drug scene. For simplicity, the model does not
propagate drug use and syringe sharing behavior independently. Analysis of data from the VIDUS study
was used to estimate that 3% of all drug injections involved syringe sharing and this percentage was treated
as a constant in the model.

Two of the model parameters could not be obtained directly from data and these parameters were
calculated by fitting the model to additional data. These are the probability rate for the contact process that
models peer pressure in initiating injection drug use and the mean time to diagnosis after HIV infection.
Analysis of surveillance data from the BC Centre for Excellence in HIV/AIDS for the HIV epidemic in the
DTES showed that the epidemic was approximately at equilibrium—in other words, endemic— between
2010 and 2012. These two parameters were calculated by fitting the model results at equilibrium to five
additional data values, which were not used in the model calibration in Table 1. HIV prevalence among
injection drug users, female sex workers, and females who are not sex workers were used for model fitting.
Also used were the prevalence of injection drug use in the community and HIV incidence among injection
drug use. The fit computations were done using a parallelized two-dimensional grid search involving 1200
model runs on a computational cluster.

The results of model fitting are summarized in Table 2. The best model fit corresponds to a transmission
probability or social influence rate for injection drug use behavior of approximately 0.7% per month and
a mean time to diagnosis from acute stage HIV infection of approximately 50 months. In all cases, the
model results agree with the findings from the cohort studies, within the expected accuracy of the data.
This provides a good validation of the model, because there are three more data values than free parameters
being fit. In other words, the model is over-determined.
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HIV prevalence Prevalence of Annual HIV
IDU Sex worker Not sex worker injection drug use incidence for IDU

Cohort studies 27% 32% 21% 30% 2–3%

Model value 24% 33% 23% 34% 2.2%

Table 2: Model fitting results show comparisons of model output to data to estimate values for the two

unknown parameters: the initiation rate of injection drug use under social influence and the mean time to

diagnosis after the end of the acute HIV phase.

4 RESULTS

Model simulations were carried out to assess four potential strategies for addressing the HIV epidemic.
These are a reduction in syringe sharing during injection drug use, a reduction in the time to diagnosis,
a reduction in the time to initiation of treatment, and improvements to retention in treatment. The first
of these scenarios represents harm reduction programs in the DTES and the remaining three represent
components of the continuum of HIV care. The simulations used 26 time steps per year, or one time step
every two weeks. This provided a good balance between sufficient temporal granularity for simulating the
stochastic processes and acceptable computational performance. Equilibrium HIV prevalence is used as
a measure of intervention effectiveness. Numerical analysis showed that for all parameter values studied,
the model was sufficiently close to stochastic equilibrium after 8000 time steps. Each intervention strategy
was analyzed at 20 different points in the parameter space, with the results for each point averaged over
20 independent model runs. For each simulation run, prevalence data was averaged over 500 time steps.
The standard error in the simulation estimate of mean equilibrium prevalences using 20 independent runs
was approximately 1% to 2%. This should not be interpreted as an estimate of model accuracy, because
the data inputs to the model have measurement error. In nearly all cases, estimates of this measurement
error is unavailable.

Figure 3 (a) shows the impact of changing the initiation rate of injection drug use through social
network interaction on the prevalence of injection drug use, and the prevalence of HIV in both IDU and
non-IDU individuals. These results can be interpreted more broadly as the effect of interventions which
discourage the use of injection drugs, as well as harm reduction programs which provide sterile syringes
or a supervised injection site. The model results show that injection drug use with syringe sharing can be
a significant driver of HIV prevalence among both the IDU and non-IDU communities. HIV prevalence in
the non IDU community is slightly higher than in the IDU community. This occurs because HIV-positive
IDU have shorter life expectancy than HIV positive non-IDU. From the graph in Figure 3 (a), we see that
a 10% reduction in the rate of initiation of injection drug use would reduce HIV prevalence in IDU from
24% to 14% and HIV prevalence in non-IDU from 26% to 15%.

Effective retention in treatment is critical to the success of the Treatment as Prevention strategy for
controlling the HIV epidemic. The impact on HIV prevalence of changes in the probability of patients
being lost to treatment is shown in Figure 3 (b). The probability rate of loss to treatment was approximately
1.4% per month in 2010, which is the year used for model calibration. Reducing treatment interruptions
to negligible levels would reduce HIV prevalence from 26% to approximately 20%.

We also simulated a reduction in the time to diagnosis after acute stage HIV infection. This provides
insight into the importance of testing strategies for HIV. We assumed that diagnosis cannot occur during
the acute phase of HIV infection, because of the testing window period associated with HIV tests and
challenges in identifying at-risk individuals for testing. If the mean time to diagnosis after the acute phase
is shortened from its observed value of 50 months at calibration to two months, then HIV prevalence drops
from 26% to 21%. An even greater reduction in prevalence would occur if a significant number of cases
were diagnosed during the acute phase, because HIV positive individuals are more infectious during the
acute phase (Bellan et al. 2015).
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(a) (b)

Figure 3: (a) Equilibrium prevalence of injection drug use, and equilibrium prevalence of HIV among

IDU and non-IDU as a function of the probability per month that an individual will become an injection

drug user. The initiation rate for injection drug use influenced by social network interaction is normalized

to a baseline value of one at model calibration. (b) Equilibrium prevalence of HIV in the entire model

population as a function of the probability per month that a patient is lost to treatment. In 2010 when the

model is calibrated, the monthly probability of being lost to treatment was approximately 0.014.

The final epidemic control strategy that we examined is earlier treatment initiation after diagnosis.
We found that this strategy has the least scope for curtailing the epidemic. Changing the mean time to
treatment initiation from 25 months at model calibration to zero reduces prevalence from 26% to 24%.
The reduction in time to treatment in this scenario is not combined with a reduction in time to diagnosis.
Therefore, the impact of earlier treatment is limited because diagnosis is a prerequisite for treatment.

5 DISCUSSION

We constructed a detailed network model of a marginalized inner-city community in Vancouver, Canada,
and simulated strategies for controlling the HIV epidemic in this community. One strategy features a harm
reduction intervention whereby injection drug use with syringe sharing is reduced and the others improve
HIV testing and treatment delivery. HIV prevalence at equilibrium was used to evaluate the potential
long-term influence of these interventions on the course of the epidemic. HIV prevalence was reduced by
all control strategies considered and we discovered previously unknown aspects of the epidemic that are
driven by the structure of social network connections in the neighborhood.

The modeling analysis demonstrated that syringe sharing by people who inject drugs would contribute
significantly to the HIV epidemic in the entire Downtown Eastside neighborhood, and not only to HIV
incidence among injection drug users. This is explained by the intimate partnerships and sex work linkages,
which connect the syringe sharing and sexual transmission networks, creating highly efficient avenues for
HIV transmission in this closely-knit community. Epidemiological studies have demonstrated the value of
harm reduction programs that reduce syringe sharing in lowering risks of HIV transmission for people who
inject drugs in the DTES (Reddon et al. 2011, Hyshka et al. 2012). Our model results reflect these findings
and demonstrate that harm reduction programs which reduce syringe sharing would also effectively reduce
new HIV infections in the wider Downtown Eastside community.

Improving HIV testing and treatment delivery lowers equilibrium HIV prevalence in the model. The
three strategies studied are reducing time to diagnosis, time to treatment initiation, and likelihood of a
patient being lost to treatment. Of these three strategies, the greatest impact on the HIV epidemic was
realized through earlier diagnosis and better retention in treatment. These findings suggest that Treatment
as Prevention could most effectively stem the epidemic, if a robust testing program and efficient services
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for retaining patients in treatment are in place. However, delivery of this continuum of care is inefficient
in many jurisdictions (Gardner et al. 2011).

In this modeling study, we considered each single strategy separately. Previous analysis utilized an
ordinary differential equation model to show that combining harm reduction with treatment interventions
has a synergistic influence on reducing HIV incidence (Ramadanovic et al. 2013). Furthermore, optimizing
the allocation of testing resources within the continuum of HIV care increases the number of HIV infections
averted (Kok et al. 2015). The optimal HIV control strategy in the DTES would likely entail a specific
mix of investments in harm reduction and treatment measures. We will study in future network model
simulations the potential gains that could be achieved by combining optimization of resource allocation
for HIV control and treatment strategies across the continuum of care.

Another area of interest for future work is network-based interventions. The strategies we describe in
this paper are implemented homogeneously across the network. Details of network structure are not used
to evaluate strategies targeted against individuals with a large number of contacts or high degree vertices
in the network. “Network smart” control strategies are currently being studied. Evaluation of these types
of control strategies requires model simulations of a more accurate underlying social network, such as the
class of networks generated by the algorithm in Toivonen et al. (2006). Future work will also examine
nonequilibrium response of the model over limited time horizons. This analysis will focus on the impact
of control strategies on HIV incidence, because incidence is a better measure of the short-term response
of an epidemic. Details of the social network structure are expected to be important for nonequilibrium
analysis.

Our analysis demonstrates that network modeling can provide insight into control strategies for epidemics
and serve as a potentially important tool for operational research applied to public health. However, our
approach has several limitations and the network modeling approach in general has significant challenges
in realistic applications. One issue relates to the motivation for our analysis to develop an operational
strategy to control HIV in a specific setting. The epidemic in the Downtown Eastside neighborhood
is shaped by a multitude of epidemiological, social, structural, and policy factors. Through extensive
consultations and careful evaluation, we selected a subset of factors that are known to play critical roles in
the epidemic. The model is necessarily complex to appropriately reflect the complexity of the epidemic.
Nevertheless, simplifications were necessary to ensure reliability and tractability of the model. The most
significant simplifying assumption is that the underlying social network in the model is a single network
that was generated using the Barabási-Albert preferential attachment algorithm. More detailed analysis of
the statistical properties of the social network is an important area for future work. The network structure
in the model should also distinguish between injection drug user and sexual network edges, which are
often but not always coincident. Another simplification was the assumption of a constant probability that
injection drug use involves syringe sharing. With this assumption, the model does not have the capacity
to evaluate situations where injection drug use and syringe sharing are decoupled and addressed through
independent interventions. Transgender individuals were not included in the model, because of limitations
in the data available. Data from additional cohort studies may be used to incorporate transgender individuals
as a separate subpopulation in an expanded version of the model. A further simplification in the model is
that HIV positive individuals are not diagnosed during the acute stage of infection. However, aggressive
expansion of testing programs, combined with new types of tests that have a shorter testing window,
increase the likelihood of acute stage diagnoses. The potential impact of more acute stage diagnosis will
be examined in future work.

Network modeling also has general limitations. Network simulations typically require significant
amounts of data and computational resources. For example, model calibration and analysis of the four
intervention strategies studied in this paper required approximately 65,000 node-hours of computation on
a cluster. However, network models are more structured than general agent-based models, which allowed
us to incorporate generic information about social networks into the model. Furthermore, the body of
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analytical results is much greater for network models, which provided a context in which to understand
and verify our simulation model.

Extensive data are available on the HIV epidemic in Vancouver’s Downtown Eastside, through detailed
surveillance, monitoring programs and cohort studies. This provided us with the opportunity to evaluate
whether a detailed network model of a real-world HIV epidemic could be developed and validated. The
amount of data available to this project does not exist in most jurisdictions; however, we expect that the
key lessons learned regarding the control of the HIV epidemic in Vancouver’s Downtown Eastside may be
relevant to HIV epidemics among injection drug users and sex workers in other settings. In particular, close
connections between syringe sharing and sexual networks in closely linked communities deserve attention
as potentially important avenues for rapid HIV transmission.
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BOJAN RAMADANOVIĆ is a project leader in health care operational research with the Complex Systems
Modelling Group at Simon Fraser University. He holds PhD in Physics from the University of British
Columbia. His research interest lie in policy and economic modeling using operations research, network
modeling, and applied game theory. His email address is bramadan@sfu.ca.

LUKAS AHRENBERG is a wandering scientist and programmer. He holds a PhD in Computer Science
from the Max-Planck-Institut Informatik at Universität des Saarlandes. His fundamental research interest
is the computational aspects of reality, which naturally translates into a more or less universal curiosity.
He can be reached at ahrenberg@irmacs.sfu.ca.

WARREN MICHELOW is a PhD candidate in Epidemiology in the School of Population and Public
Health at The University of British Columbia. His interests include data visualization, visual analytics,
epidemiological modeling, and health research. He can be reached at michelow@interchange.ubc.ca.

BRANDON D. L. MARSHALL is the Manning Assistant Professor of Epidemiology at the Brown
University School of Public Health. He holds a PhD in epidemiology from the University of British
Columbia. His research interests focus on substance use epidemiology and the use of individual-based
modeling to examine HIV transmission dynamics among drug-using populations. His email address is
brandon marshall@brown.edu.

WILL SMALL received his PhD in Interdisciplinary Studies at the University of British Columbia. He is
currently an Assistant Professor in the Faculty of Health Sciences at Simon Fraser University. He studies
public health problems among illicit drug users, with a focus on HIV prevention and interventions designed
to reduce drug-related harm. He can be reached at wsmall@sfu.ca.

KATHLEEN DEERING is a Medical Doctor (MD) Candidate within the University of British Columbia
MD Undergraduate Program. She holds a PhD from UBC’s School of Population and Public Health. Her
interests include clinical, social epidemiological, and mathematical modelling research on sex work, drug
use, and HIV, with a focus on women’s health and applications to public health policy. She can be reached
at kdeering@cfenet.ubc.ca.

JULIO S. G. MONTANER is Professor of Medicine and Head of the Division of AIDS at the University
of British Columbia. He also holds the endowed Chair in AIDS Research. He is the Director of the BC
Centre for Excellence in HIV/AIDS and the Past-President of the International AIDS Society. He is the
UNAIDS Global Advisor on HIV Therapeutics. He played a key role in establishing the efficacy of Highly
Active Antiretroviral Therapy (HAART) and since then has established the role of Treatment as Prevention
using HAART to simultaneously decrease progression to AIDS and death, as well as HIV transmission.

36
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