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ABSTRACT

The discipline of probability managemeinttroduced in 2006formalizedthe concept of data striuces

for storing arraysof simulated realizations. These are cal&dchastic Information Packets or SIPs
Today the open SIPmath™ standard of 501(c)(3) non-pRotibabilityManagement.orgupports SIP
librariesin XML, CSV and XLSX file formats This aticle describes how such data mgter the
creation ofnetworks of simulations that bring stochastic modelingeneral management. Skepticay
arguethat most manageo not know how to generate the appropriate random variates. It was similarly
arguwed that light bulbs could not be used by the general public as they would not know how to generate
the appropriate electricity. In this context, probability management is devoted to the design of a power
grid for probability that provides access to trusteburces of random variates. TB#P is a good
candidate for théransmission standard.

1 INTRODUCTION

Sixty years ago, at the dawn of the computer age, simulation was considered a method of last resort.
Today, which in the grand scale can be at most a few tenths of a second after sunrise; simulations are
often the method of first resort (Lucas, Kelton, Sanchez, Sanchez & Andersonjndstilsimulations are

run as standalone applications, in which uraety is modeled by internally generated random variates.

The results are then presented as tablesummary statistics and graphs of output distributions
whereuponit is game overln principle, arrays of realizations caerve as both inputs and outputs of
simulations, therebgnabling networks of stochastic models.

Coherent arrays of Monte Carlo realizations have been used since at least 1991 in stochastic
optimization calculationgDembo 1991)The discipline of probability management extends simulation
through the standardized use of such arrays, which are referred to as Stochastic Information Packets
(SIPs) (Savage, Scholtes, &idler 2006;Savage, Kirmse 2014S5IPs can serve as both inpsitand
outputsof simulations. A sebf SIPs that maintain statistical dependeisceaid to be coherent, and is
known as &Stochastic Library Unit with Relationships Presery®dURP. In Monte Carlo applications
such as those createdth the widely used @RISK, Crystal Balhd Risk Solver Platforrpackages, SIP
data may be used anywhere a random variate is curganratedindeed, these common packagas c
easily import and export SIP libraries. In discrete event simulations, &#P<urrently used for
communicating simulatedesults to other applicationgut further uses are alaaticipated

978-1-4673-9743-8/15/$31.00 ©2015 IEEE 4126


http://probabilitymanagement.org/library/Probability_Management_Part1s.pdf
http://viewer.zmags.com/publication/ad9e976e%23/ad9e976e/32

Savage and Thibault

2  SIPADVANTAGES

SIPs are

Actionable - the output SIP from one application can become the input SIP for a downstream simulation.

Additive - if coherence is maintained, the output SIPs of simulations of multiple entities may be added
trial by trial to create a SIP of a conislalted entity.

Auditable - input and output distributions are treated as data with provenance supporting an audit trail.

Agnostic - SIPs comprise a simple data structure, which may be supported across many platforms.

2.1 SIPs are Actionable

Unlike the standrd summary statisticand graphs of distributiorthat areoutput by most simulations,
SIPs may be used as input trials to downstream simulatiorsarticular, Microsoft Excel has now
become powerful enough to actively run thousands of trials with leadiroke using the native Data
Table function(Savage 2012)Thus theoutput distributions of a wide variety of simulation applications
may be used to drive stochastic dashboards in the hands of decision nfakerexamples are given
below.

2.1.1 Forecasting

Most forecasts are communicated as single “average” numbers. This leads to several sorts of systematic
errors collectivelyreferred toas the Flaw of AveraggSavage 209, 2012). For examplasuppose we
forecast the average number of surviving pathogens in chlorinated wateb pebgallon, but the actual
number is drawn from a long tailed distribution (which it usually ishdfltealthcar costs per person per
yearfor 5 pathogengper gallon is $10, then it is tempting to believe that this ictistto plan for. But
healthcare costs are generally convex in the number of pathogens. For exaenplenight be no cost
associated with zero pathogens, but $100 in assbciated with 10 pathogerherefore the average

cost may be much higher than $IIhis is a manifestation of what mathematicians call Jensen’s
Inequality. If the distribution of surviving pathogens is communicated as a SIP, it may be used in
calculatons at the local level to estimatiee distribution of healthcareosts which is necessary for
effective mitigation strategies.

2.1.2 Decision Dashboardsfor Discrete Event Smulations
The schematiin Figure 2.1below describes the discrete event simulatibthe design study of a mobile
communication system of a defense contractor. Because there are a number of engineeringoptions

design of experiment was run to estimate the reliability of the system for each combination ofioptions
the design space.llAold, this took many hours of computer time.
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Figure 2.1The schematic of a discrete event simulation
© 2014 Lockheed Martin Corporation. Used with permission.

A separateSIP library was saved for each point in the design space. Thes¢herr®aded into an
Excel model with slide bar controls for scrolling through engineering optidres decision makemsere
able toexplorethe stochastic implications of any combination of the design consideratiGezonds on
their own computey, even tlough the SIP librarietbok hours to generate in a specialized simulation
package.
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Figure 2.2 A stochastic dashboard in Excel for browsing simulation output
© 2014 Lockheed Martin Corporation. Used with permission.

It should be pointed out that similar exploration dashboardg also be created using surrogate
models generated from a large simulation. In thetbiy SIP data standard might eventually be expanded
to include surrogate models in addition to arrays of simulation realizations.

2.2 SIPs are Additive

Coherent SIPs may be operatatelement by element with any algebraic operator through the common
process of vectorizatioMhat is if x andy are random variables from a joint distribution where §IP(
and SIPY) are arrays of realizations that preserve the statistical dependence, thghy)SH(
SIPK)+SIP{), where addition is performed element by element over the arrays. For that matiéy,) SIP(
= SIPK)*SIP(y), and SIP{*cos(y)) = SIP(X*coqSIP()), where the operations are taken element by
element. This igustthe idea behind Monte Carlo simulation in the first place excepthbatariables

and yaregenerated in advancand stored in arrays, as are the output trials.
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2.2.1 Stochastic Roll-up

Additivity allows for the stochastic rellp of simulation results across the enterprise into a consolidated
risk model.

For example, a petroleum firm was able to consolidate the simulations of numerous exploration
ventures into a stochastic model of the risk and return of its portislia whole(Savage, Scholtes,
Zweidler 2006) In order to keep the SIPs coherent, it was necessary to separate global uncertainties such
as oil price, interest rates, etc. frontdb uncertainties such as the volume of hydrocarbons within each
venture. The simulati@of all venturesverethen run with the same global variable SIPs. So, if the price
of oil is $60 per barrel on trial 437, thdmy using common global input SIPs, the siatigns for each of
the ventures alsbave a price of $60 per barrel on trial 437. The resulting o8tpatof each venture will
thereforebe coherenfthey comprise a SLURP), and may be added together in gac@mubinations to
model differentportfolios. The final model for decision makers was again in Excel, allowing ventures to
be switched in and out of the portfolio instantly while 1,000 trials werdatuueach changelrhe small
demo version of this model shown below is available for download fromMhbeels page at
ProbabilityManagement.org.
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Figure 2.3 A dashboarfdr aggregating the simulation results of exploratimjqrts

As another examplef stochastic roll-up, consider the uncertainty in storm surge iev&lcertain
coastal region. Each municipality in the region could independently assess the homes and businesses that
would be impacted at various flood levels, in effect creating a lookup table of dollar damage by level. A
commonstorm surge SlRouldthen be distributed to all local municipalitiesmuch as the oil price SIP
was delivered to each of the exploration simulations in the above example. The resufiungSIRB of
damage at each municipalityould thus be coherent, and could be rollgdto aSIP of total damage
across the regio demonstration SIPmath flood modslavailable at ProbabilityManagement.org.

23 SIPsare Auditable

Ironically, simulation is often iewed as suspect because of the very randomness from which it derives its
power. Although one can seed the random number generator in most simulation systems to get repeatable
results, it is difficult to get identical results from the same simulation s.s@bvare platforms. From a
computational perspective, calculations with SIPs (SIPmathstiactly deterministic and should give the

same answers on glatforns.

4129


http://probabilitymanagement.org/library/Probability_Management_Part1s.pdf
http://probabilitymanagement.org/library/Probability_Management_Part1s.pdf
http://probabilitymanagement.org/library/ShellProbabilityManagement%202012.zip
http://probabilitymanagement.com/library/SIPmath%20Flood%20Model.xlsx

Savage and Thibault

24  SIPsareAgnostic

The current data formats supported by the SIPmath 2.0 standard ix®ldeCSV, and XLSX. The
standard  specification document(Thibault 2014) is available for download from
ProbabilityManagement.org.

3  THE STANDARD

The ability to easily move S#Pand relevant metadata from one system or application to another is a

necessary part @he discipline oforobability management. This includes the aggregation of results from

separate simulations as well as accessing remote stochastic data setseinvgtbwbnance - from trusted

sources. A standard interchange format for SIPs, SLURPS, and their metadata facilitates these exchanges.
The standard was formed with the followipgnciplesin mind:

1 In general, SIP libraries will be produced by a few sources but they will be used many times by
many consumers. Following the admonition of Nathaniel Hawthortiet “Easyreading is damn hard
writing,” the focus of the standard is on readability rather than ease of creating the data files.

2 Options are kepto a minimum. Producer applications can choose one format option but
consumer applications need to recognize them all. Apaifocus is on keeping the reader simple to use.

3 Recognizing thathe discipline of probability management is still evolving, the standard is
relatively informal. The developmenis driven primarily by consensus and working cadther than
extensive effort on design

SLURP

N sIP
name

*coherent > *name

count (of SIPs) *count (of trials)
about “type (=GSV)
*var (2.0.1)
about

csvr

dims

units

Values(1 to count)

Figure 31 Data Architecture

Figure 31 presents the SIP/SLURP data architecture. It has been kept sortpigt it can be easily
realized using the native data structures of most, if not all, software platforms.

The SLURP is a container of SIPs with only two required attributes: a name or other unique
identifier, and a flag indicating whether SIP relationships have been preserved (indichigngnce
Additional attributes may be included, and the standard includes a list of recommended attribute names.

The SIP is a simple object with four required attributes and the standard includes a list of
recommended attribute names. The required attributes are: a name or other unique identifier, a count of
the number of trials in the SIP, the data encoding type, and the SIP standard version.

The only data encoding currently specified is Con8aparated Values (CSV). Thew attribute is
used to indicate how many digits to the right of the decimal place should be preserved.

The standard allows for multi-dimensional SIPs, using the ditribute to specify the dimensions.

The standard includes three formats:

1 SIP/XML implements a universal XML format that is completely platform independent.

2 The Excel SIP Library, optimized for all-Excel applications. It supports Excel workimeok-
workbook exchanges including URL access to remote sources across the Internet. It is more complex than
the other two formats, but very efficient in an all-Excel application.
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3 Excel SIP/CSV defines a simple spreadsheet model based on the Excel .csv file format. Like
SIP/XML it is both machineand humarreadable and simple to implement.

Being platform-independent, the SIP/XML file format is the most geipengdoseand the easiest to
read as-implemented.
<SLURP name="2016_Prices"

coherent="true"
count="12"
about="2016 Month End Price Projection."
approved="John Smith, 2015-03-15"
copyright="Warbucks Financial Services"
>
<SIP ..

</SLURP>

Figure 32 SLURP in XML

Figure 32 presents the realization of a SLURP in XML with both required and optional attributes in
key="value" form. The data elements will be SIPs.

Figure 33 presents the realization of a SIP in XML. It has some attributes, and the data elements are
sample values.

<SIP name="Price_2016_01"
count="1000"
effDate="2016-01-31"
type="CSV" csvr="0"
units="US$"
ver="2.2.0"
about="2016-01 Price Projection”
approved="John Smith, 2015-03-15"
copyright="Warbucks Financial Services"
>
12,14,51,95,35,42,42,58,91,65,43,..
</SIP>
Figure 33  SIP in XML

Translationfunctions for SIP/XML haveébeen developed in Excel/VBAhe R statisticallanguage
JavaScriptand Matlab Export routines exist for the following widely used packag@&ystal Ball and
@Risk simulation packages, and the Autobox time series analysis software.

4  ASPIRATIONS

What can be hoped for from such a stad@dddeally itwill improve the way we think about uncertainty,
and pave the way for atwork of stochastic appliances, much in the way the power grid led to a network
of electric appliances.
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4.1  TheArithmetic of Uncertainty

When Fibonacci introduced Arabic numerals to Italy in 1199, it changed the way Western culture thought
about numbers. It allowegeople to sunup weights and measures, calculaterestpayments, convert
currencies, and then communictte results using nothing but &@nple symbols.

The quaritiesthatcan be expressed with Arabic numerals, the real numdrergan example of lvat
mathematicians call a fieldan algebraic constructhat is closed underaddition, subtraction,
multiplication, and divisiorfexcept by zero)To bestmake use of numbers it helps if these operations are
easy to perform. The famous sequence that bears his name was not invented by Fibonacci. Instead it was a
public relationgnitiative to prove the superior arithmetic of his favored system over the Roman numerals
and counting sticks of the time.

Similarly SIPs of a given number of trials may be thought of as a field, as any arithmetic operation
may be performed on them. Given that a SIP is a computational representation of a probability
distribution, it neans that we can algloink of probability distributions as a field, whose elements may be
manipulated with the same operations we use for numbersexBmplesshownmake use of Sparkline
grapts to demonstratéhe arithmetic of uncertainty with histograras both arguments and results in
native Excel. Again, this is an active simulation in which each keystroke runs 10,000 trials through an
Excel Data Table before your finger leaves the <Enter> key. Dowthes8parklandile to experiment
with your own @lculationsnvolving distributions.

& | =D2+E2 f | =D2ME2 % | =D2*COS(E2)

€ D E C D E c D E
1 1 1

ir Y AN

Figure 4.1 A distribution calculator

4.2 The Network Effect

The smartphone was nothing new. Computers, cell phones and touch screens had been around
individualy for at least a decade before the introduction of the iPhone in 2007. Bu& witmmon
communication protocol thesmartphonerapidly became a node in a network of 100 million other
smartphones, and thatas new. Network effects, asdk are known in economics, cteancreasing value

as the number of nodes in the network increases.

Similarly, the discipline of probability management is nothing new. Monte Carlo simulation, array
arithmetic, and data bases have existed for decades. But the common communication protocol of the
SIPmath standard has the potential to turn any simulationaintode in a network of many other
simulations, and thatould be new.
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