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ABSTRACT

Output comparison between simulation model and real world reference system is commonly regarded to

be the acid test of model credibility. As sound as the comparison-based approach may seem, serious

epistemological and methodological qualifications have been made concerning the foundations of the

concept, its applicability, and its dependence from the chosen philosophical perspective. The article

reviews and reassesses technical and philosophical arguments on the limits of empirical validation with

respect to social simulation. The paper is intended to reposition empirical validation for social simulations

that are theory-free and non-predictive. The proposed shift is inspired by the recent critical reassessment of

significance tests in applied statistics. According to this shift, it is transparency which becomes paramount

for the single social simulation project, whereas empirical validation on the macro level is crucial only after

meta-analysis of rival simulation models has shown robust findings despite different sets of assumptions.

1 INTRODUCTION

In order to ensure that simulations are problem adequate representations of real-world systems, validation

is a constant major concern of the simulation community (see Helmer and Rescher (1959), Hermann

(1967), van Horn (1971), Landry and Oral (1993), Kleindorfer, O’Neill, and Ganeshan (1998), Pace

(2004), Bair and Tolk (2013) for an 50 year-overview). “Validity” is generally thought of as the degree

to which a model faithfully represents its system counterpart with respect to a special modeling purpose.

The most straightforward approach for validation is surely to compare input/output samples from the

reference system and the the model. Simulation-specific formal frameworks for such a comparison have

been elaborated, for example, from Zeigler, Kim, and Praehofer (2000) (experimental frames) and Olsen

and Raunak (2013) (simulation validation coverage). One might ask whether there is a difference in the

validation of mathematical models, in general, and simulation models, in particular. From an epistemological

perspective the major distinction concerns simulation models that are not based on explicit theories of

the macro phenomenon of interest, but on its imitation. Whereas simulation in the natural sciences is

almost exclusively based on theoretical findings (often differential equations) which are “unfolded” by

simulation (weather simulation, astrophysical simulation etc.), most social simulations are founded on some

assumptions of individual human behavior (micro level) which are used to generate the macro phenomenon

of interest. The major difference with respect to validation is, that the latter simulation models cannot

rely on the corroboration of theory (thermodynamics, quantum theory, relativity etc.) in other applications

(since they are not based on such theories). In order to have any scientific value, theory-free simulations

have to be validated using empirical data (directly) on the macro level. It is even not necessary that all

the assumption on the micro level are correct. What matters is only the correspondence of simulation

output and empirical evidence (The value of such counter-factual models for prediction is well-established

in economics (Friedman 1953, Musgrave 1981, Maki 2000)). This is completely contrary to a model of,
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for example, a supernovae which is based on the already corroborated laws of physics, and for which we

do not have a currently observable example (micro level validated, macro level unobservable).

After reflecting arguments voiced against empirical validation, in general, this article argues that for

theory-free, non-predictive social simulations (which includes the majority of agent based social simulations)

it is generally impossible to judge their value independently from other (simulation) models. The most

important argument for this restrictions is the inevitable subjectivity of any experimental design in social

research. An alternative for the focus on validation within a single simulation project is a meta-analytic

approach, similar to the recent shift in applied statistics: The value of a single study is always limited,

knowledge is established on the basis of independent replication.

2 LIMITS OF EMPIRICAL CORROBORATION: TECHNICAL ARGUMENTS

This section gives an overview of technical arguments against the empirical corroboration of theory-based

findings. Its main purpose is to reflect whether these arguments are important for social simulation or not.

2.1 Lack of Empirical Data

One reason to built simulations is to explore phenomena for which no or only insufficient empirical data

exists (van Horn 1971, p. 253). So called data-poor environments (Zeigler, Kim, and Praehofer (2000), p.

26)) are the standard in “soft sciences” (see Troitzsch (2004)) like sociology or applied sciences like military

operations research (Hofmann 2002), but they occur frequently even in “hard science” like astrophysics or

earth sciences (Ruphy 2011, Oreskes et al. 1994), too. In most cases the lack of information is not a matter

of effort, but a fundamental problem. In these applications simulation (Kliemt (1996) introduced the term

“thin simulation”) is mainly an extended “thought experiment” (Paolo, Noble, and Bullock 2000) done

with the support of a computer. The computer simulation enables the scientist to master the complexity

of the plethora of (possible) derivations from a possible set of modeling assumptions. In general, these

simulations cannot be judged on the basis of comparisons with real data, because data from reality is scarce,

uncertain or completely missing. Simulation is used in these cases to detect contradictions, shortcomings

or anomalies of the model according to general laws, basic assumptions, common sense, and background

knowledge which substitute explicit domain knowledge. The whole range of explorative (“What if...?”)

models belongs to this class of models.

Assessment with respect to social simulation: Although such models (e.g. on urban development in

the next 100 years) defy empirical validation on the macro level, at least in the strong sense of validity

within an experimental frame, many assumptions made in such models on the micro level can be addressed

empirically (water resources available in the urban environment, for example). However, it is the reasoning

with such models (Kliemt (1996): “disciplined speculation within thin simulations”) which is sophisticated

since such models lack predictive validity. Any theory-free, empirically inaccessible simulation and its

results are, at least within the epistemological framework of positivism (see section 3.4), pure speculation.

2.2 Insufficient Statistical Significance

Closely related to the problem of scarce empirical data is the challenge of insufficient statistical significance.

Ioannidis (2005) unsettled the whole scientific community explaining the statistical reasons “Why most

published research finding are false”. Ioannidis analyzed the shortcomings of the currently favored statistical

evaluation in medicine which is based on p-values and power. Among his many findings, he discovered

that “large-scale evidence is impossible to obtain for all of the millions and trillions of research questions

posed in current research.” It is simply infeasible to get sufficient samples size. In light of these results it

is questionable whether simulation studies in data-poor environments will ever contribute to the commonly

accepted lore of scientific findings. The scarce empirical data available in such environments will be

regarded as insufficient for convincing results.
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Assessment with respect to social simulation: For the majority of social simulations in data-poor

environments it will be indeed infeasible to gather sufficient data for significant validation results. However,

science is not limited to the corroboration or refutation of hypotheses by significance test, which are, anyway,

overrated (Lambdin (2012)). A major additional task is to generate such hypotheses via explorative research,

which is not focused on statistical significance. In addition, it is often not necessarily the single, huge

study which is most convincing. A series of non-significant studies can easily uncover even a strong effect

in meta-analysis (Thompson 2007, 429)).

2.3 High Sensitivity of Output to Input Data in Nonlinear Systems

Measurement of empiric processes is limited in precision. Hence, the reference data from reality is always

a bit fuzzy. This problem is obvious in all sciences dealing with human factors, but it is also inevitable

in hard sciences. An illustrative example from the earth sciences can be found in (Nearing, Govers, and

Norton 99). Unfortunately, minor differences in initial conditions can cause completely different system

state trajectories in nonlinear systems. If the sensitivity of the output data is high within the range of the

input measurement uncertainty, the correspondence of specific system and model trajectories is of little

value. Goldspink (2002) writes: “Sensitivity to initial conditions with many complex systems means that

there may be little validity in directly comparing the response of one system with that of another. This

is so because a system’s response to perturbation is dependent on its structure and it’s history and no

two systems will be identical in structure or in their history.” In other words, if the real world process is

(mathematically) chaotic and (computationally) complex (or at least nonlinear), “how can we ever set up

the initial parameters of any model or simulation with sufficient precision so that the simulation output has

any correspondence with what might really happen (Byrne 1997)”? This reasoning is likewise valid if the

fluctuations are caused by other factors as direct measurement, for example, if some of the input data are

abstract, not directly measurable variables (like “motivation” or “risk behavior” which have to be modeled

in many social simulations), since both estimations and abstractions enlarge the range of input uncertainty.

Assessment with respect to social simulation: Fortunately, not all systems are chaotic. Many aspects

of human behavior seem relatively robust to minor changes. However, punctuational change in social

systems (revolution) seems closely related to non-linearity and its high sensitivity to initial conditions.

The prediction of discontinuous change in social systems might be an area beyond the reach of science

in general. Hence, it depends on the specific research question whether high sensitivity of output to input

data is an insurmountable obstacle for empirical validation or not.

2.4 Overfitting

An ubiquitous problem in practice is that a strong comparison between output trajectories of system and

model can easily lead to “overfitted” models, which reflect idiosyncracies of special samples that are not

attributable to a general rule. Overfitting is sometimes labeled the “curse of predictive modeling”. It refers

to the phenomenon in which a predictive model may extremely well describe the data from the past used to

develop and validate the model, but may subsequently fail to provide valid predictions. The general remedy

for this problem are multiple, independent data sets collected over an extended period of time. Arbitrary

selections of special data sets and special time intervals are thereby reduced. As a consequence of the

inevitable noise in every data set it is also advisable to avoid perfect fitting and to seek for approximations.

However, overfitting cannot be completely eliminated. The fitting of a model to any amount of data is

always founded on a special selection and truncation of past trajectories.

Assessment with respect to social simulation: Overfitting is a nuisance for the simulation practitioner

during model calibration, but problems are generally solved via iterative model adaptations.

4071



Hofmann

2.5 The Triviality and NP-complexity of Calibration

Model calibration is the task of adjusting internal parameters of an already existing model to empirical

data from the reference system. Calibration should never be confused with empirical validation, which

presupposes a calibration-independent set of data (Trucano et al. 2006). If calibration and empirical

validation are confused, validation is trivial, since, mathematically, successful calibration is self-evident if

the degrees of freedom of the data generator (model) are greater than the number of data points in the real

world reference sample. Most social simulations comply with this criteria.

On the other hand, it can be shown (within a formal framework) that the computational complexity

of model calibration is NP-complete (Hofmann 2005). At present, all known algorithms for NP-complete

problems require time that is exponential in the problem size. For huge simulations or simulation federations

it is impossible to guarantee that the adjustments of the simulation model to the given system input/output are

achievable in reasonable time. This view has been first expressed by Carley (1996), without giving a proof:

“There is no guarantee that a sufficient large set of procedure and heuristics, that often interact in complex

and non-linear ways, can be altered so that they will generate the observed data”. In a nutshell, empirical

validation presupposes calibration. If calibration is not feasible, validation is, generally, impossible too.

Assessment with respect to social simulation: The confusion of calibration and empirical validation

must be avoided. The reputation of social simulation depends on it. The current tendency to include more

and more aspects of social reality into simulation models will, sooner or later, reach the complexity limits

of calibration, already known in practice via military simulation federations. Extreme fidelity in details is

therefore not advised for social simulation. Both problems are, however, avoidable (see section 4.1).

2.6 Trade-offs between Fidelity, Robustness, and Confidence

Also attributed to calibration is a problem Hemez (2004) has discussed in a technical article. He demon-

strated formally that there are irrevocable trade-offs between fidelity-to-data, robustness-to-uncertainty, and

confidence in prediction. Fidelity-to-data is assured by model comparisons with reference system samples

and subsequent calibration. A perfect match between model and empirical data (a “validated model”)

implies that the robustness of the model to data uncertainty is low. Hemez (2004) even maintains that:

“One consequence that cannot be emphasized enough is that the calibration of numerical models - which

focuses solely on the fidelity-to-data aspect - is not a sound strategy for selecting models capable of making

accurate predictions (p. 39]”

Assessment with respect to social simulation: Any preoccupation with exact fidelity-to-data is misguided

for predictive or explorative purposes.

3 LIMITS OF EMPIRICAL CORROBORATION: PHILOSOPHICAL ARGUMENTS

This section gives an overview of philosophical arguments against empirical validation. Its main purpose

is to reflect whether these arguments are pertinent to social simulation or not.

3.1 The Theory-ladenness of Observation and Measurements

One of the most important and influential results from the philosophy of science is the theory-ladenness

of observation and measurement. It manifests itself in two forms: either as a psychological principle

pertaining to human perception (whether scientific or not) or as conceptual insight concerning the nature

and functioning of scientific language and its meaning . According to the psychological principle (first

noted by James (1890)), perceptions of scientists, as perceptions of all humans, are subject to prior beliefs

and expectations. In its conceptual form ((Brewer and Lambert 2001)) it states that observations rest on the

theories they accept and that the meaning of the observational terms involved depends upon the theoretical

context in which they occur. If simulations are regarded as means to unfold theories the implications of

theory-ladenness for the validity of simulation models are straightforward: If observations are theory-laden
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and if experimentation involves observation, then experimental data has to be theory-laden, too. Since

experiments, according to this view, make sense only in relation to some theoretical background they

cannot play a role that is theory-independent. That means that experimental data can make sense only on

the basis of some prior theory. Consequently, observations are not “bed rock elements”(Balzer, Moulines,

and Sneed 1987) on which theories can safely rely. Thus, the validation of a simulation as an extension

of theoretical considerations by experimental data may easily become a self fulfilling prophecy. Ahrweiler

and Gilbert (2005), 2.7) even maintain that “At the base of theory is again theory. The attempt to validate

our theories by ’pure’ theory-neutral observational concepts is misled from the beginning...Not only can

you not verify a theory by empirical observation, but you cannot even be certain about falsifying a theory.

A theory is not validated by ’observations’ but by other theories (observational theories). Because of this

reference to other theories, in fact a nested structure, the theory-ladenness of each observation has negative

consequences for the completeness and self-sufficiency of scientific theories (Carrier 1994, p. 1-19). These

problems apply equally to simulations, which are just theories in process.”

Assessment with respect to social simulation: Theory-ladenness in both variants is undeniable, and

insurmountable within every single scientific project. In social science, theory and data are always closely

related. Thus, the quality of a group of rival social simulations addressing the same phenomenon can rarely

be assessed satisfyingly by independent data. Scientific progress, however, is made within communities,

and over time. The close relation between theory and experimental data is in itself subject to the specific

perception and cognition of individual scientists. Thus, the best each research group can do is to gather as

much corroborating data as possible, and wait until other groups counter the conceptual mixture of theories

and data with their own (see section 3.4).

3.2 Underdetermination, Nonuniqueness or Equifinality

The concept of validation within experimental frames is logically adequate for descriptive and predictive

simulations. As long as input/output samples of reality and model correspond, the model fulfills its purpose.

However, most simulation models are also intended to be explicative. They assume “causal relationships”

that should explain why something happened. Whereas an input/output fit is sufficient for description and

prediction it is insufficient for explanation for the following reason: Let us regard each simulation as a

Turing machine (a generalized computer, the universal tool of computation (Hopcroft and Ullman (1979)

that produces a certain output from an initial tape configuration (input). There exists an infinite number

of different Turing machines that can produce a given finite output from a given finite input (The proof

is trivial; note that the inputs and outputs are finite). Each of them can be seen as a different abstract

representation of the causal relationships in the real system and all of them fulfill the validation criterion.

It is therefore impossible to surely infer causal relationships from output comparisons only. This means

that any model is limited in its validity because of “underdetermination”, “nonuniqueness” or “equifinality”

(Quine 1977, Oreskes et al. 1994, Refsgaard and Henriksen 2004). Underdetermination indicates that for

any finite amount of evidence, there are infinitely many rival models which equally fit with the data. In

other words, “the evidence cannot by itself determine that some one of the host of competing theories

is the correct one (Klee 1997)” (further information can be found in (Carrier 1994, Harding 1976). This

view can even be extended to scientific theories, as Maxwell (1997) states it in his conception of science:

“Any scientific theory, however well it has been verified empirically, will always have infinitely many rival

theories that fit the available evidence just as well but that make different predictions in an arbitrary way,

for yet unobserved phenomena” (for additional information see Richardson (2003) and Fraassen (1980)).

In logical terms a model and even a theory can only be regarded as sufficient but not necessary. Oreskes

et al. (1994) conclude: “Two ore more constructions that produce the same results may be said to be

empirically equivalent. If two theories (or model realizations) are empirically equivalent, then there is no

way to choose between them other than to invoke extra-evidential considerations like symmetry, simplicity,

and elegance or personal, political or metaphysical preferences.”
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Assessment with respect to social simulation: Underdetermination is inescapable, but attenuated by

the continuous process of falsification: Most of the theories and models that can reproduce past data are

incapable to generate or explain new findings.

3.3 Unpredictability of Social Systems

In the military domain, actually a subbranch of social simulation, the term “fog of war”, introduced by von

Clausewitz (1991) describes the uncertainty and ambiguity of military operations. War is commonly seen as

inherently volatile, uncertain, complex and ambiguous. Although ubiquitous at the strategic and operational

level, the practical importance of military uncertainty is most vividly demonstrated at the tactical level.

It includes military commanders’ imperfect intelligence regarding their enemies’ numbers, disposition,

capabilities, current locations, and especially, intents, regarding features of terrain and environment, and

even including inaccurate knowledge of the (physical and mental) state of their own forces. During actual

high intensity combat the uncertainty of war and the chaos of the battlefield even increase, since chance

and imponderables like fear, hate and despair gain importance. Taking all these factors into account it

is commonly agreed among military experts that a perfect prediction or control of military situations is

impossible. Similar lines of reasoning can be found for most social systems. Is empirical validation

therefore limited to the past and useless for the future?

Assessment with respect to social simulation: The intensive use of decision supporting simulation in

the military domain demonstrates that although military experts are skeptical about exact prediction they

are optimistic about beneficial exploration (Hofmann 2013), for at least 2500 years: “It is not a matter

of predicting the future, but of being prepared for it (Pericles, 495 BC - 429 BC).” Empirical validation

of the elementary military micro processes (movement, attrition, reconnaissance etc.) is considered to

be indispensable for such models, and such limited empirical validation is possible in many other social

domains, too.

3.4 In Search for an Adequate Epistemology

Objective, empirically proven validity is a notion that is applicable only within the epistemological framework

of positivism, which is, as demonstrated below, an ill-suited epistemology for social science, in general, and

social simulation, in particular. The issue of simulation validity with respect to different epistemological

perspectives has been addressed first by Naylor and Finger (1967) and received thorough investigation by

Barlas and Carpenter (1990), Landry and Oral (1993), and Kleindorfer, O’Neill, and Ganeshan (1998).

Here, it would go much too far to discuss all of the positions in the philosophy of science. Fortunately,

the point I want to make, can be discussed using only three views: Positivism, positive economics and

constructivism.

Positivism is based on the belief that reality is independent from the human observer’s perception and is

totally governed by laws of nature. The positivistic epistemology is founded on the notion, that humans can

fully understand reality, and that experiments can reveal the “true” (in the sense of “observer independent”)

nature of a phenomenon. The methodology is completely constrained to empiric experiments: All open

questions are formulated as hypothesis which are corroborated or refuted on the basis of crucial experiments

that follow strict rules in design and documentation. Knowledge is consequently the correspondence between

reality and its mental or formal representation. The logical and linguistic foundations of positivism have

been completely put into question by two of the most important philosophers of the 20th century: Quine

(1977) and Wittgenstein (1953). Therefore, today, this position is often attenuated to a kind of “pragmatic

realism”, which means that scientist have the aim of developing and using models that are as “realistic

as possible“, given the constraints of current knowledge, skills, language, computing power and available

time (see (Beven 2002) for a critical discussion of this philosophy). The crucial idea of positivism with

respect to the issue of validation is that scientist when addressing the same research question with the

same method should get the same results, even if they do not communicate. This is an indispensable
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precondition of validation in positivism which is obviously not true for social (theory-free) simulation:

Without explicit prearrangement different research groups will develop diverging social simulation models,

based on different, often contradicting sets of assumptions, producing different results. Thus, positivism is

inappropriate for the validation of social simulations.

Friedman (1953) tried to liberate economics from the straightjacket of positivism by claiming that

“truly important and significant hypotheses will be found to have ’assumptions’ that are wildly inaccurate

descriptive representations of reality, and, in general, the more significant the theory, the more unrealistic

the assumptions (in this sense) (p. 14).”

This conception seems to save the approach of social (theory-free) simulation: Different assumptions,

even contradicting or counter-factual assumptions seem to be justifiable. However, Friedman connected the

whole idea of positive economics to successful prediction. He claimed that a hypothesis (or model) must

be “able to predict at least as much as an alternate theory” and that it must be “fruitful in the precision

and scope of its predictions and in its ability to generate additional research lines (p. 10).” Consequently,

social simulation models that cannot generate useful predictions have to be refuted in the philosophical

context of positive economics.

An epistemology which is adequate for the validation of non-predictive, theory-free social simulations

is constructivism (The only alternative I can think of is Feyerabend’s “Anything goes”.): In contrast to

most other epistemologies constructivism is based on idealism: Different subjective realities coexist as

mental constructs. The observer and his or her cognitive apparatus is not neutral. The “raw data” is

never perceived raw but always as already interpreted. With other words, each observation is the result

of an interaction between observer and observed situation, thus the results are strongly influenced by the

observers knowledge, attitudes, and values (v. Glasersfeld 1997)).

According to the constructivist view, the validation of simulation results against empirical data sets

“is not about comparing the real world and the simulation output; it is comparing what you observe as

the real world with what you observe as the output. Both are constructions of an observer and his views

concerning relevant agents and their attributes. Constructing reality and constructing simulation are just

two ways of an observer seeing the world (Ahrweiler and Gilbert 2005).”

It is essential to realize that constructivism does not only call for developer-independent validation of

simulation models, but for the independent development of simulation models. This demand follows from

the idea that each research group is limited by a specific construction of reality based on a particular set

of assumptions. With other words, the experimental frames considered to be appropriate for a research

question differ between research groups.

Clearly, such an observer-oriented view of the world is unsatisfying to most scientist, and in order

to avoid both solipsism and indiscriminate relativism it is indeed necessary to explain, how individual

perceptions and constructions of the world converge to common pictures of reality, that are shared and

trusted. Ultimately, this convergence is nothing more than a consensus about the reality observed by the

members of a special community. This consensus is traditionally generated by correct useful predictions

of models based on scientific theories. Without either successful prediction nor already established theory,

there is only the chance to establish such a consensus via “interaction that creates an area of shared

meanings and expectations (Ahrweiler and Gilbert 2005).” With other words: Consensus can be reached if

independently developed models come to the same conclusions, despite different assumptions and different

experimental frames.

Within constructivism, single experimental frames (which are the foundation of each empirical vali-

dation!) are not guarantors of truth, but heavily biased approaches to reality. Take for example the input

trajectories of any real world queuing system (in front of a till). At least, one has to select a specific

starting and end point of the reference trajectory. In order to ensure validation within experimental frames

it would be necessary to find objective criteria for such selections. Unfortunately, in general, there is an

infinite amount of possible criteria for that selections, none of which can be excluded on formal grounds. A

subjective element of choice is inevitable. In fact, it is the purposeful selection of input trajectories, control
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conditions and output summaries which is both at the root of many success stories of sciences as well as

of many scientific scandals. But even if no fraud is consciously committed, the scientist cannot universally

ensure that his selection is appropriate for an objective evaluation of his model. It seems that this calamity

is much more severe for social science than for natural science (which is theory-based and predictive):

The micro level of physical simulations is composed of already corroborated laws, and/or their predictions

on the macro level are regularly proven correct. Hence, the dependence from subjective conceptions and

biased experimental frames in the natural sciences is less important than in social science.

Assessment with respect to social simulation: The notion of a context- and group-dependent truth in

constructivism implies that it cannot be the task of the individual social research group to use empirical

validation to render their results bullet-proof, since each single group is limited by their perception, language,

and world-view. They should confine their efforts in order to make all their assumptions and unavoidable

biases clear to the reader, and to demonstrate that the empirical data they have gathered is in line with their

cognitive setting. The transparency of their modeling is the indispensable prerequisite for other research

groups for the comparison with their own cognitive setting.

4 IMPLICATIONS FOR PRACTICAL WORK

4.1 Direct Implications

Most of the technical arguments that try to set limits for empirical validation do not limit empirical validation

in itself but the range of pertinent research questions. A purely speculative model of a fictitious society is

a thought experiment, not a hypothesis to be refuted by data. The lack of data is here simply irrelevant. A

chaotic (in the technically sense of the word) social system is, admittedly, a hard limit for simulation, too.

If the evolution of any social system is as dependent from initial conditions as the three-body problem in

physics, empirical model validation would be impossible. For scientific research, however, it is reasonable to

assume that most social systems are governed by non-chaotic rules that allow understanding, and sometimes

maybe even prediction. In any case, sensitivity to initial conditions is, a priori, not a killer criterion for

empirical validation.

Due to underdetermination any empirically corroborated model is only a working hypothesis. There is

an infinite number of (mostly unknown) rival models that equally fit the data. The preference of a special

model has to be motivated with additional reasoning. Such reasoning can include parsimony, symmetry,

resemblance to already known models from similar research fields, “generally accepted” cause-effect

relations, and even plausibility and intuition.

The inevitable subjectivity of theory-free, non-predictive modeling not only calls for developer-

independent validation. It also calls for meta-analysis between independently developed models since

their is no established single experimental frame all research groups can accept. For that aim the modeling

purpose, the conceptual model, the program itself, the experimental design, and the used data for validation

have to be documented as transparent as possible. The critical peer review of the results of a social simu-

lation model must mandatory include all the assumptions made. In addition, no single research group can

effectively ensure the validity of its own simulation model, regardless of how much real world comparisons

they have made. They are limited by their view of the world. Trustworthy scientific knowledge cannot

be based on single theory-free, non-predictive social simulations but only on the similar results of many

of them. In that sense, extremely complex models of single research groups are a threat for scientific

veracity. It is, for example, almost impossible for external experts to assess the overall quality of huge

military simulation federations. Ultimately, in practice, the results of such models have to be believed or

“instinctively” rejected. The amount of time, personal and money necessary to independently access such

models is in the majority of cases disproportional to the achievable results. Thus, simulation models for

decision support should not be more complicated than absolutely necessary for the given purpose. (For

further arguments for simple models see, for example Ward (1989), Salt (1993), Pedgren, Shannon, and

Sadowski (1995), Barretto, Chwif, and Paul (2000)).
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Consequently, given a problem to be solved via modeling, and a certain amount of money, it seems

advisable not to spent the whole fund into one simulation project. A multitude of independently developed

and “micro-validated” models (not necessarily simulations) will probably provide more insights than a

single model ever can, especially after comparing and discussing different results and subsequently different

modeling assumptions, methods and raw data.

4.2 A Shift Towards Meta-analysis

For decades null hypothesis significance testing has been the standard procedure to ensure that effects

(differences between samples) are unlikely caused by randomness. However, the use of significance testing

in the analysis of research data has been thoroughly discredited, both logically and conceptually, from

numerous top statisticians – continuously for almost 100 years (Boring 1919, Berkson 1938, Bakan 1966,

Greenwald 1975, Tukey 1991, Cohen 1994, Schmidt and Hunter 1997, Ioannidis 2005, Armstrong 2007,

Lambdin 2012). It is beyond the scope of this paper to discuss all these criticism, and what has been said

in support of significance tests (Mulaik et al. 1997, Hagen 1997, Senn 2001), but the social simulation

practitioner should know that the scientific value of a single significant study is much lower than what has

been expected for a long time (Schmidt and Hunter 1997). Today, meta-analysis (re-analyzing the results

from different research groups) is considered to be the only way to establish a solid scientific foundation

based on statistical findings. A similar shift seems appropriate for the empirical validation of social

simulations. Due to underdetermination, inevitable subjectivity, and dependence of the epistemological

perspective any single social simulation study should be regarded to be an exploratory endeavor with a

focus on the validation of empirically accessible underlying micro processes. Only if several research

groups, based on own social simulation models, own experiential frames, and own assumptions have come

to similar results, ambitious empirical data validation with the aim of exact evaluation on the macro level

should be started.

A positive example of such an meta-analysis is summarized by Arnold (2014) for variants of Schelling’

neighborhood segregation model (Schelling 1971). A critical example can be found in (Arnold 2013). He

demonstrates that the results of Axelrod’s reiterated prisoner dilemma model (Axelrod 1984) are not robust

to variations in basic assumptions.

After such a shift, it is transparency (on all levels of the model building process, e.g. assumptions,

model, code, input and output data, experimental design and frame, etc.) which becomes paramount for

the single social simulation project, whereas empirical validation on the macro level becomes crucial only

after meta-analysis.

5 SUMMARY AND CONCLUSION

It is commonly accepted that many natural and almost all social systems are “epistemologically open” in

the sense that not everything pertaining to these systems or contributing to their behavior can be modeled

within a single model. Hence, such models are always purpose-driven abstractions of reality. Comparisons

between outputs trajectories of reference system samples and model results are therefore only feasible within

a framework taking into consideration these abstractions imposed by the purpose of the modeling. A general

approach to such a framework has been established by Zeigler et al.(Zeigler, Kim, and Praehofer 2000).

Within such an experimental frame objective validity seems to be a reachable and therefore compulsory

goal. This impression is dangerous. It puts far too much trust into the power of formalized and objective

approaches, and also in the certainty of empirical comparisons under a specific mindset. Experimental

frames are adequate tools for the validation of a huge range of (technical) simulations (representing

epistemologically closed because fully specified systems), but they a not unshakable ground for social

simulations. No formal framework can guarantee the validity of such models. Expert intuition, common sense

(even common “Weltanschauung”, see (Ackoff 1979), which discusses the topic in the context of Operations

Research), and open discussion are the supreme ingredients for assessing computational representations
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of social reality. Objective, irrefutable validation of models of natural and social phenomena (extracted

from epistemologically open systems) is both logically and practically impossible. Therefore a single

experimental frame cannot guarantee the objective “validity” of simulation results. Actually, the fit of a

model and empirical data can only be regarded to be a confirmation of a possible model and its specific

experimental frame (“history matching”, (Konikov and Bredehoeft 1992)), which is necessarily based on

personal selections. The data used for validation, the experimental frame, and the simulation model itself

are interdependent. Thus, even the most “significant” result of a single social simulation study is seldom as

convincing as independent confirmation among some exploratory models. For each single social simulation

study it is therefore recommended to put the focus on transparency with respect to assumptions, model and

data. Empirical validation should be the focus when comparisons with similar models are possible.
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